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Abstract

A genetic algorithm (GA) utilizing an integer-based representation is presented to assist in
the design of cellular manufacturing (CM) systems. It allows for a variety of evaluation func-
tions and the selective incorporation/exclusion of design constraints during cell formation.
In this paper, the basic GA model is extended to consider alternative operations and machine
redundancy as well as completely fixed alternative routes. The approach is demonstrated
on data from the literature and is shown to be an effective cell design tool. An industrial
case study is described where the clustering problem was solved using the genetic search
approach. The resulting cell design has been implemented.

1 Introduction

In cellular manufacturing, the manufacturing system is decomposed into several manageable
subsystems, or groups, by aggregating similar parts into part families and dissimilar machines
into cells [17]. The ideal cell (1) is independent, i.e., part family(s) are completely produced
within the cell; (2) has balanced setups; and (3) requires minimal backtracking. The result
is simplified scheduling, control, and implementation of automation. Cellular manufacturing
provides the benefits of a mass production system for a discrete part, batch production sys-
tem [2, 3] including reduced setup times, work in progress, throughput time, and material
handling as well as encouraging improved product quality [1, 8, 23, 29]. Employee/worker
benefits include worker flexibility, importance of social group, reduced frustration, and im-
proved status and job security[5].

A common objective for the designers of cellular manufacturing systems is to create a
set of autonomous manufacturing units that eliminate the intercell movement of parts. In
the area of manufacturing cell formation, techniques in the literature for partitioning the
part/machine incidence matrix into machine cells and associated part families are varied
and extensive [13, 25]. Techniques based on process routings can be categorized according to
the type of algorithm employed to cluster the data, e.g., array-based clustering, hierarchical
and non-hierarchical cluster analysis, mathematical programming methods, graph theoretic
approaches, artificial intelligence techniques, and other heuristics.

Mathematical programming approaches to the cell formation problem are nonlinear or lin-
ear integer programming problems. These formulations suffer from three critical limitations.
First, because of the resulting nonlinear form of the objective function, most approaches
do not concurrently group machines into cells and parts into families. Second, the number
of machine cells must be specified a priori, affecting the grouping process and potentially

obscuring natural cell formations in the data. Third, since the variables are constrained to



integer values, most of these models are computationally intractable for realistically sized
problems [19].

Joines et al. [10] developed a stochastic solution technique using a genetic algorithm
(GA) to solve integer programming formulations of the cell design problem. GAs are an
effective and flexible optimization tools that can solve a large class of problems by exploring
all regions of the state space and exponentially exploiting promising areas through mutation,
crossover, and selection operations. Also, unlike many other optimization techniques, they
do not make strong assumptions about the form of the objective function.

The GA approach to cell design offers several advantages over existing techniques. It
simultaneously groups the parts and machines into families and cells and assigns them to each
other without visual analysis of the solution. The model also offers the ability to constrain
the number of permissible cells or part families, selectively. Most clustering algorithms
cannot identify all naturally occurring clusters and find solutions with a constrained number
of clusters. The cell designer, at least initially, might specify an unconstrained problem
to identify the naturally occurring groups of parts and/or machines. Afterwards, practical
limits on the number of cells arising from availability of floor space, maximum work team
sizes, or excessive machine redundancy requirements can be imposed. The GA approach [10]
was tested on data from the literature and shown to outperform other methods operating
on just the part/machine incidence matrix. The algorithm has been improved in terms
of computational efficiency and quality of solution through the incorporation of a local
improvement heuristic as either an evaluation function or a genetic operator [12].

Most algorithms in the literature utilize only the part/machine incidence matrix which
contains only a pre-specified, single fixed routing for each part. Relatively very few re-
searchers have addressed the issue of utilizing alternative operations, alternative routings,
or machine redundancy in determining cells/families. These single fixed routings are often
optimized to maximize machine utilization in a functional layout rather than the benefits
of cellular manufacturing. The existence of functionally similar machines or workcenters is
not considered in a functional layout because parts can be routed or scheduled to the next
available machine [21]. These functionally identical machines lead to alternative operations
or routings which can be used to obtain better cell design and independence.

The p-median algorithm, a mathematical programming approach, was extended by Ku-
siak [18] to include complete fixed alternative routes, while Shtub [26] used a generalized
assignment problem to solve a similar problem in an attempt to obtain better cell indepen-
dence. Nagi et al. [21] developed a two-phase approach that minimizes the intercell traffic in
the manufacturing system while considering part demand, capacity considerations, multiple

fixed part routings, and multiple, functionally identical machines. Kang and Wemmerlov [14]



developed a similarity index heuristic that determines machine cells first and then part fam-
ilies by considering multiple routes specified both in terms of operations and machines. This
procedure also considers capacity when combining operations into routes. However, most of
these heuristic methods lack the flexibility to form cells using a variety of evaluation mea-
sures or to handle constraints adequately. A majority of the methods that include alternative
operations and multiple routes utilize mathematical programming, limiting their usefulness
for solving large-scale cell formation problems.

To move toward a more satisfactory algorithmic result, other manufacturing information,
such as setup time requirements, tooling and crew requirements, machine capacity, alterna-
tive routings, machine costs, intercell transfers, intracell and intercell layout, and reduced
machine utilization needs to be included. The GA approach to cell design developed in [10]
allows the system designer to substitute various types of evaluation functions, permitting
alternative designs to be quickly generated and reviewed.

In this paper, the flexibility /extensibility of the GA approach with respect to its ability
to incorporate new representations and other manufacturing information is explored. First,
the GA model is extended to incorporate alternative operations and redundant machinery.
Next, complete fixed alternative routings are considered. This reflects the practice in some
manufacturing systems, such as furniture manufacturing, where a part can be manufactured
either completely with a single multi-purpose CNC workstation or with a set of manual
machines. In this case, there are multiple routes since the set of operations will either be
done entirely on the CNC machine or on a set of manual machines. Finally, alternative
operations, redundant machines, and fixed alternative routings are combined. This reflects
the case where there may be several manual machines that can be substituted for one another
or a set of interchangeable multipurpose CNC machines. In each case, the algorithm is
demonstrated on data from the literature. Finally, the alternative operations model is applied

to an industrial problem.

2 Cell Formation Using an Integer-Based GA

Consider an m machine and n part cell formation problem with ky.x cells. Joines et al. [10]
developed an integer programming model with the following variable declarations using set

notation (see Appendix A for the classical variable definition).

x; = [, machine: is assigned to cell [

y; = [, part jis assigned to part family [

Each part and machine variable is equal to the number of its assigned family or cell. Part



families are assigned to the respective machine cell of the same number. A conventional inte-
ger programming solution technique cannot be employed because of the objective function’s
inability to decode this variable representation. However, for the GA, the objective function
is a computer procedure (function) that can decode and evaluate a solution easily.

GAs maintain and manipulate a family, or population, of solutions in their search for an
optimal or near optimal solution by implementing a “survival of the fittest” strategy. This
provides an implicit as well as explicit parallelism that allows for the exploitation of several
promising areas of the solution space at the same time. A more complete discussion of GAs,
including extensions and related topics, can be found in [4, 20] among others.

For any GA, a chromosome representation is needed to describe each individual in the
population of interest. Using our previous representation [10], the first m variables represent
the machines while the last n variables are associated with the parts. Therefore, each
individual is a vector of m + n integer variables on the range of 1 to the maximum number

cells or families (kmayx). This representation differs from the classical binary representation

developed by Holland [7].

Individual — (21,22, ... , T, Y1, Y2, -« s Yn)

machines parts

The first step in a GA procedure is to initialize the population either randomly or by
seeding. Once the initial population is randomly created, each individual is evaluated using
the objective function to determine its fitness or value. Evaluation functions of many forms
can be used in a GA, subject to the minimal requirement that the function can map the
population into a partially ordered set.

In this study, the “grouping efficacy” measure was used as the evaluation criteria. Group-
ing efficacy was chosen because it forces block diagonal cell formation to occur in the
part /machine incidence matrix and is useful for comparing solutions to those of other tech-
niques found in the literature [16]. Grouping efficacy has a value of one when there are no
exceptional elements and no voids and a value of zero if the number of exceptional elements
equals the total number of operations. An exceptional element is a part operation which is

performed outside the part’s designated cell. Formally, grouping efficacy (I') is defined as

(1-%) 1-2=2" e—e
(I+¢) 14+ e+ e,
where e is the number of operations in the data matrix, e, is the number of voids in the

diagonal blocks, and e, is the number of exceptional elements. Note, a weighted grouping



efficacy proposed by Ng[22] can also be used. Rogers and Shafer [24] demonstrated that
grouping efficacy with operation sequence information to be one of the best choices to use
when “making static decisions because a trade off is made between having exceptional ele-
ments outside of the cells and the voids in the cells.” This paper will include the operation
sequences in various forms.

After the population (of size N) has been evaluated, a new population of N individuals
is selected from the previous generation. The selection of individuals to produce successive
generations plays an extremely important role. These individuals do not have to be distinct;
that is, an individual in the population can be selected more than once. A probabilistic
selection is performed where each individual is assigned a probability based upon its fitness
such that the better individuals have an increased chance of being selected. However, all
of the individuals in the population have a chance of being selected to reproduce. The GA
used in these experiments uses a normalized geometric ranking scheme and employs the
elitist model in which the best individual from the previous generation is included in the
current one [10].

After the new population is selected, R parents are randomly chosen from the new popula-
tion to produce children by applying mutation and crossover genetic operators [20]. Mutation
operators tend to make small random changes in a single parent to form a child in an at-
tempt to explore all regions of the state space. Crossover operators combine information from
two parents to form two offspring that contain a “likeness” (a set of building blocks) from
each parent. Joines et al. [10] modified six float operators developed by Michalewicz [20]
to work with the integer representation: uniform mutation, non-uniform mutation, multi-
non-uniform mutation, boundary mutation, simple crossover, arithmetic crossover. Two
problem-specific genetic operators (cell-swap crossover and cell-two-point crossover) based
on the proposed cell formation representation were also developed and shown to enhance the
GA’s performance in terms of computational efficiency and solution quality [10].

Michalewicz [20] and Joines et al. [10]. have shown that all of these genetic operators are
useful. Fach operator aids the search process differently (e.g., arithmetic crossover forces the
solutions to the middle of search space while boundary mutation forces the solutions to the
boundaries). Also, many of the operators work better at different times during the search
process. For example, uniform mutation works better at the beginning of the search process
allowing the GA to explore several regions of the search space (i.e., good global exploitation)
while near the end of the searching, one needs more local searching capability. Therefore,
Non-uniform mutation works similar to the uniform mutation at the start of the search but
the distribution tightens as the search proceeds performing more local exploitation at the

end of the search. For more detailed information on the modifications made to the standard



float operators or the problem-specific operators, see Appendix B.4 and Joines et al. [10].
The GA moves from generation to generation until the termination criterion is met. The
stopping criterion used in these experiments is the specification of the maximum number of
generations. This allows the maximum number of (not necessarily unique) solutions that are
evaluated to be preset. However, other termination strategies can be used. See Appendix B.1

for more details on the genetic algorithm used, as well as the various GA parameters.

3 Incorporation of Alternative Operations and Machine

Redundancy

One objective is to form completely independent cells since the benefits of cellular manufac-
turing (reduced WIP, throughput time, etc.) are reduced when inter-cell movement exists.
Most techniques try to minimize inter-cell movement as represented by the number of excep-
tional elements. However, the number of exceptional elements may not accurately reflect the
level of inter-cell movement required. For example, if the inter-cell movement occurs in the
middle of the operational sequence, two (not one) inter-cell movements will be required. The
operational sequence can be extremely valuable in identifying the effect of inter-cell traffic
and backtracking. To eliminate exceptional elements, the machine causing inter-cell move-
ment can be duplicated or the parts routing sequence can be changed by subcontracting the
part, redesigning the part, or using an alternative routing or operation. Routings are often
generated to maximize machine utilization rather than maximize the effectiveness of group
technology. Therefore, a fixed relationship between a part and a particular set of machines
can be constraining since there may exist alternative machines for a specific operation which
may lead to greater cell independence [14].

Chan and Milner [2] and King [15] eliminate exceptional elements by interactively du-
plicating machines and re-solving the problem. Exceptional elements are interdependent
because actions used to eliminate one element may affect other elements in the incidence
matrix. Therefore, deciding to duplicate a machine early in the cell design process may
not lead to the best solution. Others have suggested interactive sessions after the initial cell
formation to eliminate the cells by redesigning the part or assigning the operation to another
machine. Neither of these is satisfactory since real problems are often large and complicated.

Most cell formation algorithms use the binary part/machine matrix, A, consisting of
elements a;; = 1, if part j requires processing on machine ¢, otherwise a;; = 0. This format
leads to fixed routing sequences with no machine substitutions. Several researchers have

proposed the following representation, where the operational sequence is embedded in the



matrix [21]:

k, the kth operation of part j is required on machine ¢
ai; = . . .
! 0, no processing on machine 1.

Using this variable definition, alternative operations can be incorporated into the part/machine
incidence matrix by specifying that several machines can perform the kth operation of a par-
ticular part. Because the evaluation function is independent of the decision rules, the GA
provides the flexibility to interchange various objective functions without changing the algo-
rithm. The evaluation function must take into account only the new part/machine incidence
matrix representation. Specifying alternative operations has the advantage of allowing the
algorithm to determine the most appropriate routing sequences in the context of minimiz-
ing intercell flows. It also allows one to determine the true effect of intercell movement,
backtracking, and sequence dependent setup times since the actual sequence of operations is
specified. See Appendix A.l for the non-linear integer programming formulation using the
classical assignment variables.

An example (taken from Nagi et al. [21]) is used to demonstrate the GA’s ability to
use this new incidence matrix representation that permits alternate operation substitution.
The problem consists of 20 different parts and 20 workcenters. Workcenters 5 and 6 are
interchangeable as are workcenters 17, 18, and 19 for all parts. For comparison, the Nagi
problem was modified by removing all duplicate workcenters (machines 6, 18, and 19), and
a standard binary part/machine incidence matrix was created as shown in Figure 1. The
GA requires 136.25 generations on average for 10 replications to solve the problem. The
solution, having a I' of 0.7308 and 10 exceptional elements, is shown in Figure 2. Further
evaluation using the operation sequence information in the part/machine matrix shown in
Figure 3 reveals that the 10 exceptional elements actually generate 13 intercell movements.
This illustrates the limitation of a fixed binary representations of the routings in accurately

measuring intercell flows.
Next, the GA was used to solve the problem with the inclusion of redundant machines

along with the operational sequences (shown in Figure 3). The algorithm required an average
of 143.2 generations to reach a final I' of 0.7952 over 10 replications. The solution (shown
in Figure 4) contains only one exceptional element. The fourth operation of part 4 cannot
be processed inside its cell (cell 4), and one intercell movement to either of three cells (cell
0, 1, or 3) is required. Thus, an improved cell formation was achieved by the GA through
the consideration of alternate machines for selected operations and including redundant

machiners.



4 Incorporation of Alternative Routings

Even though the model from the previous section can generate cells using dynamic routes,
the formulation suffers from two distinct disadvantages. First, it forms cells considering
alternative operations in which preferred sets of machines can not be specified and preserved
through the clustering process. This can be important for manufacturers who possess a
mix of manual machines and flexible CNC technology. To illustrate, consider a part with
two valid machining sequences. One sequence employs several manually operated machines
and the second sequence might consist of a single CNC workstation. The previous GA
formulation of Section 3 considering alternative operations would allow the CNC workstation
to be substituted for any of the individual machines in the manual sequence. In practice, it
would be unlikely that a part that can be produced entirely on the CNC workstation would
visit this workstation for only one operation while the other operations are performed on
manually operated machines. It is more likely that the part would be machined entirely
on the CNC workstation or produced exclusively using the manually operated machines. A
second disadvantage of this model over complete alternative fixed routings is the ability not
to assign priorities to certain routes. This would allow the cell designer to generate cells
that balance work loads, achieve minimum investment in tooling costs, take full advantage
of manpower skills, etc.

A generalized cell formation problem that can consider complete fixed alternative routings
which overcomes these two disadvantages can be formulated from the classic IP formulation
[10] by adding constraints to ensure that each part is assigned one and only one route.
However, it is easily shown to be NP-hard since the original problem is NP-hard [27, 28].
The classical formulation must incorporate the following additional variable declarations and
constraints to handle fixed routings. The constraints ensure that each part is assigned only
one routing and the non-linear integer formulation [10] can easily be updated as shown in
Appendix A.2.

1, if part j uses route h,

Zjh = .
0, otherwise.

p; = the number of alternative routes for part j

The GA approach is extended by developing an integer programming-based GA with a

new set of variable declarations that allow evaluation of fixed alternative routings. Specifi-



cally, let z; = h, if part 7 uses route h. If there is only a single routing for part 7, this variable
is unnecessary and is not be included in the programming model. Notice that the number
of variables has grown by, at most, a factor of n. With this new variable definition, a new
chromosome representation can be developed easily by adding the z variable component to

individuals in the population.

Individual — (21, T2, .« ) Toy Y1, Y25 -+« s Yny 215225« «+ 4 Zn)

machines parts route

Again, because of the flexibility of the GA, the algorithm remains unchanged and only the
evaluation function is modified to accommodate this new representation. This formulation of
the GA is also demonstrated on the Nagi problem. Figure 5 shows the original part /machine
incidence matrix with the alternate route for each part. Notice that parts 16, 17, 18, and
19 have only one process plan. The GA then determines the appropriate values for only
56 different variables (20 machine, 20 part, and 16 route assignments). As in the previous
model, there is only one exceptional element and intercell movement (part 4, shown in the
solution shown in Figure 6). The same value I' of 0.7952 was obtained after an average of
231.6 generations. For this problem, identical cell configurations are obtained because the
complete alternative routings matrix (Figure 5) can be reduced to the operational sequence
matrix in Figure 3. This would not be possible if the number of operations per route were
different. For example, if part 1 could be produced on machines 5, 8, and 11 or machines
6 and 9, then these two alternate routes cannot be reduced to the form of the operation

sequences matrix in Figure 3. Therefore, different cell configurations are possible.

5 Complete alternative routings with machine redun-

dancy

Even though consideration of complete alternative routings offers the ability to specify a
preferred set of machines or to assign priorities to certain routes, it can also be limiting.
The operational sequences model offers advantages by allowing machine redundancy as well
as determination of the true effect of intercell movement. These two models can be com-
bined into one representation by allowing the complete alternative routings to contain their
operation sequences as well.

Again, because of the flexibility of the GA, the algorithm remains unchanged and only
the evaluation function is modified to accommodate the combination of the operation se-

quences with complete alternative routings. This formulation of the GA is demonstrated on



a modified version of the Nagi problem. Figure 7 shows the original part/machine incidence
matrix with the alternate routes for each part, where each alternate routes now contains the
operation sequences. Some routes contain machine redundancies (i.e., certain operations of
a route can be performed on several different machines). Again, parts 16, 17, 18, and 19
have only one route. As in Section 4, the GA determines the appropriate values for only 56
variables. This model was able to eliminate the exceptional element as shown in Figure 8 as
well as obtain a slightly higher value I' of 0.7975 in an average of 227.7 generations. Notice
that the GA was able to determine the most appropriate route to use as well as dynamically
build the operational sequence.

By combining machine redundancy with the complete fixed alternative routes, this model
offers distinct advantages over previous models. While the model of the previous section can
handle machine redundancy through the use of separate routes, the approach in this section
is more computationally and state space efficient. Take the same example of a part that can
be manufactured at a single CNC workstation or with a set of manual machines. As stated
before, one does not want the GA to assign certain operations to the CNC workstation and
the remaining operations to manual machines. Therefore, a preferred set of machines needs to
be specified. However, there may be several manual machines that can be substituted for one
another or a set of interchangeable multipurpose CNC machines. The GA has the capability
of utilizing the most appropriate CNC workstation or set of manual machines within the most
appropriate complete alterntive routing. Also, this model, unlike the complete alternative

routings model, is able to determine the true effect of intercell movement.

6 Industry case study

The GA described in this paper has been applied to several industrial problems. One of the
problems included a focused factory for a division of a large international company. This
particular division manufactures and machines rotary unions. Due to product changes over
the past few years, the current layout had become very inefficient in terms of material flow
(i.e., distance traveled by parts) and space utilization. Management wanted an improved
layout to be designed. In particular, management was interested in determining if changing
the machinery area to a cellular layout would be beneficial. Since attempts to cluster the
data manually were ineffective, the GA approach was used to cluster the data. The objective
was to identify the machine cells and the various parts assigned to those cells. Based upon
the clusters found, a layout was to be generated and evaluated.

The model from Section 3, which incorporates alternative operations and machine redun-

dancy, was deemed the most appropriate for the initial clustering. This was due, in part,

10



to the fact that the current part operations could be easily obtained from the MRP system
and there were functionally identical machines for a few of the machine types. More de-
tailed information on alternate operations and/or possible alternate routes could have been
obtained at an additional cost; however, management felt that it was not important in the
initial design.

The manufacturing system consisted of 20 unique machine types. For all but three, there
was a single machine of a given type. For these three types, there were three machines of one
type and two of the other two types, resulting in a total of 24 machines. It was determined
that two of these machines were not being used by the current part population and were
not anticipated to be used in the future. Therefore, only 22 machines were considered. The
company identified 185 representative (high volume) parts.

Management determined that the maximum number cells they could manage was four.
Since the solution generated by the GA with kpax = 4 was binding (i.e., generated a four cell
solution), an alternative solution with kpax = 3 was also generated. Ten different replications
were performed for both maximum number of cells. It took approximately 559 seconds on a
Motorolla 604 Power PC to run all 10 replications for 2000 generations.

Subsequently, the company took the two alternatives and created layouts based on the
cell /family configurations generated by the GA. Using projected future demand, the company
determined, for each of the machines, the within-cell utilization percentage, which is defined
as the assigned part demand for this particular machine divided by the total demand. Also,
they looked at capacity issues of the redundant machines. This reflects the amount of
within-cell demand satisfied versus intercell demand. Based on these percentages, the space
reduction generated by the reconfiguration of the machines into cells, the savings in distance
traveled, and a few other qualitative issues, the company chose the four cell solution. Also,
the four cell layout was a better design for the current building. Therefore, no additional
analysis needed to be performed. The original operations part/machine incidence matrix
can be seen in Figure 9 while the four cell solution can be seen in Figure 10.

For the four cell solution, the average within-cell machine utilization was 92%, with the
lowest within cell machine utilization being 68%. Based on the new layout, there was a
projected 38.5% reduction in material flow (43,150 feet) per year. With the removal of two
machines and the machine cell reconfiguration, there was a reduction in space utilization of
4.1% and 12.5%, respectively, for a total reduction of 16.6%. This space reduction will allow
for expansion of the current product line. The cell design generated by GA was implemented

by the company.
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7 Conclusions

There is an extensive literature concerning optimization and heuristic methods for cell forma-
tion. However, the practical application of many techniques is restricted either by problem
scale, by the representation of the input data, or by the limited discrimination of the evalu-
ation measure used for cell formation. For example, most of these methods utilize only the
information stored in the part/machine incidence matrix.

Joines et al. [10] developed a genetic algorithm approach to solve integer programming
formulations of the manufacturing cell formation problem. It offers several advantages over
previous techniques, e.g., the technique simultaneous forms machine cells and part families
and is capable of determining the naturally occurring clusters as well as solutions with a
constrained number of cells/families. Since the evaluation function is a computer procedure
and independent of the decision rules used in the algorithm, the method conveniently allows
the substitution of various evaluation functions. Alternative cell designs can be generated
and reviewed quickly and multi-criteria objective functions can be employed.

This paper extends the capability of the original model. The examples demonstrated the
GA’s capability to form cells using a variety of part/machine incidence matrix representa-
tions. Specifically, these representations allow the GA to generate solutions that considered
alternate operations (substitute machines) or functionally identical machinery. The GA was
able to generate the routings for each part dynamically so as to maximize the effectiveness
of using manufacturing cells. The next extension incorporated complete fixed alternative
routing sequences for selected parts. This allows the cell designer to force certain operations
to be performed on a particular set of machinery. The last extension combined the two pre-
vious models. This extension offers the advantage of allowing the cell designer to prioritize
or weight certain routes as well as include machine redundancy information. Since the actual
operation sequences are embedded in the representation, the true effect of intercell move-
ment, backtracking, and sequence dependent setup times can be determined and, possibly,
used in further extensions.

Joines et al. [10, 12] demonstrated the computational efficiency of the GA approach in
solving large instances of the cell formation problem. The GA approach scales very well in
terms the number of machines m, parts n, and cell/families kpax. The operation sequences
model only makes a slight change to the evaluation function while the complete fixed routings
model adds additional variables as well. The computational time need to run each model on
the various Nagi problem for a 1000 generations on a DEC 5000 is given in Table 1 along with
the average number of generations needed to solve the problem. Notice that it takes only a

few seconds to run. The GA has been run on several problems from the furniture industry
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where the number of machines generally exceeds a 100 and the number of parts exceeds

2000. The size of these problems generally excludes most other cell formation techniques.

Model Simple | Alt. Operations | Alt. Routings | Combined
Avg. No. Gen. 136.25 143.2 236.1 227.7
Computational Time (seconds)f | 5.96 6.70 .71 8.56

f-time to initialize population and run 1000 generations

Table 1: Computational Time of the GA Approaches in CPU Seconds

These extensions show how various representations can easily be incorporated into the
GA. The algorithm was able to generate better solutions in terms of both grouping efficacy
and the number of intercell movements by just incorporating this simple additional informa-
tion. Even with these simple additions and evaluation measure, the clustering process has
been shown to be effective for real industry data sets. The efficiency of the algorithm will
allow us to include more practical aspects of the group technology problem (i.e., machine ca-
pacity, volume demand, intercell layout, tooling and crew requirements, sequence dependent

setup times, cell size, etc.) in order to obtain a more satisfactory algorithmic result [9].
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Figure 1: Original Matrix without Machine Redundancy

Family/Cell # Parts Machines
Family/Cell 0 5,6,7, 8,9 1, 4, 5, 15
Family/Cell 1 | 10, 11, 12 2,7, 10, 17
Family/Cell 2 0,1,2, 3,4 0, 8, 11
9,
3,

Family/Cell 3 | 13, 14, 15, 16 13, 16
Family/Cell 4 17, 18, 19 12, 14
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56 78 9101112 01 2 3 413141516 17 18 19
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15: 1111
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o T 111
c 10 1 1]
I 1 1 1 1 1 1111
e O 1111
o 8 1 1 1
o 11 11 1 1 1
s 9 1111
13 1 1 1
16: 11 1
3 111
12: 11
14: 1 11

Figure 2: Solution to Nagi’s Problem Without Machine Redundancy
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Pat# PO | P1 | P2 | P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15  |P16P17P18P19
Rout#| 1 2|1 2|1 2|1 2|1 2 3|1 2|1 2 3 45 6|1 2|1 2 3 45 6{1 2/1 2 3|1 2 3|1 2 3|1 2 3[1 2 3|1 2 3[1]1]1]1
0: 11411113111
1 11 1111111111
2 1114111111
3 111
4 11711111 4 11
501 1 1 1 1 111 1 1 1 1
» 6 1] 1 1 1 1111 1 1 1 1 1]
o 7. 1114111111
c 8l 1 1 1 1 11 1
- 9. 1111111111
= 1o 111 111
o 111 11 311111
o 12 11
= 13 111 11 11
14: 111
15: 1111111 14111111411
16 11 11 1 1 1
17 1 1 1 11 1 1 1 1 1 1
18: 1 1 1 11 1 1 1 1 1 1
19 1] 1 1 1 1 1 1] 1] 1 1 1

Figure 5: Original matrix for the Nagi problem with complete alternative routings

family/cell # parts machines
family/cell 0 | 13, 14, 15, 16 | 9, 13, 16, 17
family/cell 1 17, 18, 19 3, 12, 14
family /cell 2 5 6,7,8 9 1, 4,5, 15, 19
family/cell 3 0,1,2, 3,4 0, 6,8, 11
family/cell 4 10, 11, 12 2, 7, 10, 18
[part# [0 [ 1 [2 3 [4]5]6]7]8]09]
[route# [ 2222316 [2]6]1]
[ part # [ 10 [ 11 [ 12 [ 13 | 14 | 15 [ 16 | 17 [ 18 | 19 |
[ route # | 2 2 [ 2 [+ v 1T v 1 -1 -1-T1T-"1]
Parts
13141516 17 1819 56 7 8 9 0 1 2 3 4 10 11 12
ol 1 1 1 1
13 1 1 1
16 1 1 1]
71 1 1
3 111
12: 11
o 14 111
) 1 1 111
c 4 11 1
— 5 11111
c 15 1111
o 19 1 1 1
s O 1111
= 6: 1111
8: 1 1 1]
1L 11111
2: 1 1 1
7 1 1 1
10: 1 1]
18: 11 1

Figure 6: Solution for the Nagi problem with complete alternative routings
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Part# PO P1 P2 P3 P4 PS5 P 6 P7 P8 P9 P10| P11( P12| P 13| P14 | P 15|P1§P14P1gP19
Rout#| 1 21 2|1 21 2 2 3|1 2|1 2 3 4|1 2]1 2 3 4]1 2|1 2]1 2|1 2]1 2|1 2|1 2]1)1fj1|1
0: 3 1 1 2| 1 1
1 3 1 3 2| 1 1
2: 1 2 3 1 1 2 1 3l 1
3: 1 2 2 2 2l 1] 2
4: 2 1 3| 2 3 4
5] 3 1 3| 1 2 4 2| 2 4 4/ 3 3
» 6 3 1 4 3| 1 2 4 2| 2 4 4/ 3 3
@ 7. 1 2 2 1 2| 2| 3
S 8| 2 2 1
— 9: 2 1 2 1 1 3 2| 3
= 10: 3| 1 4
1% 11 1 2 3 2 3| 1
© 12: 2| 2 2 1 1| 2
= 13: 1 1 2 2 3| 3l 2
14: 3 1 1 3 3 3 1
15: 2 1 1 2| 1 2 2
16: 2 3 3 3 4 2 1
17: 2 3 3 4| 3 3 3 3 3 4 3[ 4 4 2 21 1 1] 1 1
i8: 2 3 3 4| 3 3 3 3 3 4 3[ 4 4 2 21 1 1] 1 1
19: 2 3 3 4| 3 3 3 3 3 4 3 4 4 2 201 1 1 1

Figure 7:

Original matrix with complete alternative routings

and machine redundancy

family/cell # parts machines
family/cell 0 7, 8, 12 1, 4, 5, 15, 19
family/cell 1 0, 3 0, 6, 8, 11
family /cell 2 1,17, 18, 19 3, 12, 14
family/cell 3 | 4, 5, 9, 13, 14, 15, 16 | 9, 13, 16, 18
family/cell 4 2,6, 10, 11 2,7, 10, 17

[ part# [0 [ 1 [2 3 4[5 ][6]7][8]09

[route# [ 1 [ 1 1] 1[2]1[3]2]47]2

[ part # [ 10 [ 11 [ 12 [ 13 | 14 | 15 [ 16 | 17 [ 18 | 19 |
[ route # | 2 2 [ 2 2 2T1T271T-T17-"1-"T-"1
Parts
7 812 0 3 1171819 4 5 913141516 2 6 10 11

1 3 2 1
4 2
512 4 3
50 1 1
19 3 4
0 1

o 6 3 3

o 8 2

c 11 1 2

_ 3 12 1 2

c 12 2 1 2

o 14 3331

s 9 2 11 3 2 3

s 13 112 3 3 2
16 2 3 4 2 1
18 3 3 2 1 1
2 2 1 2 1
7 12 1 2
10 3
17 3 3 4 3

Figure 8: Solution matrix with complete alternative
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Figure 9: The original part/machine inci- Figure 10: Integer GA solution for the 22 x
dence matrix for Real Data Set (22 x 148) 148 Real Data Set with I' = 5448
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Appendix A
The following assignment variables and constraints define the classical cell formation prob-
lem. This set of variables and constraints are replaced with the set notation variable sets
defined in Section 2 but is used in the non-linear integer programming formulations of the

next section.

1, if machine 7 is assigned to cell [,
;1 = .
0, otherwise;
o 1, if part j is assigned to part family [,
it = 0, otherwise;
k
Z xg = 1lao=1,...,m;
=1
k
Z yp = 1 g3=1,...,n;
=1
k= the number of cells (families) specified;

= the number of machines;

n = the number of parts;

Recall that grouping efficacy is defined as follows.

F:(—;):e—eoz e— (e —eq) _ €d
(1—|—%) e+ e, e+ (D —eq) e+ D —ey

where:

e = the number of operations in the data matrix;
e, = the number of voids in the diagonal blocks;
eq = the number of operations in the diagonal blocks;
e, = the number of exceptional elements;

D = the area covered by the diagonal blocks.

21



A.1 Nonlinear Formulation of I' for the Alternative Operations
Model

In order for the alternative operations problem to be modeled as a nonlinear integer program-
ming problem, the following new variable definitions and constraint sets need to be added
to the original definition of grouping efficacy defined in [10]. In this model, a particular
operation may be performed by more than one machine. Therefore, the new variable (o)
determines which operation is selected. The first set of constraints ensures that operation &
of part j is assigned to exactly one cell. The second set of constraints makes sure at least

one machine that can perform operation k has been assigned to the same cell.

B {1, if operation k of part j is assigned to cell [
Oakt = 0, otherwise
kmax
Y ou=1 j=1,...,nk=1,..,]0;|
=1
ojr < Z i I=1,..  ikmax;7=1,...,n,k=1,...,|0]

iEMk]
where

O; = the set of operations for part j.

M;;, = the set of machines that can perform operation k for part j
Using these new variables with the previously defined assignment variables, z;; and y;,

grouping efficacy (I') can now be defined as follows:

kmax 1 |OJ|

22D it

I = =1 j=1 k=1
kmax kmax n |05l
Z|O|+Z Zy]l Z Zl]_zzzyﬂoﬂcl
Jj= =1 j=1 k=1
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A.2 Nonlinear Formulation of I' for the Alternative Routings Model

In order to include complete fixed alternative routings into the model, the following new
variables and constraint set were added to the original model. Also, the binary part /machine
matrix, A, now consists of elements a;;;, = 1, if part j requires processing on machine :

utilizing route h, otherwise a;;;, = 0. This format leads to alternative fixed routing sequences.

I { 1, if part j uses route h
h = 0, otherwise

pPj

ZZ]'h = 1j:1,...,n

=1
p; = the number of routes for part

Using these new variables with the previously defined assignment variables, z;; and yj;,

grouping efficacy (I') can now be defined as follows.

kmax m n

Z Z Z Z TilYj12nish

=1 =1 j=1 h=1

I' =

m n kmax kmax n

Py m
Z Zin@ijh + Z Z yit) Z zi)] — Z Z Z LitYj1ZjhQish

=1 j=1 h=1 =1 =1 =1 j=1 h=1
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Appendix B

B.1 Genetic Algorithm

Genetic algorithms search the solution space of a function through the use of simulated
evolution, i.e., the survival of the fittest strategy. In general, the fittest individuals of any
population tend to reproduce and survive to the next generation, thus improving successive
generations. However, inferior individuals can, by chance, survive and also reproduce. Ge-
netic algorithms have been shown to solve linear and nonlinear problems by exploring all
regions of the state space and exponentially exploiting promising areas through mutation,
crossover, and selection operations applied to individuals in the population [20]. A more
complete discussion of genetic algorithms, including extensions and related topics, can be
found in the books by Davis [4], Goldberg [6], Holland[7], and Michalewicz [20]. A genetic
algorithm (GA) is summarized in Fig. 11, and each of the major components is discussed in

detail below.

1. Supply a population Fy of N individuals and respective function values.
2.1 1

3. P! « selection_function(P; — 1)

4. P; < reproduction_function(P!)

5. evaluate(P;)

6. 1¢1+1

7. Repeat step 3 until termination

8. Print out best solution found

Figure 11: A Simple Genetic Algorithm

The use of a genetic algorithm requires the determination of six fundamental issues: chro-
mosome representation, selection function, the genetic operators making up the reproduction
function, the creation of the initial population, termination criteria, and the evaluation func-

tion. The rest of this section describes each of these issues.
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B.2 Solution Representation

For any GA, a chromosome representation is needed to describe each individual in the
population of interest. The representation scheme determines how the problem is structured
in the GA and also determines the genetic operators that are used. FEach individual or
chromosome is made up of a sequence of genes from a certain alphabet. An alphabet could
consist of binary digits (0 and 1), floating point numbers, integers, symbols (i.e., A, B, C,
D), matrices, etc. In Holland’s original design, the alphabet was limited to binary digits.
Since then, problem representation has been the subject of much investigation. It has been
shown that more natural representations are more efficient and produce better solutions[20].
One useful representation of an individual or chromosome for function optimization involves
genes or variables from an alphabet of floating point numbers with values within the variables
upper and lower bounds. Michalewicz][20] has done extensive experimentation comparing
real-valued and binary GAs and shows that the real-valued GA is an order of magnitude
more efficient in terms of CPU time. He also shows that a real-valued representation moves
the problem closer to the problem representation which offers h igher precision with more
consistent results across replications. [20]

In the representation of [10], the first m variables represent the machines while the last
n variables are associated with the parts. Therefore, each individual is a vector of m + n

integer variables on the range of 1 to the maximum # of cells or families (kyaz)..

Individual — (21,22, ... , Ty, Y1, Y2, -+ s Yn)

machines parts

This representation is modified to include the route variables as described in Section 4.

B.3 Selection Function

The selection of individuals to produce successive generations plays an extremely important
role in a genetic algorithm. A probabilistic selection is performed based upon the individual’s
fitness such that the better individuals have an increased chance of being selected. However,
all of the individuals in the population have a chance of being selected to reproduce into the
next generation. An individual in the population can be selected more than once with all
individuals in the population having a chance of being selected to reproduce into the next
generation. There are several schemes for the selection process: roulette wheel selection and
its extensions, scaling techniques, tournament, elitist models, and ranking methods [6, 20].

A common selection approach assigns a probability of selection, P;, to each individual, j
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based on its fitness value. A series of N random numbers is generated and compared against
the cumulative probability, C; = 2221 P;, of the population. The appropriate individual, ¢,
is selected and copied into the new population if C;_; < U(0,1) < ;. Ranking methods only
require the evaluation function to map the solutions to a totally ordered set, thus allowing
for minimization and negativity. Ranking methods assign P; based on the rank of solution
i when all solutions are sorted. Normalized geometric ranking, [11], defines P; for each

individual by:

P[ Selecting the ith individual | = ¢/ (1 —¢)"™'; (1)
where:
g = the probability of selecting the best individual,
r = the rank of the individual, where 1 is the best.
P = the population size

9 = iapr

The GA used in these experiments uses a normalized geometric ranking scheme and

employs the elitist model in which the best individual from the previous generation is always

included in the current one [10].

B.4 Genetic Operators

Genetic Operators provide the basic search mechanism of the GA. The operators are used
to create new solutions based on existing solutions in the population. There are two basic
types of operators: crossover and mutation. Mutation operators tend to make small random
changes in one parent to form one child in an attempt to explore all regions of the state
space. Crossover operators combine information from two parents to form two offspring
such that the two children contain a “likeness” (a set of building blocks) from each parent.
The application of these two basic types of operators and their derivatives depends on the
chromosome representation used.

Six float operators described by Michalewicz [20] were modified to work with the integer
representation: wuniform mutation, multi-uniform-mutation, non-uniform mutation, multi-
non-uniform mutation, boundary mutation, simple crossover, arithmelic crossover.[10] Two
problem-specific genetic operators (cell-swap crossover and cell-two-point crossover) based
on the proposed cell formation representation were also developed and shown to enhance
the GA’s performance.[10] Let X = (21,29,...,2,) and Y = (y1,¥2,... ,yn) be two n-

dimensional integer row vectors denoting individuals (parents) from the population. Each of
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these operators were used in the experiments of this paper and are described briefly below.
Let a; and b; be the lower and upper bound, respectively, for each variable . For the cell
formation problem (i.e., the machine and part variables), the lower bound is 0 while the
upper bound is equal t0 kmax, the maximum number of cells/families and P;, the number
of routes for part j for the machine/part variables and route variables, respectively. These
operators are applied a discrete number of times to the population (see Table 2). Parents

are randomly selected from the population to undergo the various operators.

Uniform Mutation: Randomly selects one variable, j, and sets it equal to a truncated

uniform random number, |U(a;,b;)| where |z] is the largest integer less than or equal to .

. {LU(anbi)J, ifi=j @

i :
x4, otherwise

Multi-Uniform Mutation: Apply equation 2 to all of the variables in the parent

Non-Uniform Mutation: Randomly selects one variable, j, and sets it equal to an non-
uniform random number based on equation 3. The new variable is equal to the old variable

plus or minus a random displacement.

b (b~ ) /(G)] i < 05,
;=< |z — (2, +a;) f(G)] ifry > 0.5, (3)

X, otherwise

where

J(G) = (n(l-35)), (4)

ax

ri,72 = uniform random numbers between (0,1),
G = the current generation,
Gmax = the maximum number of generations,
b = a shape parameter.
[#] = the smallest integer greater than or equal to x

Multi-Non-Uniform Mutation: Apply equation 3 to all of the variables in the parent
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Boundary Mutation: Randomly selects one variable, j, and sets it equal to either its

lower or upper bound, where r = U(0, 1).

a, ifi=jr<05
wi =1k, ifi=j,r>05 (5)

x;, otherwise

Simple Crossover: Generate a random number r from a discrete uniform distribution
from 2 to (m + n-1) and create two new individuals (X’ and Y’) according to equations 6

and 7.

0 1%
:1:; _ {;t: e <r (6)

y;, otherwise

y;,, ife<r
i = { (7)

x;, otherwise

Arithmetic Crossover: Arithmetic crossover produces two complimentary linear combi-

nations of the parents, where r = U(0, 1).

X' = r)?—l—(l—r)ff (8)
Y = (1-— T)X +rY (9)
To achieve the necessary integer representation of the variables, the following is per-
formed.
X' = ((azy + by1), (azy + bya), (axs + bys), (azxys + bys), (azs + bys)) (10)
where

[ax; + by;| ifz; >y
|lax; + by;| otherwise.

(az; + by;) = {
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Cell-Swap Crossover: The previous genetic operators work for any integer programming
formulation. The next two operators only work with the cell formation representation. Let
X = (21,2« s Ty Y15 Y25+ - s Yn) and W = (wy,wa, ... , Wy, 21,22, ,2,) be two m + n-

dimensional cell formation individuals (parents)

o = {l’i, ifi<m ()

z;, otherwise

) ¥
w; _ {y, mz<<m (12)

w;, otherwise

Cell-Two-Point Crossover: Generate two random number r; and ry from a discrete
uniform distribution from 2 to (m-1) and (m + 2) to (m + n-1), respectively and create two

new individuals (X’ and Y”) according to equations 13 and 14.

cle;, if1<r
, w;, ifi<m
Yis tm<i<ry

Z;, otherwise

clw;, ifi1<mr

z; if1<m

w, = ’ T (14)
Z;, ifm<i<r
Yis otherwise

B.5 Initialization:

The GA must be provided an initial population as indicated in step 1 of Fig. 11. The most
common method is to randomly generate solutions for the entire population. However, since
GAs can iteratively improve existing solutions (i.e., solutions from other heuristics and/or
current practices), the beginning population can be seeded with potentially good solutions,
with the remainder of the population being randomly generated solutions. The experiments
in this paper used a random initial population with common random numbers across all

methods for each replication.
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B.6 Termination:

The GA moves from generation to generation selecting and reproducing parents until a
termination criterion is met. The most frequently used stopping criterion is a specified max-
imum number of generations. Another termination strategy involves population convergence
criteria. In general, GAs will force much of the entire population to converge to a single
solution. When the sum of the deviations among individuals becomes smaller than some
specified threshold, the algorithm can be terminated. The algorithm can also be terminated
due to a lack of improvement in the best solution over a specified number of generations.
Alternatively, a target value for the evaluation measure can be established based on some
arbitrarily “acceptable” threshold. Several strategies can be used in conjunction with each
other. The stopping criterion used in the experiments was a specified maximum number of

function evaluations were performed.

B.7 Evaluation Functions:

Evaluation functions of many forms can be used in a GA, subject to the minimal requirement
that the function can map the population into a totally ordered set. As stated, the evaluation
function is independent of the GA (i.e., stochastic decision rules). The grouping efficacy
measure described in Section 2 was used in these experiments. Modifications were made to

the original computer function to incorporate the new models.
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B.8 Genetic Algorithm Parameters

Table 2: Parameters Used in the Integer-Based Experiments

Parameter Value
number of Boundary Mutation Operators 4
number of Uniform Mutation Operators 4
number of Multi-Uniform Mutation Operators 4
number of Non-Uniform Mutation Operators 4
number of Multi-Non-Uniform Mutation Operators 8
number of Cell Swap Crossover Operators 6
number of Cell Multi-point Crossover Operators 6
number of Arithmetic Crossover Operators 6
kmax, the maximum permissible number of cells T
g, the probability of selecting the best individual 0.08
G'max, the maximum number of generations 1000
Population Size 80

T - Problem Specific
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