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Abstract

Global competition is demanding innovative ways of achieving manufacturing flex-
ibility and reduced costs. One approach is through cellular manufacturing, an imple-
mentation of the concepts of group technology. The design of a cellular manufacturing
system requires that a part population be at least minimally described by its use of
process technology (part/machine incidence matrix), and partitioned into part fami-
lies, and that the associated plant equipment be partitioned into machine cells. At
the highest level, the objective is to form a set of completely autonomous units such
that inter-cell movement of parts is minimized. This paper presents a stochastic global
optimization technique utilizing genetic algorithms (GAs) and local improvement pro-
cedures to solve the cell formation problem. The combination of local improvement
procedures with GAs is shown to improve the performance of the GA in terms of qual-
ity of solution and computational efficiency. Several different incorporation methods
are investigated. The concepts of these hybrid techniques can easily be extended to
other variations of the cell formation problem as well as to other local improvement
procedures.

1 Introduction

Flexibility and efficiency in the manufacturing system are crucial for companies that produce
a large number of products in small-to-medium lot sizes. One approach used to gain these
benefits is to develop a cellular manufacturing system using the principles of group technology
(GT) [18]. The manufacturing system is decomposed into several manageable subsystems, or
groups, by aggregating similar parts into part families and dissimilar machines into cells [27].
Through the creation of independent cells, automation and/or control can be simplified.
Companies using manufacturing cells have reported reduced setup times, throughput time,
work-in-process inventory, and material handling as well as an improvement in quality [3,
6, 18]. The benefits of cellular manufacturing are often reduced when intercell movements
associated with exceptional elements occur. Exceptional elements are parts that require
processing outside their assigned cells [22].

A common objective for the designers of cellular manufacturing systems is to create a set
of autonomous manufacturing units that eliminates the intercell movement of parts. Tech-
niques for partitioning the part/machine incidence matrix into machine cells and associated
part families are varied and extensive.

Cell formation techniques that operate on the part/machine incidence matrix are gen-
erally referred to as the second phase of Production Flow Analysis (PFA) [2] and involve
combinatorial optimization. Cell formation based on process routings can be further cate-

gorized according to the type of algorithm employed to cluster the data, e.g., array-based



clustering, hierarchical and non-hierarchical cluster analysis, mathematical programming
methods, graph theoretic approaches, artificial intelligence techniques, and other heuristics.

Mathematical programming approaches to the cell formation problem are nonlinear or lin-
ear integer programming problems. These formulations suffer from three critical limitations.
First, because of the resulting nonlinear form of the objective function, most approaches
do not concurrently group machines into cells and parts into families. Second, the number
of machine cells must be specified a priori, affecting the grouping process and potentially
obscuring natural cell formations in the data. Third, since the variables are constrained to
integer values, most of these models are computationally intractable for realistically sized
problems [28]. However, these approaches are able to incorporate other meaningful manufac-
turing information (i.e., volume demand, redundant machinery, alternative part operations
or fixed routings, machine capacity constraints, etc.)

There is an extensive literature devoted to heuristic cell formation techniques, however
most do not guarantee optimality and typically work exclusively with a part/machine inci-
dence matrix [24]. While some of these clustering algorithms offer superior results for specific
applications, no single technique has been shown to provide the best solution for a broad
range of applications. These approaches typically involve single criteria objective functions
and do not permit an interchange of evaluation functions or the selective use of constraints.
Several meaningful evaluation criteria have also been proposed that cannot explicitly be used
as objective functions in clustering algorithms. Most heuristics cannot identify all naturally
occurring clusters as well as find solutions with a constrained number of clusters. The inter-
ested reader is referred to the comprehensive reviews by Selim et al. [38] and Joines et al.
[24] for more details.

To overcome these limitations, an approach using a genetic algorithm (GA) to solve
integer programming formulations of the cell design problem was developed by Joines et al.
[21]. The GA approach offers several advantages over existing techniques. The general integer
variables use in the GA reduce the size of each problem as compared to the use of binary
part/machine incidence variables. The GA simultaneously groups the parts and machines
into families and cells and assigns them to each other without visual analysis of the solution.
The designer can incorporate or remove constraints on the number of permissible cells.
Unconstrained solutions containing the naturally occurring clusters can be generated as well
as constrained solutions. The integer-based GA approach allows the system designer freedom
to substitute various types of evaluation functions, permitting alternative designs to be
generated and reviewed quickly. Cell formation on the basis of multiple attributes (machine
cost, processing times, etc.) can be performed, eliminating the restriction imposed by most

existing methods that operate strictly on the part/machine incidence matrix. Additional



information that is not contained in the part/machine incidence matrix can be considered,
such as redundant machines and alternative routings [23].

In this paper, the GA approach is extended to incorporate local improvement procedures
(LIP)s. An example of one LIP is developed and incorporated into the GA to demonstrate
the hybrid-GA capabilities. Through this incorporation, the GA’s performance in terms of
solution quality and computational efficiency is improved. The hybrid-GA approach is tested
on several data sets and compared with the GA without the inclusion of the LIP.

Section 2 provides an introduction to the genetic algorithm approach used to find solu-
tions to the cell formation problem. Incorporation of LIPs to form hybrid-GAs is discussed in
Section 3. In Section 4, an LIP for the cell formation problem is discussed and incorporated
into the GA. Section 5 describes experimentation using the GA (with and without the LIP)
applied to problems from the literature and industry. Section 6 analyzes the effectiveness of

the LIP. Finally, Section 7 summarizes the significance of the work presented.

2 Cell Formation Using an Integer-based GA

The genetic algorithm used for this research is based upon the one described in Joines et al.
[21] and is described briefly here. A common integer programming formulation of the cell
design problem with k cells , m machines and n parts requires k(m +n) assignment variables

and m + n constraints:

o 1, if machine ¢ is assigned to cell [
T = 0, otherwise
o 1, if part j is assigned to part family [
dit = 0, otherwise
k
ZCL‘H = 1, izl,...,m
=1
k
Zyﬂ = 1, jzl,...,n
=1
k= number of cells(families) specified
m = number of machines
n = number of parts

The constraints ensure that each machine and part is assigned to only one cell or fam-

ily, respectively. As the number of parts and machines increases, the models become too



large to be stored in memory or become computationally intractable because of the integer
constraints [28]. To overcome these limitations, an integer programming formulation was de-
veloped using the following general integer variables as a set notation that incorporates the

assignment constraints that each machine and part can only be assigned to one cell /family:

x, =1, if machine 1 is assigned to cell [

y; =1, if part j is assigned to family /

This formulation reduces the number of variables by a factor of £ to m +n and eliminates
the m +n constraints. Each part and machine variable is equal to the number of its assigned
family or cell. The part families are assigned to the respective machine cell of the same
number.

A conventional integer programming solution technique cannot be employed because of
the objective function’s inability to decode this variable representation. However, genetic
algorithms (GAs) have been used successfully to solve difficult problems where the objective
function does not possess “nice” properties such as continuity, differentiability, satisfaction
of the Lipschitz Condition, etc. [8, 12, 15, 30]. GAs maintain and manipulate a family, or
population, of solutions in their search for better solutions by implementing a “survival of
the fittest” strategy. This provides an implicit as well as explicit parallelism that allows
for the exploitation of several promising areas of the solution space at the same time. The
genetic algorithm used to solve the cell formation problem is summarized in Algorithm 1. A
more complete discussion of genetic algorithms, including extensions and related topics, can
be found in Davis, [8] Goldberg, [12] Holland, [15] and Michalewicz [30].

Each individual in the population is described by a chromosome representation which is
a sequence of variables. For the cell formation problem, the first m variables represent the
machines while the last n variables are associated with the parts. Therefore, each individual
is a vector of m + n integer variables with a range of 1 to the maximum number of cells or

families (kmax):

Individual — (21,22, ... , Ty, Y1, Y25+« s Yn)

machines parts

Unlike most integer formulations, kya.x represents an upper bound on the number of cells
rather than the explicit number of cells to form. Therefore, the GA can be used to determine
the naturally occurring clusters, as well as to constrain the number of cells due to space or
management concerns [21].

The initial population is created either randomly or by seeding, and each individual is



Algorithm 1 A Simple Genetic Algorithm

1. Set generation counter ¢ < 0.
2. Create the initial population, Pop(7), by randomly generating N individuals.

3. Determine the fitness of each individual in the population by applying the objective function
to the individual and recording the value found.

4. Increment to the next generation, ¢ ¢« ¢+ 1.

5. Create the new population, Pop(i), by selecting N individuals stochastically based on the
fitness from the previous population, Pop(i — 1).

(a) Randomly select R parents from the new population to form the new children by ap-
plication of the genetic operators.

(b) Evaluate the fitness of the newly formed children by applying the objective function.
6. If 2+ < the maximum number of generations to be considered, go to Step 4.

7. Print out the best solution found.

evaluated using the objective function to determine its fitness or value. Evaluation functions
of many forms can be used in a GA, subject to the minimal requirement that the function
can map the population into a totally ordered set.

Even though Ng [33] and Joines et al. [21] showed that it is not an ideal objective function
in an algorithmic sense, “grouping efficacy” [26] was used in this study as the evaluation
criterium for two reasons. First, maximizing grouping efficacy forces block diagonal cell
formation to occur [26]. Second, it has been used in the past by many researchers and thus
is useful for comparing solutions generated by the GA to those of other techniques found
in the literature [26]. However, it should be noted that the approach is not limited to this
objective.

Grouping efficacy has a value of one when there are no exceptional elements and no
voids and a value of zero if the number of exceptional elements equals the total number of
operations. An exceptional element is a part operation which is performed outside the parts

designated cell. Formally, grouping efficacy (I') is defined as

-9 1-2 e-e
(1+¢) 1+ W

I' « ,
= e+ e,

where e is the number of operations in the data matrix, e, is the number of voids in the
diagonal blocks, and e, is the number of exceptional elements.

Grouping efficacy cannot be used as an objective function in classical integer program-



ming formulations because of its nonlinear form, demonstrating one aspect of the GA’s
flexibility in incorporating a variety of evaluation functions [21]. This paper demonstrates
the usefulness of this property.

After the population (of size N) has been evaluated, a new population of size N indi-
viduals is selected from the previous generation. The selection of individuals to produce
successive generations plays an extremely important role in a genetic algorithm. These in-
dividuals do not have to be distinct; that is, an individual in the population can be selected
more than once. A probabilistic selection is performed where each individual is assigned a
probability based upon its fitness (objective function value) such that the better individuals
have an increased chance of being selected. However, all individuals in the population have
a chance of being selected to help produce the next generation. The genetic algorithm used
in these experiments uses a normalized geometric ranking scheme and employs the elitist
model in which the best individual from the previous generation is always included in the
current one [21].

After the new population is selected, R parents are randomly chosen from the population
to produce children by applying genetic operators. Mutation and crossover are the two basic
types of genetic operators [30]. Mutation operators tend to make small random changes in
one parent to form one child in an attempt to explore all regions of the state space. Crossover
operators combine information from two parents to form two offspring such that the children
inherit a “likeness” (a set of building blocks) from each parent. The specific application of
the basic genetic operators and their derivatives, depends on the chromosome representation
used. Joines et al. [21] modified six float operators developed by Michalewicz [30] to work
with an integer representation: uniform mutation, non-uniform mutation, multi-non-uniform
mutation, boundary mutation, simple crossover, and arithmetic crossover. Based on the cell
formation representation, two problem-specific genetic operators, cell-swap crossover and
cell-two-point crossover were also developed and shown to enhance the GA’s performance
substantially.

The uniform mutation operator randomly selects one of the variables from a parent and
sets it equal to a random integer number uniformly distributed between the variable’s lower
bound, 1, and upper bound, k.. The boundary mutation operator randomly selects one of
the variables from a parent and randomly sets it equal to its integer lower or upper bound.

Michalewicz [30] developed two mutation operators to help with local searching: non-
uniform mutation and multi-non-uniform mutation. In early generations, this operator is
similar to the uniform mutation operator; but as the number of generations increases, the
distribution narrows, increasing the exploitation of the local solution. GAs which incorporate

these operators have been shown to outperform those which do not [30]. The non-uniform



mutation operator randomly selects one of the variables from a parent and sets it equal to
a random integer number from a non-uniform distribution [30]. The multi-non-uniform mu-
tation operator applies the non-uniform operator to all of the variables in the parent. The
simple crossover operator randomly selects a cut point, dividing each parent into two seg-
ments. The first child is created by combining the first segment from the first parent and the
second segment from the second parent. The second child is created from the two remaining
segments of the parents. The arithmetic crossover operator produces a complementary pair
of linear combinations produced from random proportions of the parents.

The first of the problem-specific operators, cell-swap crossover, performs a simple crossover
in which the cut point is always generated between the machine and part variables. Effec-
tively, the two parents exchange their part variables and the children are created by con-
catenating the two different segments. The second problem-specific operator, cell-two-point
crossover, works in a similar manner to simple crossover. Rather than randomly selecting a
single cut point, two cut points are generated. One cut point is randomly selected over the
range of the machine variables and the other point is randomly selected over the range of
part variables. Effectively, a single-point crossover is performed on the machine variables and
another is performed on the part variables. For more detailed information on the problem-
specific operators and the modifications made to the standard float operators, see Joines et
al. [21].

The GA moves from generation to generation, repeating Steps 4-6 of Algorithm 1 until
the termination criterion is met. Some termination strategies include the use of population
convergence criteria and checking to see if there has been no improvement of the best in-
dividual over a specified number of generations. Several termination strategies can be used
in conjunction as well. However, the stopping criterion used in these experiments is the
specification of a maximum number of generations. This allows one to preset the maximum
number of (not necessarily unique) solutions that are evaluated. In this study, we preset the
maximum number of generations and then determine at which generation the GA finds the

best solution.

3 Incorporation of a Local Improvement Procedure

Many researchers [7, 8, 16, 17, 30, 34, 35] have shown that GAs perform well for global
searching because they are capable of quickly finding and exploiting promising regions of
the search space, but they take a relatively long time to converge to a local optimum. For
example, Figure 1 shows three replications of a typical GA run for the 100 x 40 problem of
Chandrasekharan and Rajagopalan [4] (referred to as Chan). As can be seen, the GA quickly



finds a good solution but requires many more generations to reach the optimal solution (or the

best known solution). Table 1 shows the number of generations for each replication along with

the mean number of operations to reach a certain percent of optimal. On average, the GA

reaches 90% of optimal after only 65% of the total computation time. It takes approximately

a third of the time to go from 90% of optimal to optimal. Michalewicz [30] and Joines [20]

developed two mutation operators to help with local searching: non-uniform mutation and

multi-non-uniform mutation. As mentioned in Section 2, these operators are similar to the

uniform mutation operator in early generations; but as the number of generations increases,

the distribution narrows, increasing the exploitation of the local solution.

% of Repl. 1 Repl. 2 Repl. 3 Mean
Optimal Gen.(% Gen.) | Gen.(% Gen.) | Gen.(% Gen.) | Gen.(% Gen.)
10 3 (0.2) 5 (0.3) 3 (0.2) 33 (0.2)
25 108 (10.4) 95 (6.1) 89 (5.2) 97.3 (6.8)
50 204 (28.3) | 265 (16.9) | 256 (15.0) | 2717 (18.9)
75 140 (42.3) | 441 (28.2) | 884 (51.7) | 588.3 (40.9)
90 623 (60.0) 1021 (65.2) 1173 (68.6) 939.0 (65.3)
95 657 (63.2) | 1233 (78.7) | 1275 (74.5) | 1055.0 (73.3)
99 855 (82.3) | 1566 (100.0) | 1711 (100.0) | 1377.3 (95.7)
100 1039 (100.0) 1566 (100.0) 1711 (100.0) | 1438.7 (100.0)

Table 1: The Number of Generations Needed to Reach % Optimal for Chan Dataset
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Figure 1: The Solution Quality of the GA versus Generations for Chan Dataset

Local improvement procedures, e.g., two-opt switching for combinatorial problems and

gradient descent for unconstrained nonlinear problems, quickly find the local optimum of

a small region of the search space, but are typically poor global searchers. Because these



procedures do not guarantee optimality, in practice, several random starting points are gen-
erated and used as input into the local search technique and the best solution is recorded.
This global optimization technique (multi-start) has been used extensively but is a blind
search technique since it does not take account past information [36, 17]. Genetic algo-
rithms, unlike multi-start, utilize past information in the search process. Therefore, local
improvement procedures (LIPs) have been incorporated into GAs in order to improve their
performance through what could be termed “learning.” Such hybrid-GAs have been used
successfully to solve a wide variety of problems [7, 8, 17, 16, 30, 35]. Houck, Joines, and
Kay [17] showed that for the continuous location-allocation problem, a GA that incorporated
a LIP outperformed multi-start and a two-way switching procedure, where both methods
utilized the same local improvement procedure as the hybrid-GA.

There are several ways local improvement procedures can be incorporated into a GA.
The following methods are used in the experimentation described in Section 5 in order to

gain insight into which implementation method is best.

1. Run the GA without the LIP and then apply it to the final solution obtained by the

GA. This allows the precise local optimum around the final solution to be found.

2. Use the LIP as the GA’s evaluation function. (Recall, the GA makes no assumptions
on the form of the objective; only that it map the individuals in the population into
a totally ordered set.) The LIP is used to evaluate individual in the population (i.e.,

determine the best objective value for this starting assignment).

3. Apply the LIP as a genetic operator in the same manner as any mutation operator.
In this approach, the procedure is only applied to a small portion of the parents (i.e.,
the parents selected to undergo this particular type of mutation) rather than to all
of the children created. Chu and Beasily [7] used a LIP as a genetic operator for the
generalized quadratic assignment problem. This incorporation improved the quality of

the solution as well as the computational efficiency of the GA.

Incorporating a LIP as an evaluation function gives rise to the concepts of the Baldwin
Effect and Lamarckian evolution. Also, the concept of a one-to-one genotype to pheno-
type mapping is introduced, where genotype refers to the space the GA searches while the
phenotype refers to the space of the actual problem.

3.1 Utilizing the Baldwin Effect and Lamarckian Evolution

Local improvement procedures have been incorporated into GAs in order to improve the

algorithm’s performance through learning. There are two basic models of evolution that have



been used to incorporate learning into a GA: the Baldwin Effect and Lamarckian evolution.
The Baldwin Effect allows an individual’s fitness (phenotype) to be determined based on
learning, i.e., the application of local improvement. Like natural evolution, the result of
the improvement does not change the genetic structure (genotype) of the individual, it just
increases the individual’s chances of survival. Lamarckian evolution, in addition to using
learning to determine an individual’s fitness, changes the genetic structure of an individual
to reflect the result of the learning. Both “Baldwinian” and “Lamarckian” learning have

been investigated in conjunction with hybrid GAs [35, 41].

3.1.1 Baldwin Effect

The Baldwin Effect, as utilized in genetic algorithms, was first investigated by Hinton and
Nolan [14] using a flat landscape with a single well representing the optimal solution. Indi-
viduals were allowed to improve by random search, which in effect transformed the landscape
to include a funnel around the well. Hinton and Nolan showed that, without learning, the
genetic algorithm fails; however, with the random search, the GA is capable of finding the
optimum.

Whitley et al. [41] demonstrated that “exploiting the Baldwin Effect need not require a
needle in a haystack and improvements need not be probabilistic.” They showed how using a
LIP can, in effect, change the landscape of the fitness function into flat landscapes around the
local basins. This transformation increases the likelihood of allocating more individuals to
certain basins. In a comparison of Baldwinian and Lamarckian learning, Whitley et al. [41]
showed that utilizing either form of learning is more effective than the standard GA approach
without the LIP (a bitwise steepest ascent algorithm performed on a binary representation).
Whitley et al. [41] argued that, while Lamarckian learning is faster, it may be suspectable
to premature convergence to a local optimum as compared to Baldwinian learning. Three
numerical optimization problems were used to test this conjecture; however, the results were

inconclusive.

3.1.2 Lamarckian Evolution

Lamarckian learning forces the genotype to reflect the result of some form of local im-
provement. This results in the inheritance of acquired or learned characteristics that are
well-adapted to the environment. The improved individual is placed back into the popula-
tion and allowed to compete for reproductive opportunities. However, Lamarckian learning
inhibits the schema processing capabilities of genetic algorithms [13, 40, 41]. Changing the

genetic information in the chromosomes results in a loss of inherited schema, altering the

10



statistical information about hyper-plane partitions implicitly contained in the population.

While Lamarckian learning may disrupt the schema processing of a genetic algorithm,
Baldwinian learning certainly aggravates the problem of multiple genotype to phenotype
mappings. A genetic algorithm works on both genotypes and phenotypes. A genotype refers
to the composition of the values in the chromosome or individual in the population, whereas a
phenotype refers to the solution that is constructed from a chromosome. In a direct mapping,
there is no distinction between genotypes and phenotypes. For example, to optimize the
function Hcos(x1) — sin(2x2), a typical representation for the chromosome would be a vector
of real numbers (x1, z3), which provides a direct mapping to the phenotype. However,
for some problems, a direct mapping is not possible or desired [32]. The most common
example of this is the traveling salesperson problem with an ordinal representation. Here,
the genotype is represented by an ordered list of n cities to visit. However, the phenotype
is a tour, and any rotation of the chromosome yields the same tour; thus, any rotation of a
genotype results in the same phenotype. For example, the two tours (1,2,3,4) and (3,4,1,2)
have different genotypes since their gene strings are different, but both strings represent the
same tour and thus have the same phenotype.

It has been noted that having multiple genotypes map to the same phenotype may
confound the GA [14, 32]. This problem also occurs when an LIP is used in conjunction
with a GA. Consider the example of maximizing sin(z). Suppose a simple gradient-based LIP
is used to determine the fitness of a chromosome. Then any genotype between [—7 /2, 37 /2]

will have the same phenotype value of 1 at 7/2.

3.1.3 Partial Lamarckian

Hybrid genetic algorithms need not be restricted to operating in either a pure Baldwinian
or pure Lamarckian manner. Instead, a mix of both strategies, or what is termed “partial
Lamarckianism”[16] could be employed. For example, a possible strategy is to update the
genotype to reflect the resulting phenotype in 50% of the individuals. While this 50% partial
Lamarckian strategy has no justification in natural evolution, for simulated evolution this
mix is as valid as either pure Lamarckian or pure Baldwinian search.

Orvosh and Davis [9] advocated the use of a 5% rule for updating individuals when
employing repair functions in genetic algorithms to solve constrained optimization problems.
All infeasible solutions generated by the genetic algorithm are repaired to the feasible domain
in order to determine their fitness. The 5% rule dictates that 5% of the infeasible individuals
have their genetic representation updated to reflect the repaired feasible solution. This

partial updating was shown on a set of combinatorial problems to be better than either

11



no updating or always updating. However, Michalewicz and Nazhiyath [31] determined
that a higher percentage 20-25% of update did better when using repair functions to solve
continuous constrained nonlinear programming problems.

Previous research has concentrated either on the comparison of pure Lamarckian and
pure Baldwinian search, or the effectiveness of partial repair for constrained optimization.
This work examines the use of partial Lamarckianism with regard to the use of LIPs on a

set of bounded optimization problems.

4 Grouping Efficacy Local Improvement Procedure

To investigate the capabilities of the hybrid-GA approach for the cell formation problem, an
LIP has been developed for the grouping efficacy measure (I') as s shown in Algorithm 2.

The following notation is necessary and is used in the algorithm:

n = number of parts
m = number of machines
kmax = maximum number of cells/families
n; = set of parts assigned to part family /
m; = set of machines assigned to machine cell [
1, if part j requires processing on machine 1
4= {0, otherwise
pu = number of parts needing processing by machine ¢ in cell /
gji = number of machines that operate on part j in family [
¢ = index of current cell/family assignment machine/part
¢ = index of the best cell/family to switch a machine/part to
a1, a;; = increase in the number of exceptional elements if a switch from ¢ to [ occurs
for machine 7 or part j, respectively
B, Bii = decrease in the number of voids if a switch from ¢ to [ occurs

for machine 7 or part j, respectively

The improvement procedure is a single switching algorithm which utilizes switching rules
defined by Ng [33]. Ng proved that switching machine ¢ from its current cell ¢ to cell [ will

only increase I' if and only if Rule 1 is true.

If 3; T' > «a;, then switch machine 7 from cell ¢ to cell I. (Rule 1)

Likewise, switching part j from the current family ¢ to family [ will increase I' if and only if

12



Algorithm 2 Grouping Efficacy Based Local Improvement Procedure

Step 1: For a given machine cell and part family assignment (z1,Z2,... Tm, Y1, Y2, -+, Yn),
compute I' = Z-I_—% which determines P, and M; for each cell [ =1,... , knax.

Step 2: (Machine switching) Fori « 1 to m do

2a: Forl < 1 to kpax do

pit Z a;j, where J ={1,2,... ,n}
i€{Jly;=1}
2b: ¢ + x;

2¢: Determine the best cell switch for machine i:
"« arg mlaX{ﬁiz I' — ayle# 1},

where Q51 < Pie — Pil and ﬁil — |Pc| — |P[| — Q4.
2d: If Biex I' — ajex > 0 then
. Mo Mo~ + 1, . M.+ M, — 1,
. x; < ¢, iv. T' « %

Step 3: (Part Switching) For j « 1ton do

3a: Forl < 1 to kpax do
Gi; Z a;j, where I ={1,2,... ,m}
re{I|z;=l}

3b: ¢ ¢ y;
3c: Determine the best family switch for part j:

¢+ arg mlax{ﬁﬂ I' — ajile # 1},

where aj; < q;. — g and B + |M.| — | M| — aji.

3d: If B« I' — ajor > 0 (i.e., switching part j to family ¢* increases I') then

i. Pa < Px + j, [Optional] ii. P.+ P. — j, [Optional
i,y e o v, T S
v gc*

Step 4: Return I and (21, 22, ..., T, Y1, Y2y -+« 5 Yn)-

13



Rule 2 is true.

If 3; T' > «ji, then switch part j from family ¢ to family /. (Rule 2)

Algorithm 2 is a steepest descent algorithm since, in Steps 2¢ and 3c, the switch which yields
the largest increase is used.

Given an initial machine cell and part family assignment, the first step of the algorithm is
to determine the grouping efficacy measure as defined by Equation 1. From this calculation,
the size and composition of each machine cell M; and part family P, is determined. Steps 2
and 3 perform the actual machine and part switching for all machines and parts, respectively.
The order in which these steps are performed is not fixed. However, Step 3 (part switching)
is dependent upon the current machine allocation that may be changed in Step 2 (likewise
for machine switching if the order is reversed). However, it has been shown that forming
machine cells first is typically better than forming families first [29, 33]. Because this is a
local improvement procedure, an alternating approach of repeating Steps 2 and 3 could also
be performed (at a computational cost) until no new improvement is found.

Step 2a determines p;;, the number of parts assigned to cell [ that requires processing by
machine 2. This is used to determine the increase in the number of exceptional elements and
the decrease in the number of voids in the diagonal blocks. The increase in the number of
exceptional elements, oy, 1s equal to the number of parts requiring processing in the current
cell assignment ¢ minus the number if machine ¢ is switched to cell [. The decrease in the
number of voids, Gy, is equal to the number of parts assigned to family ¢ minus both the
number of parts assigned to family [ and «;, the increase in the number of exceptional
elements. Step 2c¢ determines the best cell, ¢*, to switch machine ¢ from its current cell
assignment, ¢. If the increase in I' is positive, then in Step 2d machine ¢ is switched from
cell ¢ to ¢ and I" and the number of machines in the two cells effected, M. and M., are
updated. Step 3 is identical to Step 2 except parts are switched instead of machines. In
Step 3d i and 1i, the number of parts in each family does not need to be updated in a single

pass of the procedure.

5 Experimentation and Analysis

To investigate the trade-off of disrupted schema processing in Lamarckian learning and of
multiple genotype mapping to the same phenotype in Baldwinian learning, a series of ex-
periments using LIPs as evaluation functions and as genetic operators were performed on

several different cell formation test problem instances. For each test problem instance, the
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Table 2: Parameters Used in the Integer-Based Experiments

Parameter Value

No. of Boundary Mutation Operators

No. of Uniform Mutation Operators

No. of Multi-Uniform Mutation Operators

No. of Non-Uniform Mutation Operators

No. of Multi-Non-Uniform Mutation Operators

No. of Local Heuristic Mutation Operators 0
No. of Cell Swap Crossover Operators

No. of Cell Multi-point Crossover Operators

No. of Arithmetic Crossover Operators

kmax, the maximum permissible no. of cells

g, the probability of selecting the best individual 0.08
Maximum no. of Function Evaluations 1 000 000

oo > 00
~

Population Size 80
T - Problem Specific

GA was run with varying levels of Lamarckianism from 0% (pure Baldwinian) to 100% (pure
Lamarckian) to determine if there was a trend between the two extremes, or if combinations
of Baldwinian learning and Lamarckian learning were beneficial. In these experiments, in-
dividuals were updated to match the resulting phenotype with a probability of 0, 5, 10, 20,
30, 40, 50, 60, 80, 90, 95, 100%. The GA was also run using the LIP as a mutation operator
instead to determine if this method of hybridization was better in terms of computational
efficiency and/or quality of solution. In these experiments, the number of LIP mutations
performed was 3, 4, 5, or 6. A pure genetic approach, i.e., no local improvement was used
for comparison purposes.

Each run of the GA was replicated 20 times, with common random seeds. The genetic
algorithm parameters used in these experiments are defined in Table 2. The GA was termi-
nated when either the optimal or best known solution was found or after one million function
evaluations were performed. Using function evaluations allows a direct comparison between
the hybrid GA methods and the pure GA.

Five different test problems were used during the experiments. The first three problems
are common data sets found in the literature. The first data set, a 20 machine by 35 part
problem (Burb), was taken from Burbidge [1]. The next data set, a 16 machine by 43 part
problem (King) taken from King and Nakornchai [25], is one of the most commonly used
data sets in the literature. The third data set, a 40 machine by 100 part problem (Chan)

from Chandrasekharan and Rajagopalan [5], is one of the largest data sets in the literature.
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The last two problems are real industry data sets used to test the ability of these methods
to solve realistically sized problems. The first industry data set is a 20 machine by 148 part
problem (Reall) from a rotary union factory. The last data set, a 115 machine by 2557 part
problem (Real2), is taken from a high-end furniture case-goods plant. Also, for each of these
problems, three different problem-specified values of k. were used to determine if varying
values influenced any of the methods in terms of convergence to the optimal. Several more
problems were used as in the original experiments [21], but since their results are similar,

they are not shown.

6 Results

For each problem instance (i.e., each test problem at a given kpax value), both the mean
number of function evaluations and the final function value were examined using analysis
of variance (ANOVA). Since the ANOVA shows a significant effect at an a > 0.0001 for
all fifteen problem instances in terms of function evaluations and final function value, the
means of each of the 16 different search strategies considered (no local improvement, referred
to as N; pure Baldwinian, referred to as 0; pure Lamarckian, 100; and the nine levels of
partial Lamarckian, referred to as 5, 10, 20, 40, 50, 60, 80, 90, and 95, respectively), and
the 4 levels of LIP mutation operator (referred to as -3, -4, -5, and —6) were compared
using three statistical multiple means comparison tests. These methods are the Duncan
approach to minimize the Bayesian loss function [10], Student-Newman-Keuls (SNK), which
is a multiple range test using a multiple stage approach, and an approach developed by
Ryan [37], Einot and Gabriel [11] and Welsch [39] (REGWF) which is also a multiple stage
approach which controls the maximum experiment-wise error rate under any complete or
partial hypothesis. Fach of the tests were conducted using the general linear models routine
in SAS v6.09 [19]. All three of these tests were used since there is no consensus test for
multiple means comparison.

The ranking of both the number of function evaluations and the ranking of the final
fitness are presented in Tables 6-10 of Appendices Appendix B:— Appendix F: for each of
the 15 problem instances considered in this paper: the five test problems (Burb, King, Chan,
Reall, Real2), each at three different values of kmayx, where, e.g., Burb at kpax = 4 is referred
to as instance Burb-4. Each of the three multiple means comparisons were performed on
each instance. In the table, if all three of the multiple means comparison methods do not
agree, the results of each are presented; otherwise, the single result for all of the methods is
presented.

Tables 3 and 4 concisely present a ranking of each search strategy based upon the statis-

16



Table 3: Summary Fitness Value (SNK)

Problem | N | -3 |4 |-5|-6]0|5|10|20 (40|50 |60 |80 |90 |95 100
Instance
Burb-4 | 2|1 |1 [1 |1 1111 |1 |1 |1 1 (1 |1 |1 1
Burb-5 |21 |1 [1 |1 1111 |1 [1 [1 1 (1 |1 |1 1
Burb-6 | 2|1 |1 [1 |1 1111 |1 [1 [1 1 (1 |1 (1 1
King4 (3|22 221 [1]1 [1 (1 |1 1 (1 |1 |1 1
King-5 [ 21 |1 (1 |1 1111 |1 [1 [1 1 (1 |1 |1 1
King6 |1 |1 211 |1 1111 |1 [1 [1 1 (1 |1 (1 1
Chan-10 |1 | 2 |1 |1 [1 (2|11 |1 [1 |1 1 (1 |1 |1 1
Chan-11 | 2 (1 |1 |1 |1 1111 |1 [1 [1 1 (1 |1 |1 1
Chan-12 | 2 (1 |1 |1 |1 1111 |1 [1 [1 1 (1 |1 |1 1
Reall-4 | 3 |3 |2 |3 |3 |4|1(1 |1 [1 |1 1 |1 |1 |1 1
Reall-5 |2 |2 |2 |2 |2 |3|1|1 |1 |1 |1 1 (1 |1 (1 1
Reall-6 |2 |2 |2 |2 |2 |3|1(1 |1 |1 |1 1 (1 |1 |1 1
Real26 |4 | 6 | 5 |4 |4 |73 2|1 |1 |1 1 |1 |1 |1 1
Real2-7 | 2 | 2 |2 | 3|1 |4]|4]|1 511 |1 1 |1 |1 |1 1
Real2-8 | 5| 2 |1 312141211 |1 |1 |1 1 (1 |1 |1 1

tical tests shown in detail in Tables 6-10 in the appendices. This ranking was constructed
for both the fitness of final result and number of function evaluations required. The rankings
were determined as follows: find the group which yielded the best results for each test prob-
lem instance, as determined by the SNK means analysis, i.e., if the strategy was placed into
a single group, that group’s rank was used; however, if the method was placed into several
overlapping groups, the method was placed into the group with the best rank. Therefore,
these rankings represent how many groups of means are significantly better for each test
problem.

Table 3 shows the results of these rankings for the final fitness of the solutions returned
by each of the search strategies, where 1 represents the best rank and is shaded. All of the
strategies employing at least a 40% Lamarckian learning were better in terms of final fitness
value. Interestingly, pure Baldwinian learning (0) did find significantly worst solutions for
several test problem instances. In terms of rank, the LIP mutation methods were in the best
group for almost all the literature data sets but were significantly worse when applied to the
real data sets; however, they did fair better than pure Baldwinian Learning.

Table 4 shows the results of the rankings for the number of function evaluations required
to locate the final functional value returned by the search strategy. This table demonstrates
that for the literature data sets any level of Lamarckian learning consistently yields the

quickest convergence. This is due in part to the fact that the literature data sets were
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Table 4: Summary of Convergence (SNK)

Problem | N | -3 |4 |-5|-6]0|5|10|20 (40|50 |60 |80 |90 |95 100
Instance
Burb-4 | 2|1 |1 [1 |1 1111 |1 |1 |1 1 (1 |1 |1 1
Burb-5 [ 3|1 |1 (1 |1 (2|11 |1 (1 |1 1 (1 |1 |1 1
Burb-6 [ 3|2 |2 (2|2 (1|11 |1 (1 |1 1 (1 |1 (1 1
King4 (413 222 |2(1]1 |1 (1 |1 1 (1 |1 |1 1
King5 {32 (1 (1 |1 [(2(1]1 (1 (1 |1 1 (1 |1 |1 1
King6 (23 |3 22 2|1]1 [1 1 |1 1 (1 |1 (1 1
Chan-10 | 2 | 3 | 2 | 1 2041111 11 |1 |1 1 (1 |1 |1 1
Chan-11 | 3 ({1 |1 |1 [1 (2|11 |1 [1 |1 1 (1 |1 |1 1
Chan-12 | 4 | 1 2011 |1 3|11 (1 [1 [1 1 |1 |1 |1 1
Reall-4 {3 |3 |2 |3 |3 |3|1f1 |1 |1 |1 1 |1 |1 |1 1
Reall-5 |4 |4 |4 |4 |3 |4|2|2 22|21 |1 2 |1 1
Reall-6 | 4 | 4 |4 |4 |3 4|21 |1 [1 |1 1 (1 |1 |1 1
Real26 | 3 |3 |3 |3 |3 |3|3|2]|21]2]1 1 |1 |1 |1 1
Real2-7 | 3 (3 |3 (133 1(3|3/2 |3 [2]2]1 (1 ]1 |1 1
Real28 | 4 | 4 | 3 |4 |3 |4|13|3 |3 ]2]1 1 |1 |1 |1 1

extremely easy to solve when employing the LIP. However, for the real data sets, a level
of greater than 60% Lamarckian is required, with exception of 90% for Reall-5 problem
instance (note, in this case, 80% was actually better than 100% but it was not significantly
better). There were several problem instances were pure Lamarckian was not ranked the
best.

The average computation time for 50 replications needed to initialize the population and
run 1000 generations of the pure GA and the Hybrid-GA using the LIP as an evaluation
function is shown in Table 5. The table shows that there is no statistically significant differ-
ence (at 95% confidence) between the various values of kpax for a given problem. Therefore,

increasing knyax does not greatly increase the computational effort of the LIP.

7 Conclusions

Techniques for partitioning the part/machine incidence matrix into machine cells and associ-
ated part families are varied and extensive. Optimization techniques are limited in practice
to problems of small scale. Most heuristic methods lack the flexibility to form cells using a
variety of evaluation measures or handle constraints adequately. The hybrid-GA approach
developed in this paper overcomes these limitations.

It was demonstrated that GAs are very efficient at exploring the entire search space;
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GA Hybrid GA

Initial’  Generation® | Initial’ Generation?

Problem ko

4 0.0260 10.0980 0.0850 25.5170
Burb 5 0.0260 10.0950 0.0900 26.6790
6 0.0270 10.0900 0.0960 28.5180
4 0.0272 10.6848 0.0864 29.9856
King 5 0.0274 10.6080 0.0918 27.1724
6 0.0278 10.6554 0.0990 29.3078

10 0.0724 23.2222 0.3892 109.4566
Chan 11 0.0744 23.1994 0.3962 111.0308
12 0.0714 23.1604 0.4080 113.6542

-time to initialize population i-time to run 1000 generations
pop + g

Table 5: Computational Time of the GA versus the Hybrid GA in (CPU seconds)

however, they are relatively poor at finding the precise local optimal solution in the region at
which the algorithm converges. Hybrid-GAs are the combination of improvement procedures,
usually working as evaluation functions, and genetic algorithms. Using LIPs was shown
to enhance the performance of the genetic algorithm. Even though Lamarckian learning
disrupts the schema processing of the genetic algorithm, it reduces the problem of a one-
to-one genotype to phenotype mapping. Whereas Baldwinian learning while not affecting
the schema processing capabilities of the genetic algorithm, results in a large number of
genotypes mapping to the same phenotype.

In the empirical investigation, a general trend was observed: increasing use of Lamarckian
learning led to the quicker convergence of the genetic algorithm to the best known solution
as compared to both Baldwinian learning and using the LIP as a mutation operator. By
forcing the genotype to reflect the phenotype, the GA converges more quickly and to better
solutions than by leaving the chromosome unchanged after evaluating it. This may seem
counterintuitive since forcing the genotype to be equal to the phenotype might have forced
the GA to converge prematurely to a local optimum. For the cell formation problem, a
higher percentage of Lamarckian learning gives the best mix of computational efficiency and
solution quality.

One possible reason for the poor performance of pure Baldwinian learning is that the
multiple genotype to phenotype mapping causes the GA to waste a lot of precious evaluations
in the same basin. For the larger problems (i.e., Chan, Reall and Real2 problems), a large
number of the functional evaluations are used to generate the starting population. Therefore,
Baldwinian Learning does not have a lot of generations to overcome this confounding problem

and it never reaches the optimal for many replications of these problems. Even though
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Lamarckian is not natural (i.e., “Darwinian”) evolution, it seems to be ideal for real-world
problem solving using evolutionary computation.

When employing the LIP, the problems from the literature turned out to be very easy.
The reason may be that the fitness landscape is transformed into very flat regions around
the local minima, making it easier for the GA to search. For these instances, a multi-start
procedure utilizing the same local improvement would have been just as effective. However,
for the real problems, this would not be case since it takes the GA a number of generations
to reach the best known solution. Another interesting observation is that as the problem size
increased for the non-binding cases, (Burb-6, Chan-11, Chan-12), the hybrid-GA methods
had quicker convergence to the optimal than the non-binding cases,(Burb-5 and Chan-10).
The non-binding cases represent when the upper bound on the number of cells is greater
than the number natural occurring cells. This may be due in part to the fact that the local
improvement procedure has more room to maneuver in the non-binding cases.

The ability to solve the largest problems in a matter of seconds will allow the cell designer
to solve more complex versions of the cell formation problem. Even though grouping efficacy
was used as the evaluation function, the concepts developed in this paper can be easily
extended to other LIPs. The grouping efficacy LIP has been modified to work on extended
models which includes alternative operations, machine redundancy, alternative routings and

part demand [23].
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.
Appendix

The ranking of both the number of function evaluations and the ranking of the final fitness

are presented in Tables 6-10 for each of the 15 problem instances considered in this paper:

the five test problems (Burb, King, Chan, Reall, Real2), each at three different values of

kmax, where, e.g.; Burb at kp.x = 4 is referred to as instance Burb-4. Each of the three

multiple means comparisons were performed on each instance.

The multiple means tests provide information on sets of means whose differences are
statistically significant. For example, all three multiple means tests agree that the no local
improvement (N) method yields significantly worse results for the Burb-4 instance. Accord-
ing to all the tests, any form of hybridization (i.e., learning methods or local improvement
mutation operators), yield effectively the same final fitness value. Each of the problems are
discussed below; a summary of the results for both speed of convergence and final fitness
value is provided in Tables 3 and 4 of Section 6. In the tables, the rank indicates the ranking
of the average number of function evaluations or average fitness value, where the ranking
is from left (worst) to right (best). For example, for the Burb-4 instance, even though the
local mutation hybrid methods (-6, =5, -3, —4) were not significantly better than learning

methods, the rank indicates they had the lowest average number of function values.

Appendix B: Burbidge Problem

As seen in Table 6, the local improvement procedure greatly improves the efficiency and qual-
ity of solution for this data set. The optimal solution was readily found by all hybridization
methods, whereas no local improvement was terminated after one million function evalua-
tions. When the maximum number of cells (kmax) equals 4 there was no statistical significant
difference in the number of function evaluations required to obtain the best known solution
for each of the hybrid methods. However, when ks increases to 5 and 6, the LIP mutation
hybrid methods require a significant greater number of function evaluations to obtain the
best known solution. This is not as clear in the Burb-5 instance because some overlap in the
groups exists; for this instance, while Baldwinian learning (0) strategy found the optimal, it

took significantly longer to converge.
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Table 6: Multiple Means Comparison for Burbidge Problem

Problem ) .
Criteria
Instance
Burb-4 Rank N 0 5 10 80 90 95 60 20 40 50 100 -6 -5 -3 -4
#Evals | Duncan A
B B B B B B B B B B B B B B B
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B B
Rank N 0 5 10 80 90 95 60 20 40 50 100 -6 -5 -3 -4
Fitness | Duncan A
B B B B B B B B B B B B B B B
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B B
Burb-5 Rank N 0 -3 -4 -5 5 -6 10 20 40 50 60 80 90 95 100
#Evals Duncan A
B B
C (¢} (¢} (¢} C C (¢} (¢} (¢} C C (¢} (¢} (¢}
SNK A
B B B
C C C C (¢} C C C C (¢} C C C C
REGW A
B B B B
C (¢} (¢} (¢} C C (¢} (¢} (¢} C C (¢} (¢} (¢}
Rank N 0 -3 -4 -5 5 -6 10 20 40 50 60 80 90 95 100
Fitness | Duncan A
B B B B B B B B B B B B B B B
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B B B
Burb-6 Rank N -3 -4 -6 -5 0 5 10 20 40 90 50 80 60 95 100
#Evals Duncan A
B B B B
C (¢} C C C C (¢} C C C C
SNK A
B B B B
(¢} C C (¢} (¢} (¢} C C (¢} (¢} (¢}
REGW A
B B B B
C (¢} C C C C (¢} C C C C
Rank N -3 -4 -6 -5 0 5 10 20 40 90 50 80 60 95 100
Fitness | Duncan A
B B B B B B B B B B B B B B B
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B B B

Appendix C: King Problem

This data set contains two large bottleneck machines assuming equal demands for the parts
[25]. It is harder than the Burbidge problem. In terms of fitness, the hybrid methods
produced significantly better solutions for the three k. values than was reported by the no
local improvement procedure (N), while, for the King-4 instance the learning methods were
significantly better than the local mutation methods. In terms of convergence, the results are
a little more interesting since any percentage of Lamarckian learning was significantly better

than Baldwinian Learning. Also, for the King-5 instance, several of the local mutation
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methods were significantly better than pure Baldwinian Learning. See Table 7 for more

detail.

Table 7: Multiple Means Comparison for King Problem

Problem . )
Instance Criteria
King-4 Rank N -3 -5 -6 -4 0 5 95 100 10 20 40 50 60 80 90
Duncan A
#Evals B B B B
(¢} C C C
D D D D D D D D D D
SNK A
B B B B
(¢} C C C
D D D D D D D D D D
REGW A A
B B B B B
> (¢} (¢} C (¢} C C (¢} (¢} (¢}
Rank N -3 -5 -6 -4 0 5 95 100 10 20 40 50 60 80 90
Fitness Duncan A
B B B B
C C (¢} C C (¢} C C C C (¢}
SNK A
B B B B
C C (¢} (¢} C (¢} C C (¢} (¢} (¢}
REGW A
B B B B
(¢} C C C C (¢} C C C C
King-5 Rank N 0 -3 -5 -4 -6 5 10 20 40 50 60 95 90 100 80
Duncan A
#Evals B B
C C C
D D D D D D D D D D D D
SNK A
B B
C C C C (¢} C C (¢} C C C C (¢}
REGW A
B B
(¢} C
D D D D D D D D D D D D
Rank N 0 -3 -5 -4 -6 5 10 20 40 50 60 95 90 100 80
Fitness | Duncan A
B B B B B B B B B B B B B B B
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B
King-6 Rank -4 -3 N -5 -6 0 5 10 20 40 50 60 95 90 100 80
Duncan A A A
#Evals B B B B
(¢} C (¢}
D D D D D D D D D D
SNK A A A A A
B B B B
C (¢} (¢} C (¢} C C (¢} (¢} (¢}
REGW A A A A A
B B B B
> C C C (¢} C C C C
Rank -4 -3 N -5 -6 0 5 10 20 40 50 60 95 90 100 80
) Duncan A
Fitness B B B B
C (¢} C (¢} C C C C C (¢} C C C C
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B B B
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Appendix D: Chandrasekharan Problem

This problem is the largest data set found in the literature [4]. In terms of final fitness
values, the groups are not as well defined as in the previous problems, indicating that several
of the replications terminated after one million function evaluations (see Table 8). For all
three instances, pure Baldwinian learning (0) was significantly the worst method in terms of
convergence: for the Chan-10 instance, it was also in the worst group in terms of fitness; for
the Chan-11 instance, it was in the second worst group; and in all of the replications where
it did find the optimal, it still took a significantly greater number of function evaluations to
converge than the other learning methods. For all three statistical tests, any Lamarckian
learning greater than 5% was always in the best groups in terms of final fitness value and
convergence. As stated as the problem size increased, the problem seemed to get easier
(i.e., more methods found the optimal more quickly). This may be due in part to the fact
that there are ten natural occurring clusters and the local improvement procedure has more
room to maneuver in the non-binding cases. The same phenomena occurred for the Burb-6
instance. For this instance, the Lamarckian learning methods took only a few generations to
solve the problem, indicating that a multi-start procedure using the same local improvement

procedure would probably work as well.
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Table 8: Multiple Means Comparison for Chandrasekharan Problem

Problem j .
Instance Criteria
Chan- Rank 0 -3 -4 -6 N -5 5 10 20 40 50 80 60 90 100 95
10 Duncan A
#Evals B B B B
C C C C
D D D D D D D D D D
SNK A
B B B B
C (¢} C C
D D D D D D D D D D D
REGW A
B B B B B
C C C C C C C C C C C
Rank 0 -3 -4 -6 N -5 5 10 20 40 50 80 60 90 100 95
Fitness | Duncan A A A A A A
B B B B B B B B B B B
SNK A A A A A
B B B B B B B B B B B B B B
REGW A A A A A
B B B B B
C C C C C C C C C C C C
Chan- Rank N 0 -4 -5 -3 -6 5 10 20 40 50 60 80 90 95 100
11 Duncan A
#Evals B B B B
C (¢} C C
D D D D D D D D D D D
SNK A
B B B B
C C C C C C C C C C C C C C
REGW A
B B B B B
C C C C C C C C C C C C
Rank N 0 - -5 -3 -6 5 10 20 40 50 €60 80 90 95 100
. Duncan A A A
Fitness B B B
(¢} C C C C C C C C C C C C
SNK A A A A
B B B B B B B B B B B B B B B
REGW A A A A A
B B B B B B B B B B B B B B
Chan- Rank N 0 4 | 6 | -3 ]-5 5 10 [ 20 | 40 [ 50 | 60 | 80 [ 90 95 100
12 Duncan A
#Evals B
C
D D D D D D D D D D D D D
SNK A
B
C
D D D D D D D D D D D D D
REGW A
B
C (¢} C (¢}
D D D D D D D D D D D D D
Rank N 0 -4 -6 -3 -5 5 10 20 40 50 €60 80 90 95 100
. Duncan A
Fitness B B B B B
C C C C C C C C C C C C C C
SNK A
B B B B B B B B B B B B B B B
REGW A
B B B B B B B B B B B B B B B

Appendix E: Real Data Set 1

For this problem, pure Baldwinian learning was significantly worst in terms of final fitness
value as compared to all the other methods including no local improvement. In terms of
the mean fitness values shown in Table 9, any form of Lamarckian learning was consistently
better than no local improvement and the local mutation hybrids. However, in terms of
convergence, it is not nearly as clear since there is considerable overlap for all three instances

for all three tests. This is due in part to the fact that none of the hybrid methods found
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the best solution in all 20 replications (e.g., 80% Lamarckian learning found the optimal 15
out 20 times). For the Reall-4 instance, Baldwinian learning, no local improvement, and
the local mutation hybrid methods were significantly worse than any Lamarckian learning
method. For the Reall-5 instance, 80% Lamarckian learning was the best method in terms
of mean value of function evaluations; however, 60, 95, and 100% overlapped with this level.
Also, for this instance, there does not seem to be any general trend indicating that increasing

the level of Lamarckian learning increases the convergence rate.
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Table 9: Multiple Means Comparison for Real Data Set 1
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Appendix F: Real Data Set 2

This is the largest of the problems considered. In the first pass, using one million function
evaluations, none of the methods were able to find the best known solution for any of the repli-
cations. This is due in part to the fact that when employing local improvements, almost one
million function evaluations were used to initialize the starting population. This illustrates
a case where a multi-start procedure would not be as effective on this problem. Therefore,
the maximum number of evaluations was increased to 10 million. Table 10 presents these
results. Even in this case, none of the methods were able to find the best known solution
in all 20 replications (e.g., 100% Lamarckian found the the best known solution in 10 of
the 20 replications for the Real2-6 instance). What is interesting in these results is that
pure Baldwinian as well as 5% Lamarckian did not find the best known solutions. For the
Real2-7 instance, 20% Lamarckian learning produced significantly the worst solution, with
Baldwinian and 5% Lamarckianism forming the second worst group. As indicated in the
table, up to a level of approximately 40, 50, and 40% for the Real2-6, -7, and -8 instances,
respectively, the method terminated after 10 million function evaluations. Even pure Lamar-
ckian (100) was not clearly the best in terms of speed convergence. This is not statistically

significant because of the overlap of the groups.

Table 10: Multiple Means Comparison for Burbidge Problem

Problem | . .
Instance Criteria
Real2-6 Rank 0 -3 -4 -5 -6 N 5 10 20 40 80 50 60 90 100 95
Duncan A A A A A A A A A A
#Evals B B B B B B
C C C C C
D D D D
SNK A A A A A A A A A A A
B B B B B B B B
C C C C C C
REGW A A A A A A A A A A
B B B B B B B B
C C C C C C C
D D D D D D D
E E E E E E E
F F F F F F F
G G G G G G
Rank 0 3 4 5 -6 N 5 10 20 40 80 50 60 90 100 95
Duncan A
B
C C
Fitness D D
E E
F F F
G G G G G G G
H H H H H H H
SNK A
B
C C C
D D D
E E E
F F F F F F F F
G G G G G G G G
REGW A
B
Cc C C
D D D
E E E E
F F F F F F F F
G G G G G G G G
continued on the next page
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continued from the previous page

Problem | . .
Tnstance Criteria
Real2-7 Rank 20 0 -5 N -4 -3 -6 10 40 50 60 95 100 80 90
Duncan A A A A A A A A A A
#Evals B B B B B
C C (¢} C C C
D D D
SNK A A A A A A A A A A A A
B B B B B B B
C C C C C
REGW A A A A A A A A A A
B B B B B B B B
C C (¢} C C C C
D D D D D D D
E E E E E E E
F F F F F F
Rank 20 0 -5 N -4 -3 -6 10 40 50 60 95 100 80 90
Duncan A
B
Fitness C C (o]
D D D
E E E E E E
F F F F F F F F
SNK A
B
C C C
D D D
E E E E E E E E E
REGW A
B
C C C C
D D D D D D D D D
Real2-8 Rank N -5 -3 5 -6 -4 10 20 40 50 60 80 90 95 100
Duncan A A A A A A A A
B B B B B B
#Evals c C C c
D D D D D
E E E E E
SNK A A A A A A A A A
B B B B B B B
C (¢} (¢}
D D D D D D
REGW A A A A A A A A A
B B B B B B B
C C C (¢}
D D D D
E E E E E E
Rank N -5 -3 5 -6 -4 10 20 40 50 60 80 90 95 100
Duncan A
Fitness Cc C
D D D
E E E
F F F F F F F F F
SNK A
(¢} C
D D D
E E E E E E E E E E
REGW A
(¢} C C
D D D
E E E E E E E E
F F F F F F F F F
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