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Introduction

System: is a set of objects/elements that are connected or related to each
other in such a way that they create and hence define a unity that performs a

certain objective.
Control: means regulate, guide or give a command.

Automatic: something can change without the involvement or intervention

of a human

Task: To study, analyse and ultimately to control the system to produce a

“satisfactory” performance.

Model: Ordinary Differential Equations (ODE):

f(t)

—>

X(t)
——
T — friction

dx  d?x
SF=ma<s f—fhigon=ma<e f-Bo=ma< f —Bazmdt—2

Dynamics: Properties of the system, we have to solve/study the ODE.
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i dx
First order ODEs: i f(x,1)

Analytic methods to study ODEs:
= Analytic: Explicit formula for x(t) (a solution — separate variables,
integrating factor) which satisfies % = f(x,1)

0 %zaaj‘dxﬂ‘adt & x(t)=at +C=> INFINITE curves (for all

Initial Conditions (1Cs)).

o X(t) is called solution of the system which is described by % =a.

First order linear equations - (linear in x and x’)

a(t)x+b(t)x=c(t), Nonautonomous

General form: {
ax'+bx =c, Autonomous

Example: x+kx=u

Numerical Solution: k=5, u=0.5

Gain
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Exercise: Find the response for k=0.5, u=1 and u=-1, initial conditions: 0, 1,

-1. Describe the system’s behaviour.

Analytical Solutions: (you do not have to know how to derive this)

Integrating factor:

efkdt k:c:onst ekt

e (x+kx) = e4u = (e¥x) '= eMu
= j(e'“x)'dt = [eMudt

— ekly = je"tudt +C= X = e"‘tjektudt +e Mg

t
or: x=e¥x(0)+ e"‘tje"tludt1
0

Assuming that k>0 the first part is called transient and the second is called

steady state solution.
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Response to a sinusoidal input

y;,+ky; = k cos(mt)

y,'+ky, =ksin(owt)= jy,'+kjy, = kjsin(wt)

iy, +Kjy, + y; +ky; = kjsin(wt)+ k cos(mt)

(v +iy2") + k(ys + Jy,) = k(cos(@t) + jsin(wt))

y'+ky = kel

Integrating factor: e<'=> (ye"t )'z kelk+iet)
i_ K ki)

:k+ja)t

~ k jot
y=——2¢'"" =
K+ jot

€ =

<!

1 j(wt—tan_l(%))

— ¢
2
1+a’42

<1
Il

— :;Zcos(a)t - tanl(%))
1+ @42 lJrC’)A2

= magnified/attenuated amplitude and phase shifted.

u = cos(2at) k=1m, x(0)=0.1:
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I Gain
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Autonomous 1% order ODEs => Liner Time Invariant (LTI) systems

%: f (x) (notton RHS).

Analytic solution:

Can be solved as before: Transient and steady state part.
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2
Second order ODEs: %= f(x',xt)

Second order linear ODEs with constant coefficients: x'"'+Ax'+Bx=u

u=0 => Homogeneous ODE; | need two “representative solutions”

X"+AX'+Bx =0, assume x=e"=> x'=re" & x'"'=r%"=>

X'+ AX+Bx=0<=r%e" + Are"+Be" =0 =

r? + Ar + B =0; Characteristic equation => Check its roots.

 —A++A* 4B

r=
2

= Roots are real and unequal: r; and r, (A2 > 4B =>Overdamped system)

x =e™ and x, =e" are solutions of the ODE =>

X =C;¥ +C,X, =Ce" +C,e?. If r; and r,<0 then X — 0.

Example:

X'+4x'+3x=0 = r? +4r+3=0< (r+3)(r+1)=0

x=Ce ' +C,e". Assume that x(0)=1 and x(0)=0:

x(0)=C;+C, =1 and x'=-3Ce™*-Cee'= x'(0)=-3C,-C,=0 =>

C,=-0.5, C,=3/2 =>x = —0.5e 3 + %e‘t :
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= Roots are real and equal: r,=r, (A? = 4B Critically damped system)
_allt _tallt _ rt rt
X, =€ and X, =te"" => x=C;x; +C,x, =Cie" +Cyte

Example:

A=2, B=1, X(0)=1, X’ (0)=0 => ¢;=c,=1
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= Roots are complex: r=a+bj A < 4B

o Underdamped system A=0

So x =g =g(@hi)t — gat+bit _ gate bt _ g2 (cog(pt) + jsin(bt))=Re+jIm.

Theorem: If x is a complex solution to a real ODE then Re(x) and Im(x) are
the real solutions of the ODE:
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x, =e® cos(bt), x, =e* sin(bt) =>

X = CyX; + C,yX, = C,e™ cos(bt) + ¢, sin(bt)
= e (c, cos(bt) + ¢, sin(bt)) = e*G cos(bt - ¢)

where G = G , & ¢ =tan ‘1((3%)
cos(tan ‘{%D !
1

A=1, B=1, x(0)=1, x’(0)=0 => ¢,=1, c,=1/sqrt(3)

1 1
L Ha’@
ntegrator: rator cope

Chapter 1

EEE 2002

10/17



Spring 2008

15

0.5f

C,cos(bt)

/
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Clcos(bt)+czsli,n'(

b

C,sin(bt)

-1.
50

Overall

o Undamped system A=0

EEE 2002

X'+0+Bx=0<r%e" + 0+ Be" =0= r? =—B=> Imaginary roots (If B<0

then | would have two equal real roots).

So I = jb => x =, cos(bt) +c, sin(bt) = G cos(bt — ¢)

A=0, B=1, x(0)=1, X’(0)=0 =>C;=1, ,=0:
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In all previous cases if the real part is positive then the solution will diverge

to infinity and the ODE (and hence the system) is called unstable.

Space of roots

Chapter 1

12/17



Spring 2008 EEE 2002

jb |
A ib
) NN\
- - ) _
- a
! \
ovardomped SRRRRRREE Stable 777777,
underdamped ﬁ:‘:ﬁ:‘:ﬁ:ﬁ:‘:ﬁ UnstableN\\\\\\\\W

Natural frequency, damping frequency, damping factor

2" order systems very important with rich dynamic behaviour
So A=2lw,, B=w?=>x"+2lw X+0ix=0

¢ is the damping factor and @, is the natural frequency of the system.

A=A’ 4B _ -2, +2¢w, f - 40}

r - n
2 2

|"=—é/0)ni é/za)r?_a)rf
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¢>0
1. Real and unequal ,,fza) >a) < ¢?>1= ¢ >1 => Overdamped system

implies  that £>1; 1,=-Cw, +. 2wl —w2 => replace  at
X= Clerlt + Czerzt
2. Real and equal ¢*2 a) —a) & ¢? =1= ¢ =1 => Critically damped

-t

system implies that £ =1; r = —w,=> x=C,e™™" + C,te

¢>0
3. Complex (?w? <w? < ¢? <1= ¢ <1 => Underdamped systems
implies ¢ <1;
o =—C0, + yop —¢Pop =—Coy £ jop1-¢7
a)d:a)nxll—é’z

= —Cw, * jog=> x=e"""Gcos(wyt — @); wy is called damped
frequency or pseudo-frequency.

4. Imaginary roots ¢ =0 and therefore the solution is r=+jo,=>
x = G cos(w,t — ¢); so when there is no damping the frequency of the
oscillations = natural frequency. x = G cos(w,t —¢)

5. In all the previous cases if £ > 0 then the transient part tends to zero. If
¢ <0 then the system will diverge to infinity with or without

oscillations.
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4 Oscillations? | Name Components of solution

¢>1 No Overdamped Two exponentials:

Kt oot
er,e?, k,k, <0

¢=1 No Critically Two exponentials:

damped
e e k<0

¢<l Yes Underdamped One exponential and one

cosine e, cos(at), k <0

&=0 |Yes Undamped one cosine cos(at)

If £ <0 then cases 1-3 are the same but with k >0

Jaoy _
4 Jwy
_ A
7 N
- : a)n
- 4 Wy
\
A\
. fefrig;f;‘r'] g(_; | SR stable 0
underdamped A Unstables
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NonHomogeneous (NH) differential equations

X"+AX'+Bx=u

u=0 => Homogeneous => X; & X,.

= Assume a particular solution of the nonhomogeneous ODE: X,
R
o If u(t)=R=cosnt => xp =5

= Then all the solutions of the NHODE are x = Xp + C;X; + CyX,

= So we have all the previous cases for under/over/un/critically damped
systems plus a constant R/B.
= |f complementary solution is stable then the particular solution is called

steady state.
Example:
X"+X'+X=2= Xp =2
X = 2+ CyX; + C,X, = 2+ (c, cos(bt) + ¢, sin(bt))

x(0)=1, x’(0)=0 => ¢;=-1, ¢c,=-1/sqrt(3)
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