Automatic Control – EEE 2002 Tutorial Exercise VIII

- 1. Find the step response of the OLTF: $G(s) = \frac{1}{(s+1)(s+2)(s+3)}$.
- 2. Find the CL step response by assuming a proportional controller, $K_p=1$.
- 3. Analytically prove that by increasing K_p we cannot make the steady state error zero.
- 4. Crosscheck your previous answer numerically.
- 5. For $K_p=10$, find the steady state error numerically.
- 6. Replace the P controller with a PI controller. Find analytically the steady state error.
- 7. For $K_i=2$ and 6 crosscheck your previous answer.
- 8. What is it going to be the response of the system if we increase K_p from 10 to 20 and K_i from 6 to 10?
- 9. For these last values of K_p , K_i find the $\frac{de}{dt}$.
- 10. Add a D part in your controller and find analytically the steady state error.
- 11. For $K_d=5$ and 10 crosscheck your previous answer.
- 12. Increase the P gain from 20 to 50 and study the response of the system.
- 13. For this last value check the response of $K_p \times error$, $\frac{K_I}{s} \times error$ and

 $K_d s \times error$.

- 14. Find the appropriate K_p , K_i , K_d for $G(s) = \frac{1}{(s+1)(s+2)(s+3)}$ by using the Ziegler Nichols II method.
- 15. Find the appropriate K_p , K_i , K_d for $G(s) = \frac{1}{s^2 + 6s + 16}$ such as the closed loop system has $\omega_n = 6rad / s$, $\zeta = 0.5$ and real pole at a=-5.