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1. Introduction 

Assume an n
th

 order system: 
    1,...'',',  nn xxxxfx . Very difficult to be 

studied (theoretically we can use geometric and/or analytic methods) => so 

we use computers. Computers are better with 1
st
 order ODE => break the nth 

order to a system of n 1
st
 order. Also by using matrices we can use powerful 

tools from the linear algebra! 

Example: 

Assume the simple mass, spring system: 

F(t)

x(t)

friction

 

Using Newtonian mechanics we get:  

kxxBFxmkx
dt

dx
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By choosing as xxxx  21 ,  we have: 
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Now, in order to “monitor” the system we need sensors to measure various 

variables like the displacement and velocity of the mass.  

Let’s assume that we can buy both sensors, then we define the output of the 

system to be: 

Cxyxy 
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Let’s assume that we can buy only one sensor, that measures the 

displacement, then the output is: 

  Cxyxy  011xy  

Let’s assume that we can buy only one sensor, that measures the velocity, 

then the output is: 

  Cxyxy  102xy  

Let’s assume that we have only one sensor that measures a linear 

combination of the displacement and velocity: 

  Cxyxy  212211 aaxaxay  

Hence, the most general case (for the above example): 
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Finally let’s assume that (in a rather artificial case) that the input can directly 

influence the output, then we have: uDCxy  , For some matrix D. 

So the system is described by 
u

u

DCxy

BAxx




: 

Input Output

U yDUy

U





CX

BAXX

 

Generally I can have more than one inputs and/or outputs: 

U1 y1

DUCX

BUAXX
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Or in a vector form: 

DUCXy
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U Y

 

Where: 
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In general:  
 

)()()()()(

)()()()(

ttttt

ttttt

uDxCy

uBxAx




 

Where   

 x is an n x 1 state vector 

 u is an q x 1 input vector 

 y is an p x 1 output vector 

 A is an n x n state matrix 

 B is an n x q input matrix 

 C is an p x n output matrix 

 D is an p x q feed forward matrix (usually zero) 

If the system is Linear Time Invariant (LTI):

 )()()(

)()()(

ttt

ttt

DuCxy

BuAxx




  

B
U

 dt C
DX X Y

A

 

The state vector describes the system => Gives its state => The state of a 

system is a complete summary of the system at a particular point in time. If 

the current state of the system and the future input signals are known then it 

is possible to define the future states and outputs of the system.  

The choice of the state space variables is free as long as some rules are 

followed: 

 They must be linearly independent. 

 They must specify completely the dynamic behaviour of the system. 

 Finally they must not be input of the system. 
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Examples of state space models (NOT ASSESSED MATERIAL) 

Example 1 

Assume the following simple electromechanical that consists of an 

electromagnet and  

v(t)

R

L

f

K
m

x

B

 

The force of the magnetic field is directly related to the current in the RL 

network. The force that is exerted on the object is 
2

2

x

i
kf A , where kA is a 

positive constant. To simplify the analysis we assume that the displacement 

x is very small and in that small area the current has a linear relationship 

with the force: ikf A  

Using circuit theory:  iRv
Ldt

di


1
 

Using Newton’s 2
nd

 law: xmxBkxikxmxBkxf A    

Now, we can define xx 1 , xx 2  and ix 3 . Thus: 
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21 xxx    

32122132 x
m

k
x

m

B
x
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k
xBxkxxkxm A

A    

Hence the state space model is: 

BuAxx 
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Now let’s assume that we have only one sensor that will return the 

displacement x: 
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Thus the state space model is: 
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Example 2 

Another example is shown in the next figure. 
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The shaft of the separately excited DC motor is connected to the load J2 

through a gear box. 
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I define 210 , xix a  : 

mailto:damian.giaouris@ncl.ac.uk


Chapter 2  EEE8013-3001 

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 9/19 

a

a
a

a

a

a
aa

a

a

aaa

v

L
x

x

L

R

L

K
J

K

J

B

x

x

v
LL

R
xx

L

K
x

x
J

K
x

J

B
x

xKxLRxv

BxxKxJ



















































































1

0

1

2

1

1

2

2

1

21
1

2

2
2

11

1122

1221













 

Example 3 

It can be proved that a model of the Induction Machine is: 
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Or: 
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State space 

The system’s states can be written in a vector form as:  

 Tx 0,,0,11 x ,  Tx 0,,,0 22 x ,…,  Tnn x,,0,0 x   

=> A standard orthogonal basis (since they are linear independent) for an n-

dimensional vector space called state space. 

PBL:  What is a vector space?  

 What is a linear combination of a set of vectors?  

 What is a span of a set of vectors? 

 What do we mean when we say that 2 vectors are linearly 

 independent? 

  What is a basis in a vector space? 

 What is a linear transformation from a vector space V to a vector 

 space W? 

 What is a generalised eigenvector and how can it be used to form a 

 basis in a VS? 
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Examples of state spaces are the state plane (n=2) and state 3D space (n=3), 
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Relation of state space and TF  

If we have an LTI state space (ss) system, how can we find its TF? 

 )()()0()()()()( ssssttt
LT

BUAXxXBuAxx  

 

    )0()()(

)0()()(

11
xAIBUAIX

xBUXAI






ssss

sss
 

And from the 2
nd

 equation of the ss system: 

)()()( sss DUCXY  => 

     )()0()()(
11

sssss DUxAIBUAICY 


 

     )0()()(
11
xACUDBACY


 sIssIs  

By definition TF:   DBAIC 
1

s  and   )0(
1
xAIC


s  the response to the 

IC. 

Also:    
ILT

ssss 


)0()()(
11
XAIBUAIX  

      )0()()(
1111

xAIBUAIx
  sLssLt  

If U=0 =>    )0()(
11

XAIX
  sLt   
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So     DBAICG 
1

ss  is the TF. From linear algebra: 
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th
 column of the matrix B and Cj is 

the j
th
 row of C. 

Hence AsI  is the CE of the TF!!! 
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Example: 
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Observability 

Assume that we have the following system: 
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Notice that the model is uncoupled and since C is 1x2 it is impossible to see 

how x2 behaves (no problem if A was not diagonal or C was 2x2). This 

implies that we cannot monitor x2, for example it can diverge to infinity with 

catastrophic results for our system. 

Assume that we have another system: 
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Clearly these two models are different. In that case it can be proved that the 

2 systems have the same transfer function as there is a pole-zero cancelation:  
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which is exactly the same as the TF of the first system, what is wrong? 

There is a pole zero cancellation at the second model  
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Controllability 

Assume that we have the following system: 
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In this case we can see how both states behave but we cannot change u in 

any way so that we can influence x2 due to the form of B. If A was not 

diagonal we would be able to control x2 through x1. 

Similarly we have a pole-zero cancellation in: 
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Hence in the first case by properly defining u we can control both states but 

we cannot see the second state, while in the second case we can see both 

states but we cannot control the second state. The first system is called 

unobservable and the second uncontrollable. The loss of the controllability 

and/or observability is due to a pole/zero cancellation. These systems are 

unacceptable and the solution to that problem is to re-model the system. 

The systems that are both controllable and observable are called minimal 

realisation. 
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We need to develop tests to determine the controllability and observability 

properties of the system. Difficult task if the system is nonlinear. In our case 

we simply have to find the rank (the number of Linear Independent (LI) 

rows or columns) of two matrices. 

For observability: 
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. If the rank of this matrix is less than n then the system is 

unobservable. 

Example: 
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And obviously there is only one LI column/row  
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Example: 
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And obviously there are 2 LI column/rows  

For controllability: 

 BABAABBM
12  n

C  . If the rank of this matrix is less than n 

then the system is uncontrollable. 

Example 
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And obviously there is only one LI column/row  
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Example 
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And obviously there are 2 LI column/rows. 
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