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1. Introduction

Assume an n™ order system: x(" = f(x,x',x",..x(”‘l)). Very difficult to be
studied (theoretically we can use geometric and/or analytic methods) => so
we use computers. Computers are better with 1% order ODE => break the ny,
order to a system of n 1% order. Also by using matrices we can use powerful

tools from the linear algebra!
Example:

Assume the simple mass, spring system:

F(t)

X(t)>

friction
S FiFrrrrrriFirrys

Using Newtonian mechanics we get:

2
M:F—B%—kx=mX=F—BX—kx

dt?

By choosing as x; = X, X, = X we have:

¥ =X=X % ok 1B x] [0
1 =, |75 _P +
X2 :X:E(F —Bx, —kx) L(j m m L(j %

)'(1 O 1 Xl 0
or| “|=| _k B + F < x=Ax+Bu
X2 m m X2 %n
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Now, in order to “monitor” the system we need sensors to measure various

variables like the displacement and velocity of the mass.

Let’s assume that we can buy both sensors, then we define the output of the

system to be:

1 0
Yo X5 01

Let’s assume that we can buy only one sensor, that measures the

displacement, then the output is:
y=x <Yy=[l Oxey=Cx

Let’s assume that we can buy only one sensor, that measures the velocity,

then the output is:
y=% <y=[0 1x<y=Cx

Let’s assume that we have only one sensor that measures a linear

combination of the displacement and velocity:
y=ax +ax oy=la akoy=Cx

Hence, the most general case (for the above example):

Y1 X +byX; a b

y a, %, +b,x a, b

.2 _ | g% T %2 ey= 2 2 X <y = Cx
_yn_ _anxl + bn X2_ _an bﬂ_
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Finally let’s assume that (in a rather artificial case) that the input can directly

influence the output, then we have: y =Cx+ Du, For some matrix D.

EEE8013-3001

: ) X =Ax+Bu
So the system is described by ;
y =Cx+Du
Input X = AX + BU Output
> >
U y=CX+ DU y

Generally I can have more than one inputs and/or outputs:

U, > Vi
U < — -
1 > X=AX+BU Y2 -
U y=CX+ DU
q > Yp -
Or in a vector form:
U X =AX+BU Y
ﬁ y =CX + DU q
| Y|
u
Where: u=| ’ , Y= V2
: Y3
| Yg | Yp |
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X(t) = A(t)x(t) + B(t)u(t)

In general:
y (1) = C()x(t) + DOu(t)

Where

X is an n x 1 state vector

uisan g x 1 input vector

y isan p x 1 output vector

A is an n x n state matrix

B is an n x q input matrix

C is an p x n output matrix

D is an p x g feed forward matrix (usually zero)

X(t) = AX(t) + Bu(t)
y(t) = Cx(t) + Du(t)

U BI DX J‘dt X CIY

A

If the system is Linear Time Invariant (LTI):

The state vector describes the system => Gives its state => The state of a
system is a complete summary of the system at a particular point in time. If
the current state of the system and the future input signals are known then it

Is possible to define the future states and outputs of the system.

The choice of the state space variables is free as long as some rules are

followed:

e They must be linearly independent.
e They must specify completely the dynamic behaviour of the system.

e Finally they must not be input of the system.
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Examples of state space models (NOT ASSESSED MATERIAL)
Example 1

Assume the following simple electromechanical that consists of an

electromagnet and

v(t) 5

The force of the magnetic field is directly related to the current in the RL

-2
network. The force that is exerted on the object is f =k A'—z, where ka 1S a
X

positive constant. To simplify the analysis we assume that the displacement
x i1s very small and in that small area the current has a linear relationship

with the force: f =k,i
) . d 1 )
Using circuit theory: — =—=(v—IR
g Vi o L( )

Using Newton’s 2™ law: f —kx— Bx = mX <> k 5i —kx— Bx = mX
Now, we can define x; =X, X, =% and X3 =i. Thus:

1 R v
Xo=—(V=X;R) = X3 =X —+—
3 L( 3 ) 3 3L L
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Hence the state space model is:

Xq 0 1 kO
X3 0 0 —F%_

X1
X5
X3

B Ka
X; —— Xy +—2 Xg
m m

Ve X=AxX+Bu

Now let’s assume that we have only one sensor that will return the

displacement x:
X1
y=[1 0 0]x,

X3

Thus the state space model is:

Xq 0 1 0 Xq
X3 0 0 —F%_ X3
X1
y=[L 0 0]x,
X3

+|0 v
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Example 2

Another example is shown in the next figure.

vt)= EMF T @

The shaft of the separately excited DC motor is connected to the load J,

through a gear box.

n, .. n . .
ToziTm :>‘]00:7KT¢|8_BQO

N N, N
Tm = KTgoia

. di : : di n, -
Vy =iyR, + Lad—:‘+ K 00, <V, =|aRa+Lad—?+ K: p—26,
1

.. n, . . 0
JHO :_KT@a—BQO K2=KT(pé
2
—
N2 5 | K=Ky "2
_90 nl!

. di
V, :|aRa+LaOl—;"+KTgon
1

. di -
v, =i R, + Lad—?+ K, 6,
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X = ——X +—%X
Iy = KyX, — BX, gty
, &
Va = XzRa + LaX2 + Kl Xl _ Kl Ra
Xg =——=X — Xo —2+-—V,
La La La
_B K 0
X X
AE A O
ol -2 2% |
La La a
Example 3
It can be proved that a model of the Induction Machine is:
dy .
TSD = _RslsD +Usp
dy .
dtSQ = _RSISQ + uSQ
diy, -R —o,L, (LR +LR,) . L (<
. Vsp + Vsotlp— g ——Ugp
dt oy o1 oy oy
diy, -R oL, (LR, + LRy)
=—Lwo+ +igg—"—"+ipw, ——U
at o ¥sq o1 ¥Ysp tlsq o sD@r o, sQ
. To 0 ~Ry 0 L -
¥sD 0 0 0 ~ R, ¥sD
Vsa| | -R -aol, (LR +LR) Cw ¥sq
isp 01 01 01 r isp
isQ o Ly -R, o, (Ler+LrRs) isQ
- Lo 01 01 I
. 0
0 1
u
+ _L_ 0 sD
01 usQ
o _Lr
L 01
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Or:

di R ol2 . LR. ol 1

dt ol o s et
S r S r S S S

diy,  woln. R Lol LR 1

dt Lok, o % o M Lok M a ©

diy LpR. olp. R o, L

disp R o, L5, L.R, oL,
dt S I-rOI-s Lrol-s OLS .
diso | | olf R @ly LyR | P
dt = I-rGI-s GLs O-LS LrGLs ISQ
dlrd LmRs a)er Rr _ﬂ g
dt LFOLS OLI’ OLI’ o irq
dig oL, LR o R |
at | | oL Lol o ol, |
1 0
OLs
0 1
n O‘LS Usp
— Lm 0 USQ
Lol
0 __tm
i Lol |
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State space

The system’s states can be written in a vector form as:

X, =[%,0,---, 0], X, =[0, X, -+, 0] ,..., X, =[0,0, -, ., |

=> A standard orthogonal basis (since they are linear independent) for an n-

dimensional vector space called state space.
'PBL: What is a vector space?
What is a linear combination of a set of vectors?

What is a span of a set of vectors?

What do we mean when we say that 2 vectors are linearly |

independent?
What is a basis in a vector space?

What is a linear transformation from a vector space V to a vector :

space W?

What is a generalised eigenvector and how can it be used to form a :
basis in a VS? |
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Examples of state spaces are the state plane (n=2) and state 3D space (n=3),
A A

4 °R 1 °R

+
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Relation of state space and TF

If we have an LTI state space (ss) system, how can we find its TF?

X(t) = Ax(t) + Bu(t)ng(s) —Xx(0) = AX(s)+BU(s) =

(sl = A)X(s) = BU(s) +x(0) =
X(s) = (sl =AY 'BU(s) + (sl — A) ™" x(0)

And from the 2™ equation of the ss system:

Y (s) =CX(s) + DU(s) =>

Y(s) = Cl(s1 - Ay *BU(s) + (1 - AY*x(0) }+ DU(s)
Y(s)=(C(sl - AY'B+D)U(s) + C(sl - A)x(0)

By definition TF: C(sl —A) "B +D and C(sl —A)™"x(0) the response to the
IC.

ILT
Also: X(s) = (sl - A)"BU(s) + (sl - A) ™ X(0) =

X(t) = sl - AY*BU(s) J+ L{s1 - A x(0)

If U=0=> X(t) = L {s1 - A) [X(0)
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So G(s)=C(sI-A)'B+D is the TF. From linear algebra:

sl-A —B,

_ Cj D . -th . )

G, i(s)= - where B; is the i" column of the matrix B and C; is
" sl - A ‘

the j" row of C.

Hence ‘SI —A‘ is the CE of the TF!!!

(Gy(s)  Gp(s) - qu(S)_
Gy1(8) Goy(S) ... Gyyls
so: G, (5| 020 G2 2(5)
_Gpl(s) Gpa(s) - qu(s)_
Y. Y. Y Y
U_l:GlL U_1:G12’ U_2G21’ U_2:G22"'
1 2 1 2
Example:
Find the TF of | :{0 1 }{Xl}{o}z and y=[1 O{Xl}
~ —1 -05x,| |1 X,
X2
s -1
sl - A= =s(s+0.5)+1
1 s+0.5
1
s -1 0 = G(s)=
() s(s+0.5)+1
1 s+05 -1=1
1 0 0
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Observability

Assume that we have the following system:

x{‘oz _O}Hmu |
y=[3 Ok

Notice that the model is uncoupled and since C is 1x2 it is impossible to see
how x, behaves (no problem if A was not diagonal or C was 2x2). This
Implies that we cannot monitor x,, for example it can diverge to infinity with

catastrophic results for our system.

X=-2X+2U
Assume that we have another system:

y =3X

Clearly these two models are different. In that case it can be proved that the

2 systems have the same transfer function as there is a pole-zero cancelation:

sl-A —B‘
(= —2X +2
X X+2u :>G(s): C D _ 6
y =3X sl — A S+2
sl-A -B

e B s

which is exactly the same as the TF of the first system, what is wrong?

There is a pole zero cancellation at the second model
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Controllability

Assume that we have the following system:
=2 0 2
X = X+| u

0 -1 0

y=[3 2jx
In this case we can see how both states behave but we cannot change u in
any way so that we can influence x, due to the form of B. If A was not

diagonal we would be able to control x, through X;.

Similarly we have a pole-zero cancellation in:

sl-A -B

3 e[S

Hence in the first case by properly defining u we can control both states but
we cannot see the second state, while in the second case we can see both
states but we cannot control the second state. The first system is called
unobservable and the second uncontrollable. The loss of the controllability
and/or observability is due to a pole/zero cancellation. These systems are
unacceptable and the solution to that problem is to re-model the system.

The systems that are both controllable and observable are called minimal

realisation.
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We need to develop tests to determine the controllability and observability

properties of the system. Difficult task if the system is nonlinear. In our case

we simply have to find the rank (the number of Linear Independent (LI)

rows or columns) of two matrices.

For observability:

C
CA

Mg =| CA?

CAn—l

unobservable.

Example:

7 °k

y=[3 ok

v _[3 0
°7l_6 0

. If the rank of this matrix is less than n then the system is

{ﬂu = CA=[3 ]{_02 _O}:[—a 0]

And obviously there is only one LI column/row
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Example:
3 Bl on 7 e

~1
v 3 2
°7l_g -2

And obviously there are 2 LI column/rows

For controllability:

M¢ = [B AB A’B .. A”‘lB]. If the rank of this matrix is less than n

then the system is uncontrollable.

Example
3 Pl o

v |2 4
S7lo o

And obviously there is only one LI column/row
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Example

o L S R
.

And obviously there are 2 LI column/rows.
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