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1. General Solution of 2
nd

 Order State Space Models 
 

1.1 Case 1: Real and unequal eigenvalues 
 

Assume that 
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Not assessed material 

Then if we go back to a 2nd order DE: 
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Similarly for x1: 
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Thus the homogeneous state space model 
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 has been 

transformed to 067 222  xxx   (and 067 111  xxx  ) 

Then we have a common CE is: 0672  rr   

This will give two solutions: t
a eCx  22  and t

b eDx 6
22

  

Similarly the ODE for x1 will give me t
a eCx  11  and t

b eDx 6
11

  

Thus a solution to our state space model is: 
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Obviously the choice of C1 (or D1) will influence the choice of C2 (or D2) 

and thus the vectors 
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 are not “completely arbitrary”.  

Thus we should say that our solution is: 

tt eBeA 6
21

  eex , where 
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ee  and A, B are 

arbitrary constants that depend on the initial conditions.  

But this approach is rather cumbersome and of course we cannot (easily) 

find the values of the vectors 21, ee . 

But, the important point here is the solution will be a linear combination of 

two vectors that are multiplied by an exponentials and the 2 exponents are 

the 2 eigenvalues. 

Now back to our system: 
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How can we solve that? It is a nonlinear system with 2 equations and 3 

unknowns! 

Assume   is a parameter => A homogeneous linear system: 
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 Always a trivial solution a1=a2=0. 
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For a nontrivial solution (see Cramer’s rule from Linear Algebra): 

 0670
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(This last equation is the characteristic equation of the system). 










6

1
067

2

12




 . Hence for each of these I have to find a1, a2: 

For 11   

same the
042

02

21

21













aa

aa
  

PBL1:  Explain why we should have expected the same equation twice. 

I assume that a2=1 so a1=2 so for that value of 1 , 
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Example: 

Find the response of the previous system when   
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Analytical approach: 
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This last system can be solved with various methods like substitution… an 

easier way is: 
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1.2 Case 2: Repeated Eigenvalues 
 

Now it is possible to have 2 sub-cases: 

 I can find 2 LI vectors (a rather artificial case) 
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Hence we have 2 uncoupled 1
st
 order ODEs which can be solved 

separately (a rather artificial case) 

 I cannot find 2 LI vectors 
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substitute  bIAv   and I have   0vIA  , i.e. v  is one eigenvector 

of A for the eigenvalue  . Now it can be proved that the solution is 

    tt eCetCt 
vbvx 21  .  

So in that case 
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Hence the solution is:   tt eCetCt 
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If we are given the same initial conditions: 
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1.3 Case 3: Complex Eigenvalues 
 

If I have complex eigenvalues then 21    and the corresponding 

eigenvectors are 21 ee  . In that case the general solution is given by: 
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Now we can use the Euler’s formula     ntjntenjt sincos   we have a 

complex solution to a real problem and hence we have seen that its real and 

imaginary parts are also real solutions of the state equation: 
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If we do not want to use the Euler’s formula then we can simply write: 
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Example: 
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PBL2: If we see the set of all solutions of an ODE Axx   as a vector space 

 (VS) V, then one way to express all possible solutions of the ODE is 

 to use a linear combination of a basis in this space.  

 If we see the ODE as a linear transformation in this VS then one basis 

 can be the generalised eigenbasis and hence the solutions are: 

       2211 etcetctx   where ie  are the generalised eigenvectors. 

 Using this approach prove the 3 formulas that we saw before.  

 

2. Uniqueness, Existence, Independent Solutions  
 

Up to this point we assumed that a solution always exists. This is not always 

true but for the purposes of this module we can assume that there is one and 

only one solution of the IVP   00, xxAxx  .  

PBL3: Find and state the theorem that the above statement is based (you do 

not have to know its proof). 

Previously we said that for a 2
nd

 order ODE we need 2 and only 2 “good 

solutions”, this means that the 2 solutions that are linear independent. Since 

any 2
nd

 ODE can be written as a 2
nd

 order system of first order ODEs this 

means that we need 2 and only 2 solutions for the systems that we have 

studied until now. This is the reason behind using 2 components in the 

solution in the 3 previous cases. But one question that remains unanswered 

is why we need 2 and only 2 solutions to describe any other solution of a 

second order system. This is what we will prove here:  
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Assume that we have 2 solutions  
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In order to have a unique solution the above system (with unknowns the 2 

constants C1 and C2) must have a unique solution and therefore the matrix 
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xx

xx
 must be invertible. This means that the solutions 1x  and 

2x  must be linear independent.  

If we had 3 solutions then the system (2 equations with 3 unknowns) would 

have infinite solutions and hence this would violate the uniqueness 

condition.  Similarly if we had 1 solution we would have a system (2 

equations, 1 unknown) that probably would not have a solution and hence 

we would violate the existence condition. 

PBL4: What is the Wronskian of a system and how does it connect with the 

above analysis? 
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3. High order systems 
 

If we have a higher order system then the same analysis would apply: 

Let’s assume a generic homogeneous system:    tt Axx  .  

Trial   tet 
ex  =>   0 eAIAeeAee 




t
e

t
e  

For this system to have a nontrivial solution: 0AI  (for a 2
nd

 order 

system this can also be written as     0dettrace2  AA  ) 

The roots of this equation are called eigenvalues (in German it means 

characteristic values) of the system because they satisfy: Aee   

The vectors ie   are called eigenvectors of the system corresponding to the 

eigenvalues i . 

And thus we would have a combination of the previous cases. 

Example: 
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4. Solution Matrices and Solution of Linear Systems     
 

4.1 2
nd

 order systems 
 

For second order systems Axx   we have seen that we have 2 solutions (x1, 

x2) depending on the eigenvalues of A (real and distinct, repeated and 

complex): 

tt
ee 21

2211 ,


exex   if  2121 ,,  . 

  tt etxe 
beex  21 ,  if   ,21 . 

   tt ee 
exex Im,Re 22   if   ,21 . 

Now any combination 2211 xxx cc   is also a solution (principle of 

superposition) and also any other solution can be expressed by the above 

combination. This effectively means that to describe the behaviour of a 2
nd

 

order system we just need x1 and x2. When we are given an initial condition 

0x  effectively we are asked to find a specific solution that passes (starts) 

through 0x , and this can be done by finding the appropriate values of 21, cc  

(this is what we have done before).  

Now, x1 and x 2 are 2 2by1 column vectors. If we put them together in one 

matrix (this matrix is called “the fundamental solution matrix”) we have 

 21 xxX   which is 2by2. It will be better if we write as: 

      ttt 21 xxX  . 

Thus 2211 xxx cc   can be written as:     cXx  tt , where  Tcc 21c  
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We are given the value at t=0 as 0x :   cXx  00  or   0
1 0 xXc
 . Hence 

going back to     cXx  tt  we have:       0
1 0 xXXx
 tt  

The product    01XX t  is called the State Transition Matrix.  

This means that if found or we are given  tX  we can easily find  0X  and 

 01
X . Then using       0

1 0 xXXx
 tt  we can find any solution given 

the initial conditions. This is effectively what we previously did but now it is 

in a more compact form, it can easily be extended to high order systems and 

above all it can be used in time varying systems (i.e. where the state matrix 

A is not constant). Before we see how it can be used for time varying 

systems let’s see how it can be used for the systems that we previously 

studied: 

Example 1: 

       21212211 0, 2121 eeXeeXexex 
tttt

eetee


  

Hence     0
1

2121
21 xeeeex




tt
ee


 

 

Example 2: 

          beXbeeXbexex  0, 21
tttt etetete 

  

Hence      0
1
xbebeex


 tt ete 

 

 
Example 3: 

                 eeXeeXexex ImRe0ImReIm,Re 22  tttt eetee 

  

Hence           0
1

ImReImRe xeeeex


 tt ee 
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Example 4: 

We know that for 
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Unfortunately we cannot follow a similar strategy when A is time varying, 

for example   
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t
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1
A . In these cases we have to rely on 

numerical solutions. 

Even though we cannot find 1x  and 2x  we know that they exist. Hence we 

know that the FSM exists as well:       
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assume that for our case   









dc

ba
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X  for some constants a, b, c, d. 
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Or:         tdtbtcta 2121 xxxx   

Now, since 1x  and 2x  are solutions of Axx   then so must be 

   tcta 213 xxx   and    tdtb 214 xxx  . This means that 33 Axx   and 

44 Axx  .  

Also     
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01
00 1

XX  and hence      
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00 43 xx  or 
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1
03x  and   










1

0
04x . Be careful we do not yet know the functions 

 t3x  and  t4x  since we do not know  t1x  and  t2x . 

In order for us to find  t3x  and  t4x  we simply have to numerically solve 

33 Axx   and 44 Axx   for   









0

1
03x  and   










1

0
04x . 

Now, in general our solutions  t1x  and  t2x  also depend on t0 which may 

not be zero as in the previous case, hence we should have written  01 ,ttx  

and  02 ,ttx . To avoid confusion and to comply with various other authors 

we will use  t1x  and  t2x  for most cases and  01 ,ttφ  and  02 ,ttφ  when 
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we want to say that our solutions also depend on the initial time.  Hence the 

FSM is  0,ttΦ  and not  tX . Also since       000
1

0 ,, xΦΦx ttttt  , i.e. our 

solution to the IVP also depend on the initial condition: 

      000
1

000 ,,,, xΦΦφ ttttxtt  . 

 

4.2 High Order Systems 
 

For 1
st
 and 2

nd
 order systems we may be able (if we are lucky) to use some 

other methods like direct integration, exponential factor… Here we want to 

concentrate on higher order systems and hence a more “universal” method is 

needed. Since we have linear systems it is always easier to start with 

homogeneous systems.  

     ttt xAx  , where   nt x  and   nnt A  (1) 

Note that this is just a Differential Equation (DE) and not an Initial Value 

Problem (IVP). 

Then we can find n linear independent solutions. For example if we have an 

LTI system then: 

 If we have distinct eigenvalues then we can simple use the 

eigenvectors/eigenvalues. 

 If we have complex eigenvalues then we take the real and imaginary 

part. 

 If we have repeated eigenvalues then we can use generalised 

eigenvectors like   vbv ,t ).  
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These LI solutions have 2 basic properties: 

 That any linear combination of these vectors is also a solution  

 Any other solution can be written as a linear combination of these 

solutions (the proof of this is rather convoluted).  

So let’s say that our (fundamental) solutions are: 

      00201 ,,,,, tttttt nφφφ   (2) 

Then from the theory of superposition a function of the form 

   



n

i

ii ttctt
1

00 ,, φφ ,  (3) 

where ic  are arbitrary constants, is also a solution.  

By taking these n-LI solutions and putting them in one matrix we have the 

Fundamental Solution Matrix (FSM): 

        002010 ,,,, tttttttt nφφφΦ   (4) 

Note that by definition    0,det 0 ttΦ .  

Hence (3) can be written as: 

        cΦΦφφ 0210

1

00 ,,,, ttcccttttctt T
n

n

i

ii 


  

If we are given the IVP        00, tttt xxxAx    (5) 
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then we have that: 

        000
1

00000000 ,,,,, xΦccΦxcΦφ ttttttxtt   

where c  now depends on the ICs. The last step is allowed since 

   0,det 0 ttΦ . 

Now, the generic solution can be written as: 

      000
1

000 ,,,, xΦΦφ ttttxtt   (6) 

The matrix      00
1

00 ,,, ttttttSTM
 ΦΦΦ   (7) 

is called State Transition Matrix (STM) as it takes the orbit from a given 

location when 0tt   to another location when tt  . 

One property of this matrix is that:  

      nnSTM tttttt 
  IΦΦΦ 00

1
0000 ,,,  (8) 

For that reason the STM is also called the normalised (at 0tt  ) FSM. 

The STM satisfies the following IVP: 

     00 ,, ttttt
dt

d
STMSTM ΦAΦ  ,   nnSTM tt  IΦ 00,  (9) 

Unfortunately if (9) describes a Linear Time Varying (LTV) system and 

(unless we are very lucky) we cannot find an analytic formula for 
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 0,ttSTMΦ . In this case we have to use numerical methods and we have to 

solve n vector DEs: 

         

         

         T
nSTMnSTMnSTM

T
STMSTMSTM

T
STMSTMSTM

ttttttt
dt

d

ttttttt
dt

d

ttttttt
dt

d

100,,,,

010,,,,

001,,,,

0000

0020202

0010101















ΦΦAΦ

ΦΦAΦ

ΦΦAΦ

 

4.3 State transition matrix for LTI systems 
 

For a scalar ODE: axx   the solution was    0xatetx   (no special cases) 

so can we do the same with Axx  , i.e.    0xx
Atet  ?  

If only we knew how to calculate 
teA
 => No special cases are needed then. 

It can be proved that     ...
!3

1

!2

1 32
 ttte t

AAA
A

 

PBL5: Prove that the matrix teA  is the state transition matrix of Axx   

How    0xx
Atet   is associated with  

  t
nn

tt neCeCeCt


eeex  ...21
2211 ? 

Remember: iii λeAe   or in a matrix notation:  
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nn

n
nn

n

nn

n
nn




 




















1

2121 eeeeeeA  

   
nnnnnnnn 

 ΛTTA  or 1 TΛA  

So: 

            ...
!3

1

!2

1
...

!3

1

!2

1 3121132
  tttttte t

TΛTΛTΛAAA
A

But      121121   TΛTΛTΛTΛ   

so: 

     

    1132

31321211

...
!3

1

!2

1

...
!3

1

!2

1

















t

t

ettt

ttte

Λ

A

TΛΛΛT

TΛTΛTΛTI

 

And 


















t

t

t

ne

e

e






1

Λ
 

PBL6: Prove the above formula (for a 2by2 system)  

Hence:          





 1

1

11

00

nxnxn

t

xnnxn

t

n

eet xΤTxx
ΛA  
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1

1
2121

1

0

1







 

















nxn

n

xn

t

t

xn

n

n ne

e

t xeeeeeex
  



  


  






 

     
1

2

1

21

1

0

1











































n

xn

n
xn

t

t

xn

n

n ne

e

t x

w

w

w

eeex





  


  






 

Note: the vectors e are nx1 vectors, and the vectors w are 1xn vectors. 

        

   











n

i

i
t

i

n

i

i
t

i
tt

bet

eeet

i

i

1

1

2211

0

0...00 21





ex

xwexwexwex

 

This is similar to   t
nn

tt neCeCeCt


eeex  ...21
2211 . 

PBL7: Calculate the formula of teΛ  for a 2by2 system when there is only 

one independent eigenvalue.  

 

PBL8 (Harder):  Calculate the formula of teΛ  for a 2by2 system when 

there 2 complex eigenvalues.  

Hint: Use Taylor series only for one element on the matrix and keep up to 3
rd
 

order components. 
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PBL9: Prove that if the initial condition x0 is on an eigenvector e1 with a 

corresponding eigenvalue 1  then 11
1 ee

A tt ee


 , i.e. that we stay forever on 

that eigenvector. 

PBL10: Using the result of the previous exercise and assuming that we have 

a 2by2 system and 22110 eex cc  , with 21,cc  being arbitrary constants and 

2e  being the second LI eigenvector prove the classical formula 

tt
ecec 21

2211


eex  . 

 

PBL11: Using the same methodology as in the previous PBL exercise prove 

the formulae            tteCtteCt tt   cossinsincos 21 babax   

and     tt eCetCt 
vbvx 21   

 
 

4.4 Nonhomogeneous systems 
As before see the scalar first: buaxxbuaxx    

     




t
taat budexetx

0

0 
 

Similarly for the vector case:      




t
tt deet

0

0 
Buxx

AA
. 
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