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1. General Solution of 2"! Order State Space Models

1.1 Case 1: Real and unequal eigenvalues

X -2 2
Assume that {Xl } :{ }{Xl}
Xy 2 =5 X

Not assessed material

Then if we go back to a 2nd order DE:

2

1,.
But we have found that X; = E(Xz + 5X2):

1 5
X0+ —Xo ==Xy —5X, +2X, &
2 2 2 2 2 2 2

X2+7X2+6X2 :O
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Similarly for x;:

X =—2% + 2
1 11t 2X N
1,.
Xo = E(Xl +2% )<
S .

2% — 5(%()‘(1 + 2xl)j = %(xl +2% )<

5 1
2% ——X% — 5% ==¥% + X &
1 2 1 1 2 1 1

X -2 2| X
Thus the homogeneous state space model {_1}{ }{ 1} has been
X 2 S| X,
transformed to X, + 7X, +6X, =0 (and % + 7% +6x =0)
Then we have acommon CE is: r2 +7r+6=0
This will give two solutions: x,, =C,e™" and x,, = D,e™®

Similarly the ODE for x, will give me x,, =Ce™ and x, = De™

Thus a solution to our state space model is:

C D C D
x=| tletand x=| tle® andthus x=| *let+| *le O,
CZ D2 C2 D2
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Obviously the choice of C; (or D,) will influence the choice of C, (or D)

C D
and thus the vectors {Cl } and {Dl } are not “completely arbitrary”.
2 2

Thus we should say that our solution is:

C D
x=Axe xe ' +Bxe,xe ", where elz{cl},ezz{ 1} and A, B are
2 2

arbitrary constants that depend on the initial conditions.

But this approach is rather cumbersome and of course we cannot (easily)
find the values of the vectors e, e, .

But, the important point here is the solution will be a linear combination of
two vectors that are multiplied by an exponentials and the 2 exponents are
the 2 eigenvalues.

X -2 2 || X a
Now back to our system: { .1} { }{ ! } Let’s try X { ! }e”
Xo 2 —=5|X%, a,

SO %= 4 a, ot _ -2 2| VN Ay _ —2a; +2a, |
a, 2 =5 a, A, 2a; —5a,
How can we solve that? It is a nonlinear system with 2 equations and 3

unknowns!

Assume A is a parameter => A homogeneous linear system:

{(— 2—A)a,+2a,=0

Always a trivial solution a;=a,=0.
2a1+(—5—ﬂ)a2:0} y t
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For a nontrivial solution (see Cramer’s rule from Linear Algebra):

‘—2—/1 2

0 A2 +74+6=0
2 —5-1

(This last equation is the characteristic equation of the system).

. Hence for each of these | have to find a;, a,:

Jy=-1

f+72+6:&:{
, =

For 4, =-1

the same

a 2
| assume that a,=1 so a,;=2 so for that value of A1,, { 1}:{1} and one

: 2]
solution to the system is L e .

For /12=—6{

}, | assume that a;=1 so a,=-2

.. 1
So a second solution is { z}e‘b‘t

" inninla _ 2 —t 1| et
From superposition principle: x(t)_Cl 1 e +GC, 5 e
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Example:

Find the response of the previous system when x(0)= Ll)} .

Analytical approach:

wo-cff}e {52

This last system can be solved with various methods like substitution... an

i 2 1
Using x(t)= ClL }e‘t +C{ Z}e_& we have that:

el leleleE S TG

states
¢ o
»

"

OO 5 10

In the state space:
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0.25

o2/ \0

015/ e

0.1

0.05

1.2 Case 2: Repeated Eigenvalues

Now it is possible to have 2 sub-cases:

e | canfind 2 LI vectors (a rather artificial case)

afs e

Hence we have 2 uncoupled 1% order ODEs which can be solved
separately (a rather artificial case)

e | cannot find 2 LI vectors

A=t =2 |1
—L 3}3%2— 391,2—{_]]

In that case | have that (A—A1’b=0 (b is called the generalised
eigenvector of A), which can be written as (A— A1 A—Al)o=0. Now |
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substitute v=(A—Al)o and | have (A—Al)v=0, i.e. v is one eigenvector
of A for the eigenvalue 4. Now it can be proved that the solution is

X(t)=C,(vt+b)e™ +C,ve™.

So in that case

el LRI
Hence the solution is: x(t)= Clq—ll}t + ElDEM + C{_ll}e/“

If we are given the same initial conditions:
0 C 1 C,=1
x(0)= + 2= =R

VAN
—X
6 2 6

e e e e
—— -~
[ -~

0 0.2 0.4 0.6 0.8 1 0 0.5 1 15
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1.3 Case 3: Complex Eigenvalues

If | have complex eigenvalues then ﬂlzz and the corresponding

eigenvectors are e, =e, . In that case the general solution is given by:

X(t)= AleleﬂiLt + A2e2e/lzt o x(t)=Aa+ bj)e('“+v X, Ar(a- bj)eﬁu_v I

Now we can use the Euler’s formula e =(cos(nt)+ jsin(nt)) we have a

complex solution to a real problem and hence we have seen that its real and
imaginary parts are also real solutions of the state equation:

—C,e™ —Dbsi
Re(X(1))=Cie" (acoslvt)-bsin(v1) for some constants C;, C,.
Im(X(t))= C,e* (asin(vt)+bcos(vt))

So the overall solution is:

x(t)=e*(C,(acos(vt)-bsin(vt))+C,(asin(vt)+bcos(vt))) <
x(t)=e* (a(C, cos(vt)+C,sin(vt))+b(C, cos(vt)—C; sin(vt)))

If we do not want to use the Euler’s formula then we can simply write:

x(t)= ARelee™ )+ A, Imlee™ )

Module Leader: Dr Damian Giaouris - damian.giaouris@ ncl.ac.uk 9/25



mailto:damian.giaouris@ncl.ac.uk

Chapter 3 EEES8013-3001

Example:

-1/2 1 : 1 _0.5t cost sint
A= =1=-05+j=e=|" |=x(t)=¢ | C| _ [+C,
-1 -1/2 J —sint cost

C,cost+Chsint
= x(t)=e 05 L2
—Clslnt+Czcost

Assuming x(0)= E}

We have that:

ool els)= o) s 1)l o)

T cost
Thus the solution is: x(t) = e—O-S{ _ J
—sin

0.2

states
o
o [6;]
/
X2
<)
N

05- S o
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I P T R T |

PBL2: If we see the set of all solutions of an ODE x = Ax as a vector space !
(VS) V, then one way to express all possible solutions of the ODE is
to use a linear combination of a basis in this space.

If we see the ODE as a linear transformation in this VS then one basis
can be the generalised eigenbasis and hence the solutions are:

X(t)=c,(t)e, +c,(t)e, where ¢, are the generalised eigenvectors.

Using this approach prove the 3 formulas that we saw before.

2. Uniqueness, Existence, Independent Solutions

Up to this point we assumed that a solution always exists. This is not always
true but for the purposes of this module we can assume that there is one and
only one solution of the IVP x = Ax,x(0) = x,.

PBL3: Find and state the theorem that the above statement is based (you do
not have to know its proof).

Previously we said that for a 2" order ODE we need 2 and only 2 “good
solutions”, this means that the 2 solutions that are linear independent. Since
any 2" ODE can be written as a 2™ order system of first order ODEs this
means that we need 2 and only 2 solutions for the systems that we have
studied until now. This is the reason behind using 2 components in the
solution in the 3 previous cases. But one question that remains unanswered
is why we need 2 and only 2 solutions to describe any other solution of a
second order system. This is what we will prove here:
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Assume that we have 2 solutions x (t) = {XlA(t)} and x, = {XZA(t)}.
X () Xz ()

Then x(t):Cl{XlA(t)}+C{X2A(t)} is also a solution. At t=0 we have that
Xg(t) Xz (t)

x(O):{XOA} which implies that:
XoB

|:XOA} _C |:X1A(O):| |:X2A(O):| B |:X1A(O) XZA(O):||:C1:|

=C; +C, = :

XoB X5(0) X5(0)] [ %g8(0) %5(0)]C,

In order to have a unique solution the above system (with unknowns the 2
constants C, and C,) must have a unique solution and therefore the matrix

{XlA(O) XZA(O)} must be invertible. This means that the solutions x, and
X5(0) Xp5(0)

X, must be linear independent.

If we had 3 solutions then the system (2 equations with 3 unknowns) would
have infinite solutions and hence this would violate the uniqueness
condition. Similarly if we had 1 solution we would have a system (2
equations, 1 unknown) that probably would not have a solution and hence
we would vio late the existence condition.

+ PBL4: What is the Wronskian of a system and how does it connect with the -

: above analysis?
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3. High order systems

If we have a higher order system then the same analysis would apply:

Let’s assume a generic homogeneous system: )'((t): Ax(t)

Trial x(t)=ee*=> ree™ = pee™ o e —Ae (AI-A)k=0

For this system to have a nontrivial solution: |11 —A|=0 (for a 2™ order
system this can also be written as 4% — trace{A)A + det(A)=0)

The roots of this equation are called eigenvalues (in German it means
characteristic values) of the system because they satisfy: le = Ae

The vectors e; are called eigenvectors of the system corresponding to the

eigenvalues 4;.

And thus we would have a combination of the previous cases.

Example:
-1 1 0

The system x(t)=Ax(t), with A=|-1 -1 0| has 3 eigenvalues
0O 0 3

1
A.=-1+] and A =3 this will give us one complex e, =| j | and one real
0

0
er =| 0 |eigenvector and therefore the general solution is:
1
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x=Cege™® +C, Re(eceﬂct )+ C, Im(eceﬂﬁt)
If we are given the ICs:

1
x(0)=|1|=C,eg +C,Re(e,)+CsIm(e,.)=|1|=
1
0 1 0
C,l0]+C,l0]+Cy1 |=C,=C,=C, =1
1 0 0

_ —x,=[001]

-20 -20
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4. Solution Matrices and Solution of Linear Systems
4.1 2" order systems

For second order systems x = Ax we have seen that we have 2 solutions (x;,
X,) depending on the eigenvalues of A (real and distinct, repeated and
complex):

Xlzele/llt,Xz :ezeizt If ﬂ.fl ilz,ﬂl,lz ER.
x, =ee™, x, =(et+b)e™ if 1, =2, =1, LeR.
X, = Re(ee’“), X, = Im(eeﬂ) if ,=1,=1,1¢C.

Now any combination X=cX;+C,X, IS also a solution (principle of

superposition) and also any other solution can be expressed by the above
combination. This effectively means that to describe the behaviour of a 2"
order system we just need x; and x,. When we are given an initial condition

X, effectively we are asked to find a specific solution that passes (starts)

through X,, and this can be done by finding the appropriate values of c,c,

(this is what we have done before).

Now, X; and X, are 2 2byl column vectors. If we put them together in one

matrix (this matrix is called “the fundamental solution matrix) we have

X=[x, X,] which is 2by2. It will be better if we write as:

X(t)=[u(t) x,(1)].

Thus X = ¢, +C,X, can be written as: x(t)= X(t)xc, where c=[c; c,[
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We are given the value at t=0 as x,: X, = X(0)xc or ¢ =X"*(0)x,. Hence

going back to x(t) = X(t)xc we have: |x(t)=X(t)x X(0)x,

The product X(t)x X *(0) is called the State Transition Matrix.

This means that if found or we are given X(t) we can easily find X(0) and

X71(0). Then using x(t)=X(t)x X (0)x, we can find any solution given
the initial conditions. This is effectively what we previously did but now it is
in a more compact form, it can easily be extended to high order systems and
above all it can be used in time varying systems (i.e. where the state matrix
A is not constant). Before we see how it can be used for time varying

systems let’s see how it can be used for the systems that we previously
studied:

Example 1:
X, =1, X, =e,e™ = X(t)= [ele”“1t e,e*? ]:> X(0)=[e, e,]

gt

Hence x = [ele ezeizt]x[e1 e, %,

Example 2:
x, =ee™, x, = (et +ble™ = X(t)=|ee” (et +b)e?|= X(0)=[¢ b]
Hence x = [ee”“t (et +b)eﬂt]>< e b]'x,

Example 3:
X, = Re(ee’“ ) X, = Im(eeﬂt):> X(t)= [Re(ee“) Im(eeﬂt )]:> X(0)=[Re(e) Im(e)]

Hence x:[Re(ee/“) Im(ee’“)]x[Re(e) Im(e)]*x,
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mailto:damian.giaouris@ncl.ac.uk

Chapter 3 EEES8013-3001

Example 4:

M _ =-0,e,=-2 1
We know that for A= 8 4} we have A &= ! .
15 -3 A =-5¢e,=[L -3/4]

_ _2e—6t e 5t
Hence the FSM is: X(t) = [e,e™' eze@t]: o6t 3 g

-ge
o X(0)- {—12 _14 . x(0)= {_1.5 - 2}

Thus if x, = B}

s FN ] e R A A Y

4

Unfortunately we cannot follow a similar strategy when A is time varying,

—t 1
L o |- In these cases we have to rely on

for example A(t):{
e —e

numerical solutions.

Even though we cannot find x; and x, we know that they exist. Hence we
X, () %, (U)]
Xig (1) %o, (1))
%,(0) X, (0]

) %,(0)

and of course at t=0 we have a constant matrix X(O) { (O . (0
2

know that the FSM exists as well: X(t)=[x,(t) x,(t)]= {

B

%,(0) X, (0)

-1
with the inverse X(0)= {x (0) x (O)} also being constant. Let’s
1s 2
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a
assume that for our case x—l(o):{
c

3} for some constants a, b, c, d.

Then:

4 X, (t) %, t)a b [ax,(t)+cx, (t) bx, (t)+dx,, (t)
X(t)<x (0){x18(t) XZB(t)}L dHaxlB(t)+cx25(t) D6, 1)+ G ()
Or: [ax,(t)+cx,(t)  bxy(t)+dx,(t)]

Now, since x; and Xx, are solutions of x=Ax then so must be
Xg = ax;(t)+ X, (t) and x, =bx,(t)+dx,(t). This means that x5 = Ax; and

Also X(O)xX_l(O):E; (ﬂ and hence [x,(0) x4(0)]:L1) ﬂ or

x3(0) = EJ and x,(0)= E} Be careful we do not yet know the functions

X4(t) and x,(t) since we do not know x,(t) and x,(t).

In order for us to find x4(t) and x,(t) we simply have to numerically solve

X3 = Ax3 and X, = Ax, for x,(0)= E} and x,(0)= E)}

Now, in general our solutions x,(t) and x,(t) also depend on t, which may
not be zero as in the previous case, hence we should have written x,(t,t;)
and x,(t,t,). To avoid confusion and to comply with various other authors

we will use x,(t) and x,(t) for most cases and o (t,t;) and @,(t,t,) when

Module Leader: Dr Damian Giaouris - damian.giaouris@ ncl.ac.uk 18/25
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we want to say that our solutions also depend on the initial time. Hence the
FSMis ®(t,t,) and not X(t). Also sincex(t)=®(t,ty)x ®*(ty,t, )Xo, i.€. OUr

solution to the IVP also depend on the initial condition:

(P(t’to’ Xo) = ‘I)(t’to)>< (I)_l(to’to)xo-

4.2 High Order Systems

For 1% and 2™ order systems we may be able (if we are Iucky) to use some
other methods like direct integration, exponential factor... Here we want to
concentrate on higher order systems and hence a more “universal” method is
needed. Since we have linear systems it is always easier to start with
homogeneous systems.

x(t)= A(t)x(t), where x(t)e R" and A(t)e R™" (1)

Note that this is just a Differential Equation (DE) and not an Initial Value
Problem (1\VP).

Then we can find n linear independent solutions. For example if we have an
LTI system then:

e If we have distinct eigenvalues then we can simple use the
eigenvectors/eigenvalues.

e If we have complex eigenvalues then we take the real and imaginary
part.

e If we have repeated eigenvalues then we can use generalised

eigenvectors like (vt +b), v).
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These LI solutions have 2 basic properties:

e That any linear combination of these vectors is also a solution
e Any other solution can be written as a linear combination of these

solutions (the proof of this is rather convoluted).

So let’s say that our (fundamental) solutions are:

{(Pl(t:to)’ (Pz(t’to)’ '“(Pn(t’to)} (2)

Then from the theory of superposition a function of the form

o(t,t,) ZC(p t,t,), (3)

where c; are arbitrary constants, is also a solution.

By taking these n-LI solutions and putting them in one matrix we have the
Fundamental Solution Matrix (FSM):

Dtto)=[0i(tt) @.(tt) - @nltity)] (4)
Note that by definition det(®(t,t,))= 0

Hence (3) can be written as:

o(t,ty) ch(pltto D(t.t)e ¢ - ¢, =@(tt)k

If we are given the IVP x(t)=A(t)X(t), X, =x(t) (5)
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then we have that;:

(P(toitoixo):q)(to’to)c < Xp =(I>(t0,t0)c —C= ‘I)_l(to’to)xo

where ¢ now depends on the ICs. The last step is allowed since
det((t,t,))= 0.

Now, the generic solution can be written as:

ot tg, Xo) = D(t, to )™ (to, 1 )Xo (6)
The matrix ®qpy, (t,ty)=®(t,t, )@ (ty.t,) (7)

Is called State Transition Matrix (STM) as it takes the orbit from a given

location when t =t, to another location when t =t.

One property of this matrix is that:

Dy (o, 1)) = Dty to )0t 1) = 1 (8)
For that reason the STM is also called the normalised (at t =t,) FSM.

The STM satisfies the following IVP:

d

E(I)STM (t.ty) = Alt) s (tty), Pry(to.ty) =T ©)

Unfortunately if (9) describes a Linear Time Varying (LTV) system and

(unless we are very lucky) we cannot find an analytic formula for
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@47 (t,to)- In this case we have to use numerical methods and we have to

solve n vector DEs:

d

a‘DSTMl(t’tO):A(t)(pSTMl(t’to)vq)STml(to,to)Z[l o -- O]T
d

aq)STMZ(t’tO):A(t)q)STMz(t’tO)'(I)STMz(to;to)z[o 1 - O]T
d

aq)STMn(t’tO):A(t)q)STMn(t1tO)’(I)STMn(tO’to):[o 0 - 1]

4.3 State transition matrix for LTI systems

For a scalar ODE: x =ax the solution was x(t)=e&x(0) (no special cases)

so can we do the same with x = Ax, i.e. x(t)=e"'x(0)?

If only we knew how to calculate e™ = No special cases are needed then.

It can be proved that e”* =1+ At +%(At)2 +$(At)3 ...

How x(t)=e"'x(0) is associated with

x(t)=Cee™ +Cree™ +..+Cee™?

Remember: Ag; =€;4; or in a matrix notation:
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ﬁ[el e, -+ eyl=[e; e, - e

X
nxn nxn nxn ﬂ,n

AT=TAorA=TAT!
e

nxn Nxn nxn nxn

So:

1 1

EEES8013-3001

e =1+ At +%(At)2 + = (A +..=1+ (TAT‘l)t + —((TAT‘l)t)2 +%((TAT_1 )3 +o

3
But (TAT2f = (TAT*[TAT )= TA?T

2!

SO:

A =TIT L+ (TAT  r + %(TAZT_l)tZ - %(TA3T_1)t3 -

- T(I + At + %(At)z + %(At)s + ...jT_l = TeMT?
o/t
And e =
o/t

_______________________________________________________________
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eﬂlt
nx1 Nx X eflnt n;fx nx1
nxx
ot W |
)=l e - e, "2 ko)
— © =
nx1 nxX e}bnt T nx
_Wn_
nxx —
nxx

Note: the vectors e are nx1 vectors, and the vectors w are 1xn vectors.
n

X(t) = e, "'wyx(0) + e6"2'W,x(0) +...= > e;e”i' (w;x(0))
i=1

x(t):geieﬂitbi(m

This is similar to x(t)=Cee™ +C,e.e™ +...+Cee™".

PBL7: Calculate the formula of e for a 2by2 system when there is only
one independent eigenvalue.

PBLS8 (Harder): Calculate the formula of e*" for a 2by2 system when
there 2 complex eigenvalues.

Hint: Use Taylor series only for one element on the matrix and keep up to 3"
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+ PBLO: Prove that if the initial condition X, is on an eigenvector e; with a !
corresponding eigenvalue 4, then e”'e, =e”t'e,, i.e. that we stay forever on

that eigenvector.

PBL10: Using the result of the previous exercise and assuming that we have

a 2by2 system and x, = cg; +C,€,, With ¢, ¢, being arbitrary constants and

e, being the second LI eigenvector prove the classical formula

PBL11: Using the same methodology as in the previous PBL exercise prove

the formulae x(t)=Ce* (acos(vt)—bsin(vt))+C,e*(asin(vt)+bcos(it))

4.4 Nonhomogeneous systems
As before see the scalar first: x=ax+bu—= x—ax=bu

t
x(t)=e*x(0)+ I e?"hud¢
0

t

Similarly for the vector case: x(t)=e”'x(0)+ j eAt7)Bud .
0
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