Exercises for Chapter 1

Solve the following IVPs and describe the system's behaviour.

1.
$$\dot{x} = -3x$$
, $x_0 = 2$

2.
$$\dot{x} = -3x + 5$$
, $x_0 = 2$

3.
$$\ddot{x} + 15\dot{x} + 50x = 0$$
, $x_0 = 1$, $x'_0 = 2$

4.
$$\ddot{x} + 15\dot{x} + 50x = 5$$
, $x_0 = 1$, $x'_0 = 2$

5.
$$\ddot{x} + 10\dot{x} + 25x = 0$$
, $x_0 = 1$, $x'_0 = 2$

6.
$$\ddot{x} + 10\dot{x} + 25x = 5$$
, $x_0 = 1$, $x'_0 = 2$

7.
$$\ddot{x} + 10\dot{x} + 26x = 0$$
, $x_0 = 1$, $x'_0 = 2$

8.
$$\ddot{x} + 10\dot{x} + 26x = 5$$
, $x_0 = 1$, $x'_0 = 2$

By using the general form of the analytic solution try to predict (without solving the ODE) the response of the following systems. Your answer must describe the system as stable/unstable, convergent to zero/nonzero value/sinusoid...

a.
$$5\frac{dx}{dt} + 6x = 0$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

b.
$$5\frac{dx}{dt} - 6x = 0$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

c.
$$5\frac{dx}{dt} + 6x = 1$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

d.
$$5\frac{dx}{dt} + 6x = -1$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

e.
$$\frac{dx}{dt} + 3 = 0$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

f.
$$5\frac{dx}{dt} + 6x = \sin(50t)$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

g.
$$5\frac{dx}{dt} + 6x = \cos(50t)$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

h.
$$5\frac{dx}{dt} + 6x = 5 + \sin(50t)$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$

i.
$$5\frac{dx}{dt} + 6x = \cos(50t) + \sin(50t)$$
, $x(0) = 0$, $x(0) = 1$, $x(0) = -1$