Chapter 2 Exercises

1. Find the state space model of:

$$
\left.\begin{array}{l}
x^{(4)}=3 x^{(3)}+4 x^{\prime \prime}-3 x^{\prime}+x+u_{1}-3 u_{2}+5 u_{3} \\
y_{1}=x^{(3)}+u_{1} \\
y_{2}=x^{(4)}+1.2 x^{\prime}+u_{3}-u_{1} \\
y_{3}=x \\
\\
\dot{x}_{1}=3 x_{1}+3 x_{2}+u_{1}+u_{2}+u_{3}+u_{4} \\
\dot{x}_{2}+u_{1}-2 u_{3} \\
y_{1}=x_{1} \\
y_{2}=x_{1}+3 x_{2}+u_{1}+u_{2} \\
y_{3}=x_{1}-2 x_{2}+u_{3}+u_{4}
\end{array}\right\}
$$

2. A state space model is given by
$\mathbf{A}=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25\end{array}\right], \mathbf{B}=\left[\begin{array}{ccc}-0.1 & -0.2 & -0.3 \\ -0.4 & -0.5 & -0.6 \\ -0.7 & -0.9 & -1 \\ -1.1 & -1.2 & -1.3 \\ -1.4 & -1.5 & -1.6\end{array}\right]$,
$\mathbf{C}=\left[\begin{array}{ccccc}1 & 1 & 2 & 2 & 3 \\ 0 & 0 & 0 & -1 & 152\end{array}\right], \mathbf{D}=\mathbf{0}$
a) What is the order of the system?
b) How many inputs/ outputs do we have in this system?
c) What are the dimensions of the matrix \mathbf{D} ?
3. Find the transfer function of a system with $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{l}1 \\ 0\end{array}\right], C=\left[\begin{array}{ll}1 & 1\end{array}\right], D=0$.
4. Find the transfer function of a system with $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{ll}1 & 1\end{array}\right], D=\left[\begin{array}{ll}0 & 0\end{array}\right]$.
5. A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, \mathbf{B}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$. Is this system controllable? Do not use the controllability/observability matrix
6. A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, \mathbf{B}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]^{T}$. Is this system controllable? Do not use the controllability/observability matrix.
7. A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, \mathbf{B}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$. Is this system controllable? Do not use the controllability/observability matrix.
8. A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, \mathbf{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$. Is this system controllable? Do not use the controllability/observability matrix.
9. A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, C=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Is this system observable? Do not use the controllability/observability matrix.
10.A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, C=\left[\begin{array}{lll}1 & 0 & \sqrt{3}\end{array}\right]$. Is this system observable? Do not use the controllability/observability matrix.
11.A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, C=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$. Is this system observable? Do not use the controllability/observability matrix.
12.A system is given by $\mathbf{A}=\operatorname{diag}\{5, \sqrt{35},-6\}, C=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Is this system observable? Do not use the controllability/observability matrix.
