Chapter #1

EEE 8007

Digital Control

- State Space Representation of Discrete Time Control Systems
- State Feedback
- Discrete Linear Quadratic Regulator (LQR)
- Closed Loop Estimators

Chapter 1 1/14

State Space Representation of Discrete Time Control Systems

Most controllers are digital, hence we need to transform the continuous systems to discrete.

Many methods for that

- 1) First Order Hold (exists in Matlab)
- 2) Tustin's Bilinear Method (exists in Matlab)
- 3) Bilinear with pre-warping (exists in Matlab)
- 4) Zero pole matched (exists in Matlab)
- 5) Impulse (exists in Matlab)
- 6) Forward where Φ =I+AT, Γ =BT
- 7) Backward where Φ =(I-AT)⁻¹BT, Γ =C(I-AT)⁻¹, C=C(I-AT)⁻¹, D=D+(I-AT)⁻¹BT

Forward:

$$\overset{\bullet}{\mathbf{X}}(kT) = \frac{\mathbf{X}((k+1)T) - \mathbf{X}(kT)}{(k+1)T - kT} = \frac{\mathbf{X}((k+1)T) - \mathbf{X}(kT)}{T}$$

Hence
$$\frac{\mathbf{X}((k+1)T) - \mathbf{X}(kT)}{T} = f(\mathbf{X}(kT), \mathbf{U}(kT), kT)$$

or
$$\mathbf{X}((k+1)T) = Tf(\mathbf{X}(kT), \mathbf{U}(kT), kT) + \mathbf{X}(kT)$$
 or $\mathbf{X}((k+1)T) = g(\mathbf{X}(kT), \mathbf{U}(kT), kT)$

Hence, for time-varying (linear or not) discrete time systems the state space representation is:

Chapter 1 2/14

$$\mathbf{X}(k+1) = f(\mathbf{X}(k), \mathbf{U}(k), k)$$
$$\mathbf{Y}(k) = g(\mathbf{X}(k), \mathbf{U}(k), k)$$

If the system is linear and there is no direct coupling between the input and the output then:

$$\mathbf{X}(k+1) = \mathbf{\Phi}(k)\mathbf{X}(k) + \mathbf{\Gamma}(k)\mathbf{U}(k)$$
$$\mathbf{Y}(k) = \mathbf{C}(k)\mathbf{X}(k)$$

And for LTI systems:

$$\mathbf{X}(k+1) = \mathbf{\Phi}\mathbf{X}(k) + \mathbf{\Gamma}\mathbf{U}(k)$$
$$\mathbf{Y}(k) = \mathbf{C}\mathbf{X}(k)$$

The relation of the matrices Φ and A, Γ and B can be found in any text book and is:

$$\mathbf{\Phi} = e^{\mathbf{A}T} = \mathbf{I} + \mathbf{A}T + \frac{\mathbf{A}^2 T^2}{2!} + \frac{\mathbf{A}^3 T^3}{3!} + \dots$$
$$\mathbf{\Gamma} = \int_{0}^{T} e^{\mathbf{A}n} dn \mathbf{B}$$

In Matlab use: c2d

All the other concepts are the same:

TF of digital system: $\mathbb{C}[z\mathbf{I} - \mathbf{\Phi}]^{-1}\mathbf{\Gamma}$ and hence poles of system: $eig(\mathbf{\Phi})$

```
A=[-1 0;0 -2]; B=[1;0]; C=eye(2); D=0;
sys_c=ss(A,B,C,D);
sys_d=c2d(sys_c, 0.1);
initial(sys_c,[1,1]);
figure
```

Chapter 1 3/14

initial(sys_d,[1,1]);

Chapter 1 4/14

State Feedback

By following the same steps, as in continuous time systems:

 $\mathbf{X}(k+1) = \mathbf{\Phi}_{cl}\mathbf{X}(k) + \mathbf{\Gamma}_{cl}\mathbf{U}(k)$ where $\Phi_{cl} = \Phi - \Gamma \mathbf{K}$, $\Gamma_{cl} = \Gamma \mathbf{F}$, $C_{cl} = C - D \mathbf{K}$, $D_{cl} = D \mathbf{F}$. Thus we have described the closed loop system into the same form as the open loop system.

Since the poles of the OL can be found by the $|zI-\Phi|=0$, the close loop poles are: $|zI-(\Phi-\Gamma K)|=0$.

If we want the close loop poles at $P=[P_1 \ P_2 \dots P_n]^T$, (n is the order of the system) then:

Chapter 1 5/14

$$|zI-\Phi + \Gamma K| = (z-P_1)(z-P_2)...(z-P_3) \Leftrightarrow K = [K_1 K_2 ...]^T$$
. Pole placement

Check **CONTROLLABILITY**

$$S = \begin{bmatrix} \Gamma & \Phi \Gamma & \Phi^2 \Gamma & ... & \Phi^{n-1} \Gamma \end{bmatrix}$$

Example:

```
clc
close all
clear all
A=[0\ 1\ 0;0\ -1\ 1;0\ 0\ -5];B=[0\ 0\ 5]';C=eye(3);D=0
sys_c=ss(A,B,C,D)
initial(sys_c,[1 1 1])
K=place(A,B,[-10 -5+2*j -5-2*j])
Acl=A-B*K;
sys_c_cl=ss(Acl,[],C,[])
figure
initial(sys_c_cl,[1 1 1])
Ts=0.01;
sys_d=c2d(sys_c,Ts)
figure
initial(sys_d,[1 1 1])
[F,G,C,D,Ts1]=ssdata(sys_d)
rank(ctrb(F,G))
K_d=place(F,G,[-0.5 -0.1+0.2*j -0.1-0.2*j])
Fcl=F-G*K_d;
figure
sys_d_cl=ss(Fcl,[],C,[])
initial(sys_d_cl,[1 1 1])
```

Chapter 1 6/14

Chapter 1 7/14

Chapter 1 8/14

LQR Control

To use an LQR controller use the command:

>>dlqr()

Chapter 1 9/14

Discrete Time Estimators

The same method can be applied at the DTE:

End the error dynamics are: $\mathbf{e}(k+1) = (\mathbf{\Phi} - \mathbf{G}_{\mathbf{p}}\mathbf{C})\mathbf{e}(k)$.

10% error of ICs:

```
F=[1 0.01 0; 0 0.99 0.0097; 0 0 0.9512];G=[0 0.002 0.0488]'; C=eye(1,3);D=0; rank(obsv(F,C)) Gp=place(F',C',[-0.1-0.1+0.1*j-0.1-0.1*j])';
```


Chapter 1 10/14

As it can be seen we estimate the $\mathbf{X}(k)$ from the estimation of $\mathbf{X}(k+1)$ after a delay. To calculate the estimation of $\mathbf{X}(k+1)$ we use $\mathbf{Y}(k)$ and not $\mathbf{Y}(k+1)$. So this estimator predicts $\mathbf{X}(k+1)$ from $\mathbf{Y}(k)$. For this reason is called prediction Estimator (or priory estimator).

Chapter 1 11/14

Current Estimators:

Until now the estimated state vector $\mathbf{X}(k)$ was calculated by the one sample delay of $\mathbf{X}(k+1)$. The $\mathbf{X}(k+1)$ was estimated by the measurements of $\mathbf{Y}(k)$. What about if we use the sample $\mathbf{Y}(k+1)$ to calculate the $\mathbf{X}(k+1)$ and hence the $\mathbf{X}(k)$. Then this estimator is called current estimator – or "posteriori" estimator (used in **Kalman Filter**).

The current estimator will be symbolised by: $\hat{\mathbf{X}}(k)$ and its relation with the $\widetilde{\mathbf{X}}(k)$ is: $\hat{\mathbf{X}}(k) = \widetilde{\mathbf{X}}(k) + G_c(\mathbf{Y}(k) - \mathbf{C}\widetilde{\mathbf{X}}(k))$

Hence it is the same as the prediction plus some extra information. But it must be noticed that for the calculation of the predictor the current is used: $\tilde{\mathbf{X}}(k) = \mathbf{\Phi}\hat{\mathbf{X}}(k-1) + \mathbf{\Gamma}\mathbf{U}(k-1)$ (OL estimation of current value)

The estimator is predicting the states and then it is using the current information of Y(k) to find the correct the estimating value

Hence:

Chapter 1 12/14

And the error dynamics are: $\mathbf{e}(k+1) = (\mathbf{\Phi} - \mathbf{G}_{\mathbf{c}} \mathbf{C} \mathbf{\Phi}) \mathbf{e}(k)$

The previous example with a current estimator:

Chapter 1 13/14

Chapter 1 14/14