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State Space Representation of Discrete Time Control Systems

Most controllers are digital, hence we need to transform the continuous

systems to discrete.
Many methods for that

1) First Order Hold (exists in Matlab)

2) Tustin’s Bilinear Method (exists in Matlab)

3) Bilinear with pre-warping (exists in Matlab)

4) Zero pole matched (exists in Matlab)

5) Impulse (exists in Matlab)

6) Forward where ®=I+AT, =BT

7) Backward where ®=(I-AT)'BT, [=C(I-AT)", C=C(I-AT)", D=D+(I-
AT)'BT

Forward:

k+1)T)—X(kT) _ X((k +1)T)— X(kT)

S |((
XK= (K +1)T —KkT T

Hence XK+ 1);) = XKD _ ¢ (x(kT), U(KT), kT)

or X((k +1)T) = Tf (X(KT),U(KT),kT )+ X(KT) or
X((k +1)T) = g(X(KT), U(KT),KT)

Hence, for time-varying (linear or not) discrete time systems the state space

representation is:
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X(k +1) = f(X(k), U(k),k)
Y(k) = g(X(k), U(k),k)

If the system is linear and there is no direct coupling between the input and

the output then:

X(k + 1) = ®(K)X(K) + T(K)U(K)
Y(k) =C(k)X(k)

And for LTI systems:

X(k + 1) = ®X(K) + TU(K)
Y(k) = CX(K)

The relation of the matrices @ and A, I and B can be found in any text book
and is:
AZT 2 A3T 3

+
2! 3!

®=e*" =1+AT +

.
= J.eA”dn B
0

In Matlab use: c2d

All the other concepts are the same:

TF of digital system: C[zI — (I)]_1 I' and hence poles of system: eig(®)

A=[-1 0;0 -2]; B=[1;0]; C=eye(2); D=0;
sys c=ss(A,B,C,D);

sys d=c2d(sys c, 0.1);
initial(sys_c,[1,1]);

figure
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initial(sys d,[1,1]);
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State Feedback
By following the same steps, as in continuous time systems:
Xk+D)=®,X(k)+I',U(k) where ®,=0-I'K, TI',=I'F, C,=C-DK,

D.=DF. Thus we have described the closed loop system into the same form

as the open loop system.

Since the poles of the OL can be found by the |zI-®|=0, the close loop poles
are: |zI- (®-I'K)|=0.

If we want the close loop poles at P=[P; P, ... P,]", (n is the order of the

system) then:
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2I-® + TK|=(z-P,)(z-P,)...(z-P3)¢ K=[K; K, ...]". Pole placement

Check CONTROLLABILITY

S=r or or .. o"'r|

Example:

clc

close all

clear all

A=[O0 1 0;0 -1 1;0 0 -5];:;B=[0 O 5]";C=eye(3);D=0
sys _c=ss(A,B,C,D)

initial(sys c,[1 1 1))

K=place(A,B,[-10 -5+2*j -5-2*j])

Acl=A-B*K;

sys c _cl=ss(Acl,[]1.C,[D
figure

initial(sys_c cl,[1 1 1])

Ts=0.01;
sys_d=c2d(sys_c,Ts)

figure
initial(sys_d,[1 1 1]

[F,G,C,D,Tsl]=ssdata(sys_d)
rank(ctrb(F,G))
K_d=place(F,G,[-0.5 -0.1+0.2*j -0.1-0.2*j])

Fcl=F-G*K _d;

figure

sys d cl=ss(Fcl,[].C,[D
initial(sys_d cl,[1 1 1]
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Response to Initial Conditions
2.5 T T T

15+ 4

To: Out(1)

0.5 il

Amplitude
To: Out(2)

0.5 4

To: Out(3)

o

Time (sec)

Response to Initial Conditions

15 T T T

To: Out(1)

Amplitude

To: Out(3)

-20 \ \ \
0 0.2 0.4 0.6 0.8 1 1.2

Time (sec)

Chapter 1 7/14



Spring 2008

Amplitude

To: Out(1)

Amplitude
To: Out(2)

To: Out(3)

Chapter 1

To: Out(2) To: Out(1)

To: Out(3)

=

o

500

500

=
o

2]

o

Response to Initial Conditions

EEE 8007

0.05

0.1 0.15 0.2 0.25 0.3 0.35
Time (sec)

Response to Initial Conditions

0.4

0.45

0.5

10

20 30 40
Time (sec)

50

60

8/14



Spring 2008 EEE 8007

W scope? -0 W untitted * Lok
=] JE!@ ,@ | ﬁ % | I% 'E N .File Edit Wiew Simulation Format Tools HE!E
o OD)FEdES| 2R |52k 8 |1U.D Mormal || O gk (3] 52 | B

@ »i, =E =E

Gaint Unit Delay Seopel

1
e L »| ]
z

Faind Unit Delay Seooped

Time offset: 0

I : s

LQR Control

To use an LQR controller use the command:

>>dlqr()
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Discrete Time Estimators

The same method can be applied at the DTE:

Moo

|
|
|
|
|
|
|
|
|

_____________________________

Estimator

End the error dynamics are: e(k +1) = ((I) — GpC)e(k).

10% error of ICs:

F=[1 0.01 O0; 0 0.99 0.0097; 0 O 0.9512];G=[0 0.002
0.0488]"; C=eye(1,3);D=0;

rank(obsv(F,C))

Gp=place(F',C',[-0.1 -0.1+0.1%* -0.1-0.1*}])" ;

IuScope’J
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K_d=place(F,G,[-0.2 -0.2+0.2*j -0.2-0.2*j])
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&8 L 2L HiE & -
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- ¥
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Faing
e
<Y

002 004 0068 008 01 012 014 016 078

As it can be seen we estimate the X(k) from the estimation of X(k+1) after a
delay. To calculate the estimation of X(k+1) we use Y(k) and not Y(k+1).
So this estimator predicts X(k+1) from Y(k). For this reason is called

prediction Estimator (or priory estimator).
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Current Estimators:

Until now the estimated state vector X(k) was calculated by the one sample
delay of X(k+1). The X(k+1) was estimated by the measurements of Y(k).
What about if we use the sample Y(k+1) to calculate the X(k+1) and hence
the X(k). Then this estimator is called current estimator — or “posteriori”

estimator (used in Kalman Filter).

The current estimator will be symbolised by: X(k) and its relation with the

X(k) is: X(k) = X(k)+ G, (Y (k) - CX(K))

Hence it is the same as the prediction plus some extra information. But it

must be noticed that for the calculation of the predictor the current is used:

X(k) = ®X(k —1)+ T'U(k —1) (OL estimation of current value)

The estimator is predicting the states and then it is using the current

information of Y(k) to find the correct the estimating value

Hence:

Estimator
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And the error dynamics are: e(k +1) = ((I) -G cC(I))e(k)
The previous example with a current estimator:

>> Ge=place(F',F'*C',[-0.1 -0.1+0.1%j -0.1-0.1%*;])'
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