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Chapter 1 EEE8013 — EEE3001
Ordinary Differential Equations

1. Introduction

To understand the properties (dynamics) of a system, we can model
(represent) it using differential equations (DEs). The response/behaviour of
the system is found by solving the DEs. In our cases, the DE is an Ordinary
DE (ODE), i.e. not a partial derivative. The main purpose of this Chapter is to
learn how to solve first and second order ODEs in the time domain. This will
serve as a building block to model and study more complicated systems. Our
ultimate goal is to control the system when it does not show a “satisfactory”

behaviour. Effectively, this will be done by modifying the ODE.

Note for EEE8013 students: There are footnotes throughout the notes, which

is assessed material!

2. First Order ODEs

The general form of a first order ODE is:

dx(t)
dt

= f(x(t).t) (D

where! x,te R

Analytical solution: Explicit formula for X(t) (a solution which can be found

. : : . dx
using various methods) which satisfies @ = f(x,t)

! The proper notation is X(t) and not X but we drop the brackets in order to simplify the presentation.
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Example 1.1: Prove that x=¢€""' and x =—10e'are solutions of % =-3X.

3t
% ~ 3x e d (e ) _ —3(e*3‘) o 30t = _3p
dt dt
10e-3t
%:_3X@M:_3(_10e—3t)<:>30e—3t —30e ™ n?
dt

Obviously there are infinite solutions to an ODE and for that reason the found

solution is called the General Solution of the ODE.

First order Initial Value Problem : %: fxt), X(ty)=X,

An 1nitial value problem is an ODE with an initial condition, hence we do not
find the general solution but the Specific Solution that passes through Xo at
t=to.

: , . . : dx
Analytical solution: Explicit formula for x(t) which satisfies Py = f(x,t) and

passes through X, when t =t;.

Example 1.2: Prove that x=e™ is a solution, while x=-10e™" is not a solution
of %:—3x,x0 =1

dt
Both expressions (x=¢e" and x=-10e™) satisfy the % =-3xbut at t=0

x(t)=e7" = x(0)=1
x(t)=-10e~" = x(0)=-10#1 n’

2clc, clear all, syms t, xl=exp(-3*t); dx=diff(x1l,t); isequal(dx,-3*x1)
x2=-10*exp(-3*t); dx=diff(x2,t); isequal(dx,-3*x2)

3clc, clear all, syms t, xl=exp(-3*t); x2=-10*exp(-3*t); x0=1;
X0_1=double(subs(x1,t,0)); x0_2=double(subs(x2,t,0)); isequal(x0,x0_1),
isequal (x0,x0_2),
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For that reason some books use a different symbol for the specific solution:

¢(t>t09X0) :

You must be clear about the difference between an ODE and the solution to
an IVP! From now on we will just study IVP unless otherwise explicitly

mentioned.
Linear First Order ODEs

A linear 1% order ODE is given by:

a(t)x'+b(t)x =c(t),a(t)=0 Non autonomous
2
ax'+bx=c,a=0 Autonomous
with a,b,ce R and a=0.
In engineering books the most common form of (2) is (since a=0):
x+k(t)x=u(t) 3)

with k,ue R

Note: We say that u is the input to our system that is represented by (3)

The solution of (3) (using the integrating factor) is given by:

t
x(t)=e"x(t,)+ e’ktjek"u (t,)dt,

)
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t
The term e “X(t,) is called transient response, while e‘ktj.ekt‘u (t,)dt, comes
)

from the input signal u.

If we assume that U is constant:

t
x(t)=e"x(t,)+ e‘k‘je"‘ludt1 o x(t)=e™Mx(t,) + u%(l _ e—k(t—to))

)

1
Hence: %iﬁmx(t): O+UE(1_O)—U/|<, k>0

+00, k<0

Thus we say that if k>0 the system is stable (and the solution converges
exponentially at u/k) while if k<O the system is unstable (and the solution

diverges exponentially to +oo,).

Example 1.3: u=0 and k=2 & 5, Xo=1
x(t)=e?-1+0, pm x(t)=0,as2>0

1 ; ; ; 1 ; ; ;
"I'ransienti i i Trangient i
! ! Total ! | T ‘ |
0.5 -~ iy I e i 0.5F-%--- / Ot\a ***** -
0 ! ! : 0 ‘ : :
: \ | | : \ | |
: Inpgt component : Input component
9% 0.5 1 1.5 2 035 0.5 1 1.5 2

“clc, clear all, syms x(t), dx=diff(x); dsolve(dx+2*x, x(0)==1)
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Example 1.4: u=0 and k=-2 & 5, Xo=1
60

50F------ P P P d
| | Total |
40 ------ Transient =~ \ ******
30— S \ *******
20F------ Fom—m - R S ‘
Input component | Input compone l
7777777 N O0.5F--"-r-——r g A
10 | | | | | |
0O 0.5 1 1.5 2 O0 0.5 1 1.5 2
[ |
Example 1.5: u=0 and k=5, xo=1 & 5
2
1.5
1
0.5
0O
|
Example 1.6: u=-2 & 2 and k=5, xo=1
1 | | | 1 | | |
| | | o8l
0.5F Y -—--r--- ient——r-— -1 l l
: Tra?5|ent : 06l e S S
l l ‘Total ‘ l l
: l o 0.4r--— e i
0 ***** [ ™ T | | -I_\ X t
| ! | | ‘ ransien
Input component | \ 0.2 /- S~Input component_ =R
0% 0.5 1 1.5 2 % 0.5 1 1.5 2
.5

Sclc, clear all, close all, syms t tl, x0=1; k=5; t0=0; u=2;
t2=0:0.01:2; X Xx0=exp(-k*t)*x0; x_u=exp(-k*t)*int(exp(k*tl)*u,t0,t);
x_x0_t=double(subs(x_x0,t,t2)); x_u_t=double(subs(x_u,t,t2));

hold on, plot(t2,x x0_t), plot(t2,x_u t), plot(t2,x u t+x x0_t)
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Comments:

e In real systems we cannot have a state (say the speed of a mass-spring
system) that becomes infinite, obviously the system will be destroyed
when X gets to a high value.

e For the dynamics (settling time, stability...) of the system we should only

focus on the homogenous ODE: X'+ Kk (t) X=0

3. Second Order ODEs
3.1 General Material

A second order ODE has as a general form:

o= T (X(0).x(t).1) O

x"(t)+ A(t)x'(t)+ B(t)x(t)=u(t), Non autonomous -
x"(t)+ Ax'(t)+Bx(t)=u(t), Autonomous
And again we focus on autonomous homogeneous systems:
x"(t)+A(t)x'(t)+B(t)x(t)=0 (6)

Again we define as an analytical solution of (6) an expression that satisfies it.
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Example 1.7: Given X"-2x'-3x=0 prove that x=¢’' and x=e "'are two
solutions:

(e")"-2(e")-3(e")=0<

9 -6 -3¢ =0

0=0

(e‘t)"— 2(e‘t)'—3(e‘t) =0

e +e' -3 "' =0 m¢

0=0
Assume that you have 2 solutions for a 2™ order ODE x: and X, (we will see

later how to get these two solutions), then:

X(8)+ A X (1) +B(t)x (t)=0 }
X (t)+ A(t)x (1) + B(t)x, () =0

obviously I can multiply these two equations with arbitrary constants:

CX!(t)+C A(L)X (1) +C,B(t)% (1) =0 }

X
C,X;(t)+C,A(t) X, (t)+C,B(t)x,(t)=0
and now I can add them and collect similar terms:

(Cx, (1) +Cx, (t ))"+ A(t )(Clxl(t)+C2x2(tl)'+ B(t)(Cx (t)+C,x,(t))=0

Vo Vo
Common Term Common Term Common Term

which means that C X, (t)+C,X,(t) (i.e. the linear combination of X and X.)

1s also a solution of the ODE.

®clc, clear all, close all, syms x(t) t
Dx=diff(x); D2x=diff(x,2); ODE=D2x-2*Dx-3*X;
subs(ODE, x, exp(-t)), subs(ODE, x, exp(3*t))
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Example 1.8: Given x"—2x'-3x =0 prove that x=¢"" +2¢™" is a solution:
(" +2e™)—2(e" +2¢7")-3(e" +2¢")=0 =

9e* 4+ 27 — 2(3e3t _2et ) 3t e t=0
9 +2e -6t +4e -3t -6 =0 =

9t —6et -3 +2e ' +4et -6 =0
0=0 m’

Now, the question is, if we have X; and X», can ALL other solutions of the

ODE, be expressed as a linear combination of X; and X2? So assume a third

solution (o(t) :

P'(t) + A1) (1) + B(t)(t)=0

Now, the question can be written as, can we find constants C; and C; such as:

@'(t)=Cx '(t)+C,x,'(t)

{qp(t) =Cx, (1) +C,x, (t) }

This equation can be seen as a 2by2 system with unknowns C; and C; as:

0 ole ool

From linear algebra this system of equations has a unique solution if:

"clc, clear all, close all, syms x(t) t; Dx=diff(x); D2x=diff(x,2);
ODE=D2x-2*Dx-3*Xx; subs(ODE, x, exp(3*t)+exp(-t))
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t t
Note: The matrix W (X, (t),X, (t))= { X (t) % )} is called the Wronskian®

of the ODE.

We also know from linear algebra that the determinant is not zero if:

{Xl (t) } ¢ C{Xz (t) }
x'(t)][x'(t)
So if the two solutions X; and X; are linear independent (LI) then ANY other

solution can be described by the linear combination of X; and X2. So now we

have to look for two LI solutions for the 2" order ODE.

Example 1.9: Prove that two solutions of X"—2x'-3x=0,X =€" and

X, =€ are linear independent.

X (t) X, (t) et 5 .
W(Xl(t)’xz(t))_|:xl.(t) Xz'(t)}:Le“ e_t:|:>’VV‘: e . -
w|=e* (_e_t ) —3e’e™ =—e” —3e” =—4e™ m

8 From the Polish mathematician Jozef Maria Hoéne-Wronski

?clc, clear all, close all, syms t, xl=exp(3*t); x2=exp(-t);
Dx1=diff(x1); Dx2=diff(x2); W=[x1, x2; Dx1, Dx2], det(W)
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Example 1.10: Prove that two solutions of X"-2x'-3x=0,X =€ and

X, =2€” are NOT linear independent.

w3 05 2
W=

3t 3t
e 2e
=6e’ —6e®" =0 |

3e3t 6e3t

Example 1.11: For the ODE x"-2x'-3x=0 prove that the solution
x =—e’' +2e' cannot be written as any combination of X, =¢€™* and X, =2e™.

x=Cx +C,x, & —e" +2e'=Ce* +C,e* =(C, +C,)e”
From this expression we have that C, + C, =—1 (and hence we have the term
—e’") but there is no term €' for 2e'. |

But how can we find two LI solutions? For homogeneous 1* order ODEs with
u=0 the solution was: X(t) =eMC so we will try a similar approach for 2™

order ODEs:

X"+ AX'+Bx =0, assume'® x =e" => x'=re" & x"=r’e"=
X"+AX'+Bx=0<r’e" + Are" +Be" =0 =

r’+Ar+B=0 (7
This is called the Characteristic Equation (CE) and we have to check its roots:

~A+VA> - 4B - .
r= 5 , these are the Characteristic values or Eigenvalues.

10 Notice that we do NOT know what is the value of r.
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3.2 Roots are real and unequal

If A> > 4B the system is called Overdamped and the two roots are r; and I
with ri#r, r1, r» € R. Then X, =e"™ and X, =e™ are two linear independent

solutions as:

nt It

el
re re

= =ere™ —e”re" £ 0

nt

hence the general solution is X=C,X, +C,X, =C,e"™ +C,e™ (8)
If ri and <0 then X — 0 and the system is stable.
If ry or r2>0 then = — Zoo and the system is unstable.

Example 1.12: The CE of X"+11x'+30Xx =0 is r* +11r + 30 =0 which means

—11++112=4-1-30 —1111:{r1:_5 .

that the two roots are: I, = 5 =

X = erlt — e—St
and hence the 2 LI solutions are {
X. = erzt — e—6t
2
This means that the general solution is X=C,e™ +C,e™ and hence the ODE
is stable!?. The Wronskian is

=5t -6t

x x| |e e
_Se—St _6e—6t

If the initial condition is X(0)=1,x'(0)=0 then:

— _6e—5te—6t + Se—6te—5t — _e—llt + O

' '
Xl X2

T roots([1 11 30])

2¢clc, clear all, close all, syms x(t) Dx=diff(x,1); D2x=diff(x,2);
ODE=D2x+11*Dx+30*x; dsolve(ODE)
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C,+C, =1 } C =6

- = Xx=6e"" -5 3
~5C,—6C, =0 C,=-5

3.4 Roots are Complex (and hence not equal)

If A® <4Bthen the system is called Underdamped and the two roots are

rr=a+bj and r,=T,=a—bj with ri#r, r, r, eC. Then z, =¢" = el

t (a-bj)

’ t . . .
and z,=¢€" =e are two linear independent solutions as

(a+bj)t (a-bj)t

e e . : : .

_ A(a+bj)t -\ A (a—bj)t (a—bj)t S\ 4lath)t

: =€ a—Dbj)e —e a+bje =
(a+bj)e™™ (a—bj)e™™ ( ) ( )

(a—bj)e** —(a+bj)e* =e** (a—hj—a—bhj)=-2e*"bj =0

Hence the general solution is

x=Cx +C,x =Ce" +C,e" ©9)
but remember that C; and C, are complex now variables such as x e R .

Example 1.13: The CE of X"+2Xx'+5Xx=0 is r’+2r+5=0 which means

2+-16  -2+4] . [h=—1+2]
that the two roots are: I, = = J_ 11 2j=4" J.
’ 2 2 r=—1-2j

X = erlt _ e(—1+2j)t
and hence the 2 LI solutions are 4 .
ot A(-1-2j)t

X,=e" =e

Bclec, clear all, close all, syms x(t) Dx=diff(x,1); D2x=diff(x,2);
ODE=D2x+11*Dx+30*x; dsolve(ODE, x(0)==1, Dx(0)==0)
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—1+2j)t —-1-2j)t

This means that the general solution is X = Cle(
ODE is stable. The Wronskian is

pl-2i)t ol
(—1+2j)e2 0 (c1-2j)el 2
(-1-2] )e(_mj)te(_l_zj)t —(-1+ 2j)e(_l+2j)te(‘l‘“)t =
(-1-2j)e™ —(-1+2)e™ =(-1-2j+1-2j)e™ =
—4je? £0
If the initial condition is X(O) =1, x'(O) =0 then:

+ Cze( and hence the

-1-2j)t
X% _

X' X'

1 1.
C +C,=1 C1:5+ZJ
=
(-1+2j)C, +(-1-2j)C, =0 11,
> 2 4
X=(l+ljje(l+2j)t +(l_l jje(lzj)t -
2 4 2 4

An alternative approach is not to use X; & X2 but a linear combination of them:

Y, —e"yen, Y, _et _gh

. amn

e +e" e
re

€
re

Note that £0

rt Tt

.

+T1e" re

(a+bj)t

Using Euler’s formula: €™ =™ (cosbt + jsinbt) and hence:

y, = el@it 4 gla it _ gat (cosbt + jsinbt + cosht — jsinbt)=2e" cosbt

y, =l _glabilt _ gt (cosbt + jsinbt —cosbt + jsinbt)= j2e* sinbt
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As Yy and y» are solutions so do Y, x %, Y, X 2L So the general solution when

we have complex roots is:
x(t)=e"(C,cosbt +C,sinbt),C,C,e R (10)

Example 1.14: The CE of X"+2Xx'+5Xx=0 is r’+2r+5=0 which means

2 ++/- —2+4j n=—l1+2]

260716 _ 2%4) o5 [ j
2 2 r=—1-2]

X, =€ cos(2t)

X, =€ ' sin(2t)

that the two roots are: h,=

and hence the 2 LI solutions are {

This means that the general solution is X =€ (C, cos 2t +C, sin2t) and hence
the ODE is stable. The Wronskian is

X X e cos(2t) e 'sin(2t) o
_ +2e
X' X! |-e"cos(2t)—2e"'sin(2t) —e'sin(2t)+2e cos(2t)
If the initial condition is X(0)=1,x'(0)=0 then:
C, =1 } C, =1 }
= =
—C,+2C,=0] C,=05
x=e"'(cos2t+0.5sin2t) n

3.3 Roots are real and equal

If A’ = /Bthen the system is called Critically damped and the two roots are

r=r =r, withr e R. One solution is X =e" but how about x,? We can

use X, =te" and the general solution:

il Tl
r=Crx +Cx,=Ce" +Cte’ (11)
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The Wronskian is:
erlt tel’lt i 2 2 3
nt nt nt| — e (rlterlt + ent)_ r1erltterlt = rlte et — l'lte it =gt £ ()
re' I‘l'[e1 +e!

Example 1.15: The CE of X"+2x'+X =0 is I’ +2r +1=0 which means that

240  [r=-1
the two roots are: h,=——= !

X
and hence the 2 LI solutions are { .
X, =te"

This means that the general solution is Xx=C,e™ +C,te™ and hence the ODE

1s stable. The Wronskian is

e te™

L L =g =0
—te +e

—€

If the initial condition is X(O) =1, X'(O) =0 then:

C =1 C =1
—
—C,+C,=0| ¢, =1

X=e'+te™ |

Not assessed material

To see why X, =te" is the 2" solution go to the ODE and place x=¢e" :
(e")+ A(e")+ Bx=e"(r* + Ar+B)

Since 1 is a double root of the CE: r> + Ar+ B=a(r—r,)’ for some constant
a. So: (e")"+ A(e")+Bx=e"a(r-r)’

Taking the time derivative wrt I

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 16/19
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a((e)) ")) jaler)_d(e"ar-r))
dr dr dr dr

And as we can change the sequence of the differentiation:

{Le)j ; ALd(e”)j L dlen)_d(erarn))

dr dr dr dr

By using simple calculus:

: , " d(a(r-r)
(e"t) +A(e"t) +Be”t:dEjer )a(r—rl)2+e“ (a(;r ) )<:>

(e”t)" + A(e”t)' +Be"t=e"ta(r—r) +e"2a(r-r)
By placing now where r=r: (e"t)w + A(e"t)y +Be"t=0

Which means that e"t must be a solution of my ODE and:

eh te"

N _ erlt .(trlerlt + erlt)—terlt . rlerlt :trle2r1t n e2r1t —trlezrlt _ e2r1t 20
re' re"+e

rt

And hence X, (t)=e"t is my second solution.
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Root Space
ib jb
A A
% \
- >a - >
v o
Critical or Stable V
overdamped W W
N
underdamped ZIIH:H:H:HIH Unstablek\\\\\\\\\\
Name Oscillations? | Components of solution
Overdamped | No Two exponentials:
ekt etk ,k, <0
Critically No Two exponentials:
damped
ek ek k<0
Underdamped | Yes One exponential and one
cosine e*',cos(wt), k <0
Undamped Yes one cosine cos(at)
Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk
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4. Tutorial Exercise |

1. By using the general form of the analytic solution try to predict the response of the
following systems. Your answer must describe the system as stable/unstable,
convergent to zero/nonzero value. Crosscheck your answer by solving the DE:

. 5%+6x =0, x(0)=0,x(0)=1,x(0)=-1

. 5%—6x =0, x(0)=0,x(0)=1,x(0)=-1

. 5%+ 6x=1, x(0)=0,x(0)=1,x(0)=-1

. 5%+6x=—1, x(0)=0, x(0)=1, x(0)=-1
. %-3:0, x(0)=0, x(0)=1, x(0) = -1

2. Find the solution of X+6X+5x=0,x%(0)=2,%0)=3. Briefly describe how the
solution behaves for these initial conditions. Draw a sketch of the response.

3. Find the solution of X+2X+6X=0, X(O) =1, X(O) =0. Briefly describe how the
solution behaves for these initial conditions. Draw a sketch of the response.

4. Find the solution of X—X+0.25x=0, x(0)=2, X(0)=1/3. Briefly describe how the

solution behaves for these initial conditions. Draw a sketch of the response.

5. Find the Wronskian matrices of the solutions of Q2-5.
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