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State feedback 

Until now we have seen how to determine the behaviour of the system by 

either solving the ODE or by checking its eigenvalues. If this behaviour is not 

the desired one then we have to properly control it. In this chapter we will see 

how we can control a system that is modelled in state space.  

The BD of the state space model is: 

B
u

dt C
Dx x y

A

 

The open loop block diagram of a TF model is: 

U
G(s)

Y

 

Classical control strategy: Output feedback 

U
G(s)

Y
Gc(s)

R

 

Or:  
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U
G(s)

Y

Gc(s)

R
Gc(s)

R1

 

If the controller is a pure gain: 

U
G(s)

Y

K

R
K

R1

 

And in the more general case: 

U
G(s)

Y

K

R
K1

R1

  

We will do exactly the same with the state space model. In state space systems 

we can have two kinds of feedback; the output and the state feedback (we will 

only study the state feedback method): 
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B
u

dt C
Dx x y

A

Controller
r

x

 

The task of the controller is to produce the appropriate control signal u that 

will insure that y=r. Let’s assume the simplest form of control: 

     u t K r t Kx t 1 , where K1 and K are appropriately selected gain 

vectors/matrices. The exact dimensions of these vectors will be defined later. 

Using the standard state space equation:  

     

     

u t K r t Kx t

x t Ax t Bu t

  


  

1
 

                x t Ax t B K r t Kx t x t A BK x t BK r t      1 1

           y t Cx t Du t C DK x t DK r t     1  

But the closed loop system is a state space model, so it must be described by 

a state equation: 

     

     

CL CL

CL CL

x t A x t B r t

y t C x t D u t

  


  

where 

CL

CL

CL

CL

A A BK

B BK

C C DK

D DK

  


 


  
 

1

1

 are the closed loop matrices. If 

r=0 the system is called regulator. 
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The CL state matrix is a function of K, therefore by appropriate changing K 

we can change the eigenvalues of ACL) which means that we can improve’s 

performance, i.e. to make it faster/stable. This method is called pole 

placement.  

WE MUST CHECK IF THE SYSTEM IS CONTROLLABLE. 

Example 4.1: Assume that we have an RL circuit: 

 

The system is described by the equation:  iRV
Ldt

di


1
. We want to control 

the system in such a way that by changing V we will achieve a satisfactory 

value of i (steady state). Also we want to control the dynamics of the system 

(oscillations, settling time, pole location…). 

The state space model:   V
L

i
L

R

dt

di
iRV

Ldt

di 11
 , this implies that 

x Ax Bu  , where A=-R/L, x=i, B=1/L and u=V. Obviously the eigenvalue 

is –R/L and the system will exponentially converge to zero when x(0) is not 

zero (assume that this eigenvalue is 0.5) and V=0: 

L R

V

I
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If we want to make the system faster then we can use a state feedback control 

strategy. The new signal u is -Kx 

This implies that 
CL

R K R K
A A BK

L L L

  
     . The new system has an 

eigenvalue at 
L

KR 
. If we want to place the eigenvalue at -6R/L then 

RK
L

R

L

KR
56 


: 

  
 

Example 4.2: 

Assume uxx  3  (unstable system), x(0)=1.  We use a state feedback 

controller kxu   which implies that the Closed Loop (CL) state equation is 

 xkx  3 , hence the eigenvalue of the CL system is 3-k. If we want the CL 

eigenvalues at -10 (stable and very fast) then k=13: 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time, s

x
(t

)
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0
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Open loop

Closed Loop
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  

Example 4.3: 

Find the eigenvalues of     

     

x t x t u

y t x t

   
     
    

 

1 2 1

3 4 0

1 0

 . If the system is unstable 

create a controller that will stabilise the system.  

The eigenvalues are: -0.3723, 5.3723. Hence we need to create a feedback 

controller to stabilise the system. Before that we need to see if we can 

influence both states, i.e. if the system is controllable:  

 AB B AB
       

          
       

1 2 1 1 1 1

3 4 0 3 0 3
, since the controllability matrix has 

2 LI vectors, the system is controllable.  To check that we can also use the 

determinant of the controllability matrix: 03
30

11
 . 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Time, s

x

 

 

Open loop

Closed Loop
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So the system is controllable and hence we can use a pole placement strategy. 

The new CL state matrix is:  

 CL

k k
A k k

      
       
     

1 2
1 2

1 2 1 1 2

3 4 0 3 4
 

The eigenvalues of the closed loop system are:

0
43

21

43

21 2121


























 



 kkkk
eig .  

Assume that we want to place the CL poles at -10 and -11: 

 








0

143

211
0

4103

2110 2121 kkkk
 

    036141540231114 2121  kkkk  

 








0

153

212
0

4113

2111 2121 kkkk
 

    036151800231215 2121  kkkk  

So a 2 by 2 system: 26
174315

148314
1

21

21









k

kk

kk
 so 722 k . 
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 
1 

Linear Quadratic Regulator (LQR) 

Previously we saw that the necessary gains for the system:

 ( ) ( ) , ( ) ( )x t x t u t y t x t
     

       
     

1 2 1 1 0

3 4 0 0 1
  are 26 and 72.   

This will place the poles at -10 and -11 and we have a nice stable response: 

                                                 
1 clc, clear all, close all, A=[1 2;3 4]; B=[1;0]; rank(ctrb(A,B)) 
K=place(A,B,[-10 -11]), eig(A-B*K), syms k1 k2;  
K=[k1 k2]; Acl=A-B*K; eqn1=det(Acl+10*eye(2)); eqn2=det(Acl+11*eye(2)); 
sol=solve(eqn1, eqn2); K=[sol.k1 sol.k2] 
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Obviously in that system we want to “converge to zero as fast as possible”.  

In order to quantify the phrase “converge to zero as fast as possible” we can 

use various performance indexes like: 

   dtxxIx 21 ,  

Question: Why do we need to take the absolute values? 

The last index effectively tries to minimize the area under the curves 

produced by x1, x2: 

 

Obviously the faster the system, the smaller the above areas and hence the 

smaller the performance index, in this case the index has as a final value 

0.9383 and its graph is: 

0 0.2 0.4 0.6 0.8 1
-3
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0
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2

time, s

x 1
, 

x 2
 

 

x
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x
2
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Another way to quantify the speed is to use the following index: 

   dtxxIx
2
2

2
1  

This is preferred as the graphs will be smoother: 

 

In this case we have Ix=1.403: 

 

In order to see that indeed this index quantifies the speed, we see that this is 

reduced if we have a faster system. To do that we choose the pole location 

at: -15 -20: 

0 0.2 0.4 0.6 0.8 1
0

1

2

time, s

x 12

0 0.2 0.4 0.6 0.8 1
0

1

2

time, s

x 22

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

time, s

I x
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And the index Ix=1.271 

 

So someone could state that the smaller the desired eigenvalues the “better” 

the system. This is not true as the smaller the eigenvalues, the higher the gains 

that are required. Which effectively means that the signal u will be higher in 

the second case: 

 

0 0.2 0.4 0.6 0.8 1
-5

0

5

time, s
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0
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2

time, s
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time, s
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This practically means that we need to use more energy, and more expensive 

equipment (for example a higher rating dc converter to drive a DC motor). 

In order to quantify this “energy” we use a similar index as before

 dtuIu
2 : 

 

Thus we see that the “best” system is the one that minimises both indexes: 

    dtxxIx
2
2

2
1  and  dtuIu

2  or 

   dtuxxI 22
2

2
1  

If we have a system where the speed is more important than the energy then 

we use:    dtuxxqI 22
2

2
1  

In general we can use    dtruxxqI 22
2

2
1  and we chose the positive 

gains q and r to denote the “importance” of the speed or of the energy. 

In general we use:  

       T TI x t Qx t u t Ru t dt   
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Where Q and R are positive definite matrices (the equivalent of positive 

numbers in matrices, they are square symmetric matrices with positive 

eigenvalues and other properties like Tx Qx 0  for all nonzero x). In general 

Q and R can be any positive definite matrices but we will use only diagonal 

matrices where all the elements are equal. 

Our task: Design a controller (called Linear Quadratic Regulator - LQR) 

u Kx   for x Ax Bu   such as it is going to minimise: 

 T TJ x Qx u Ru dt



 
0

, where Q and R are positive definite matrices.  

Q: Importance of the error, R: Importance of the energy that we use.  

The optimum controller can be found: 

Not assessed material 

 x A BK x   (assume that A BK  is stable) 

So:     TTJ x Qx Kx R Kx dt



   
0

 

 T TJ x Q K RK xdt



  
0

 

Assume that    T T T T Td
x Q K RK x x Px x Px x Px

dt
      

P is positive definite. 
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By replacing  x A BK x   and  
TT Tx x A BK  : 

     

    

TT T T T

TT

x Q K RK x x A BK Px x P A BK x

x A BK P P A BK x

    

   
 

and since the previous equation holds for all x: 

   
TTQ K RK A BK P P A BK      

This equation can be solved only if A-BK is stable and it can be shown that 

TK R B P 1
 

By replacing 
TK R B P 1

 into    
TTQ K RK A BK P P A BK     => 

T TA P PA PBR B P Q   1 0  

The last equation is called “Reduced Riccati Equation”. 

Steps to design an LQR controller: 

1. Solve T TA P PA PBR B P Q   1 0  to find the optimum P. 

2. Use 
TK R B P 1

 to find the optimum gain K. 

In general it is difficult to solve the Reduced Riccati Equation and for that 

reason we need to use Matlab. 
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Example 4.4: A system is given by ,A B
   

    
   

0 1 0

0 1 1
  

Find K, the eigenvalues of A-BK, and the response of the system for R=1 and 

Q=eye(2) and Q=2*eye(2) (x(0)=[1 1]). It is given that the matrix P in the first 

case is P
 

  
 

2 1

1 1  

and in the second 
. .

. .
P

 
  
 

3 4 1 4

1 4 1 4
 

We know that 
TK R B P 1

, hence:    K
 

    
 

2 1
1 0 1 1 1

1 1
 and 

   
. .

. .
. .

K
 

    
 

3 4 1 4
1 0 1 1 4 1 4

1 4 1 4
 

Thus we see that in the 2nd case where we have a higher importance in the 

system’s error we have higher gains. 

 

  

mailto:damian.giaouris@ncl.ac.uk


Chapter 4 EEE3001 - 8013 

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 18/34 

Estimating techniques 

Until now we assumed that we can measure all states for our state feedback 

laws. But usually we only have y and not x at our disposal.  If we had a perfect 

model of the system then we can use a mathematical representation of the 

actual system: 

A

u Bu +

+
  dt

Ax

CB

Plant

y

A

Bu +

+
  dt CB

Estimator

x

Ax

y

x x

x

 

Where ,x y  are the estimated (or calculated) state and output vector 

respectively. Then we can use in the state feedback the estimated states instead 

of the actual ones. The error between the estimated and real state is  

           

             

e t x t x t e t x t x t

Ax t Bu t A t x t Bu t e t Ae t

     

    
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Therefore the error is described by a homogeneous ODE. If  e 0 0  and A 

has unstable eigenvalues, then the error will diverge to infinity. Even if A is 

stable the error will depend on the dynamics of A. If A is slow then the error 

will slowly converge to zero. 

Obviously one way to quantify the estimation is to monitor the error between 

the actual and the estimated state vector. Unfortunately we cannot monitor the 

actual state vector (if we could then we would not need the estimator) so we 

have to use the error between the actual and the estimated output y y . We 

feed this signal into the estimator: 

A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

-

+
-

G

y
y

xx y

 

The gain G will be used so that we have a fast and stable estimator:  

             e t A GC x t A GC x t A GC e t       

Hence by appropriately choosing G we can force the error to converge to zero 

very fast.  

But the system must be observable 
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State estimators can be designed if and only if the observability condition is 

satisfied.  

The estimator design is to find G such that  A GC  is stable. This is still a 

pole placement problem but this time these poles are the estimator poles. 

Hence the eigenvalues of  A GC  are the poles of the closed loop estimator.  

Usually the observer poles are chosen around 5 to 10 times higher than the 

closed-loop system, so that the state estimation is good as early as possible. 

This is quite important to avoid that the observer makes the closed-loop 

system slower. 

Example 4.5: 

Design a closed loop estimator for the system represented in state space by: 

 , ,A B C
   

     
    

0 1 1
3 4

2 6 3
 

Assume that the estimator poles are located at -12, -15. 

First we need to check observability!! 

For observability: 

O

C
M

CA

   
    

    

3 4

8 21
 

This matrix is non-singular with rank 2 and determinant is -31 hence the 

system is observable. Then we can design an observer for that system. 
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   
g

e t A GC e G
g

 
      

 

1

2

 

 
g g g

A GC
g gg

     
                

1 1 1

2 22

3 1 40 1
3 4

2 3 6 42 6
 

The characteristic equation of the closed loop estimator is 

 I A GC   0 :
g g g g

eig
g g g g





      
   

        

1 1 1 1

2 2 2 2

3 1 4 3 1 4
0

2 3 6 4 2 3 6 4
.  

The closed loop poles are placed at -12 and -15: 

     

g g g g

g g g g

g g g g g g

       
  

      

            

1 1 1 1

2 2 2 2

1 2 1 2 1 2

12 3 1 4 12 3 1 4
0 0

2 3 12 6 4 2 3 6 4

12 3 6 4 1 4 2 3 0 74 26 45 0

 

     

g g g g

g g g g

g g g g g g

       
  

      

            

1 1 1 1

2 2 2 2

1 2 1 2 1 2

15 3 1 4 15 3 1 4
0 0

2 3 15 6 4 2 3 9 4

15 3 9 4 1 4 2 3 0 137 35 57 0

 

g1 =  20.93 and g2 =  -10.45 

.

.
G

 
  

 

20 93

10 45
 

2 

 

                                                 
2 A=[0 1;-2 -6]; C=[3 4]; rank(obsv(A,C)), G=(place(A',C',[-12 -15]))' 
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Effect of addition of the estimator on the closed loop system 

In the pole-placement design process, we assumed that the actual state x(t) 

was available for feedback. In practice, however, the actual state x(t) may not 

be measurable, so we will need to design an estimator and use the observed 

state  x t for feedback. The design process, therefore, becomes a two-stage 

process, the first stage being the determination of the feedback gain matrix K 

to yield the desired characteristic equation and the second stage being the 

determination of the observer gain matrix G, to yield the desired observer 

characteristic equation. 

Let us now investigate the effects of the use of the observed state  x t , rather 

than the actual state x(t), on the characteristic equation of a closed-loop control 

system.  

A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

-

+
-

G

y
y

xx y

-K
 

Block diagram of the overall system with the controller and the closed loop 

estimator 
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Consider the completely state controllable and observable state space system: 

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 

 
.  

The state feedback control using the estimated state vector is:    u t Kx t  . 

With this control the state equation becomes:  

      ( ) ( ) ( ) ( )x t Ax t BKx t A BK x t BK x t x t       where the error  e t

was defined as the difference between actual and estimated state 

     e t x t x t  . 

Hence         ( ) ( ) ( ) ( )x t A BK x t BK x t x t A BK x t BKe t         

The estimator error equation is also given by:    e t A GC e  . 

Hence the dynamics of the observed-state feedback control system can be 

described by:  

 

 

 

 

x t x tA BK BK

e t e tA GC

    
    

    0
 

The characteristic equation of the overall system is:

 

 

 

( )

( )

sI A BK BK

sI A GC

sI A BK sI A GC

  


 

     

0
0

0

  

The closed loop poles of the observed-state feedback control system consist 

of the poles of the pole placement controller alone and the poles of the 
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estimator alone. This means that the pole placement design and the estimator 

design are independent of each other. Then they can be designed separately 

and combined to form the observed-state feedback control system.     

Reduced Order Estimators (ROE) – Not assessed Material  
In the previous case the estimator was estimating all the states of the 

controller. On the other hand, we usually want to estimate just some of the 

states since the others can be measured. With this way we have a simpler 

observer and the estimation process is better. The estimator or observer that 

is estimating some states is called Reduced Ordered Estimator. 

Assume that we can only measure one state (as it is usually the case), then we 

can use a different approach for the estimator design. 

Imagine that the only state that can be measured is xa. The rest of the state 

vector Xb cannot be measured: 









b

ax

X
X . By partitioning the state space 

equations we can have: 

  














































b

a

b

a

b

a

bbba

abaa

b

a

x

BxAx

X
0Y

U
BXAA

A

X

1

  

where Aaa is a scalar number 

Aab is 1 by (n-1) vector 

Aba is (n-1) by 1 vector 

Abb is (n-1) by (n-1) matrix 

Ba is scalar 

Bb is (n-1) by 1 vector 

Then a new state space model can be defined by the non-measurable state: 

UBAXAX bababbbb x 


  

In the last eqn. the matrix Abb is the new state matrix and Aba xa+BbU is the 

new known input.  

The known state is: 

UBXAAY ababaaaa xx 


 

babnnnbabaaaax XAXCYXAUBAY 

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At the last eqn. the term UBAY aaaax 


 is a known measurement.  

Hence the new state space model will have states: Xn=Xb, state matrix An=Abb, 

Input BUn=Aba xa+ BbU, Cn=Aab and the output is  

UBAYY aaaan x 


 







































babaaaan

ababb

nnn

nnnn

x

  xA

tt

ttt

XAUBAYY

UBXAX

XCY

BUXAX

CXY

BUAXX bbb

)()(

)()()(

Hence the estimator eqn. is: 

  













XCY

YYGBUXAX
~~

~~~
 













babaaaabababbbb xx XAUBAYGUBAXAX
~~~

 

or:       


YGUGBBGAAXGAAX abaaabababbbb x
~~

 

     


 YGUGBBYGAAXGAAX abaabababbbb
~~

 

And hence the estimating error: 

  babbbb EE GAA 


  

To avoid differentiating the Y we can define as a new state: GYXX  bc

~
 

hence the state eqn. is:  

     UGBBYGAAXGAAX abaabababbbc 


~~
 

Notice that the term 


YG  is not at the LHS. The block diagram of this ROE 

is: 
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With this method the gain matrix G is found from: 
G1=place(A’bb,A’ab,Pe) 

G=G1’ 

 

 

 

 

 

 

 

 

 

A

U BU
  dt



X X

AX

C
Y

B

  dt

Plant

Y

B
b
-GB

a

+

+

+

+
+

+

A
ba

-GA
aa G

+



 YGXb
~

A
bb

-GA
ab

Y

c



X cX
bX

~

Estimator
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Revision & Tracking  

The block diagram of a state space system is: 

A

u Bu +

+
  dt

x x

Ax

CB
y

 

With equations: ,x Ax Bu y Cx    

The qualitative properties of the system depend on the eigenvalues of A.  

In reality we can only access/measure the output vector y. So unless the output 

matrix C is the identity matrix we need to estimate the state vector (either for 

monitoring or if we want to stabilise the system using a state feedback 

controller). 

The simplest case is an open estimator, i.e. a mathematical model of the 

system. We assume that we have a linear system and we perfectly know the 

system’s matrices (A, B and C): 
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A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

xx y

Estimated State 

Vector

 

We have proved that the error dynamics between the actual state vector and 

the estimated state vector are given by: e Ae . Hence if  e 0 0  and the 

state matrix has unstable eigenvalues the error will diverge to infinity. To 

overcome this problem we create a closed loop estimator (the system under 

study is still open loop): 

A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

-

+
-

G

y
y

xx y

Estimated State 

Vector
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Then the error dynamics of the estimator will be given by:  e A GC e   

Note: If the system is unstable then the response of the estimator will also be 

“unstable” but at the same rate as the original system such as their difference 

converges to zero. 

Now, we can design a pole placement controller to stabilise the system: 

-K

A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

-

+
-

G

y
y

xx y

 

So in this case the estimator must be a lot faster than the original system’s 

dynamics (governed by A-BK and hence by K) so that the error between the 

actual state vector and estimated state vector will converge to zero very fast 

and hence the estimated state vector that is being used to control the actual 

system and the estimator (they have the same input) will be the correct one.  

This means that the original system has dynamics:  x Ax B Kx    but if 

x x very fast then we have  x A BK x   

Note: To stabilise the system we can also use an LQR controller. 
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Now let’s assume that we want to converge to a nonzero value. If we just 

change the diagram to: 

-K

A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

-

+
-

G

y
y

xx y

+

+

rss

 

Then while the system will be stable (from the state feedback controller) it 

will be probably not converge to rss. To avoid that and assuming that we have 

a DC input (for SISO systems): 

, ,ss ss ssy y x x u u    

Thus we can say that if  ss ssu u K x x    then ssuu   as 
ssx x . 

(the gain matrix K can be found by pole placement or LQR). 

The state equation at the steady state is: 
ss ss

ss ss

Ax Bu

y Cx

  


 

0
 

Now we can define 2 new vectors: ,ss x ss ss u ssx N r u N r   and hence our 

problem is transformed into find these 2 vectors. 
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ss ss x ss u ss x u

ss ss ss x ss x

x x

u u

Ax Bu AN r BN r AN BN

y Cx r CN r CN

N NA B A B

C N N C



       
    

    

          
            

          

1

0 0 0

1

0 0

0 1 0 1

 

Also

     ss ss u ss x ss u x ss ssu u K x x N r K x N r Kx N KN r Kx K r             1

And thus the block diagram is: 

-K

A

u Bu +

+
  dt

x x

Ax

CB

Plant

y

A

Bu +

+
  dt

Ax

CB

Estimator

-

+
-

G

y
y

xx y

+

+

rss
K1
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Example 4.6: Previously we saw that the necessary gains for the system:

 ( ) ( ) , ( ) ( )x t x t u t y t x t
     

       
     

1 2 1 1 0

3 4 0 0 1
 are  K=[26, 72] 

If we assume that C=[1 0] then the matrix 
A B

C



 
 
 

1

0
 is: 





















5.05.01

75.025.00

100

 

Hence . . .

. . .

x

u

N A B

N C

        
           

               
                 

1 0 0 0 1 0 1

0 0 0 25 0 75 0 0 75
0

1 1 0 5 0 5 1 0 5

, therefore: 

, .
.

x uN N
 

  
 

1
0 5

0 75
. 

   . . .
.

u xK N KN
 

         
 

1

1
0 5 26 72 0 5 26 54 27 5

0 75
  
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Tutorial 4  

1. A system is described by , ,A B C
     

       
     

2 2 1 1 0

2 5 1 0 1
 

i. Is it stable? 

ii. Find the system’s response (x(0)=1, x’(0)=0) and hence crosscheck your 

answer.  

iii. Stabilise the system using a pole placement controller. 

2. Repeat exercise 1 for , ,A B C
     

       
     

2 2 1 1 0

2 5 1 0 1
. 

3. A system is described by , ,A B C
     

       
     

2 2 1 1 0

2 5 1 0 1
 

i. Is it stable? 

ii. Find the system’s response (x(0)=1, x’(0)=0) and hence crosscheck your 

answer.  

iii. Use a state feedback controller that will force the system to a steady state in 

~0.5s. 

iv. Use a state feedback controller that will force the system to a steady state in 

~0.05s. 

v. Plot the signal Kx in the previous 2 cases. What do you notice? 

vi. For the previous system design an LQR controller that will force: 

a) The speed to be 10 times more important than the energy used. 

b) The speed to be 10 times less important than the energy used. 

4. Repeat question 3 for , ,A B C
     

       
     

2 2 1 1 0

0 5 0 0 1
 

5. A system is described by  , ,A B C
   

     
   

2 2 1
1 1

2 5 1
. 

i. Find the system’s response (x(0)=1, x’(0)=0) and comment on the output 

signal. 
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ii. Use an open loop estimator to estimate the 2 states when the initial error 

between the actual and the estimated states is 0.01. Plot the estimation error. 

Under what conditions can we use the estimated states in a pole placement 

control law? Simulate a case where we can use them and a case where we 

cannot use them. 

6. Repeat the previous question when  , ,A B C
   

     
   

2 2 1
1 1

2 5 1
. 

7. Use a closed loop estimator for  , ,A B C
   

     
   

2 2 1
1 1

2 5 1
. Place the 

poles of the estimator to [-10 -11]. 

8. Create 2 different pole placement control strategies and then use the above estimator: 

i. One with desired closed loop poles at [-5 -6] 

ii. One with desired closed loop poles at [-15 -16]. 

9. Repeat question 3 when  , ,A B C
   

     
   

2 0 1
1 0

2 5 1
 . 
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