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1. Introduction and Motivation Example

Assume that we have an n® order system: x") = f(x,x',x",...x(”‘l)). Very

difficult to study it as even if it is a linear system we must solve an n" order
polynomial equation. Theoretically we can use geometric and/or analytical
methods but this can be applied only in some specific cases. Computers can
be used to tackle this problem and as they are better with 1% order ODEs we
break the n" order ODE to a system of n 1% order ODEs. Also by using
matrices we can use powerful tools from linear algebra. The goal of this
chapter is to introduce a new approach in the modelling of dynamical systems,
the method is called state space analysis and it is far more versatile than the

well-known Transfer Functions.

More specifically, the classical control system design techniques (such as root

locus and frequency response methods) are generally applicable to:

a) Single Input Single Output (SISO) systems
b) Systems that are linear and time invariant (have parameters that do not
change with time)

The state space approach is a generalized time domain method for modelling,
analysing and designing control systems and is particularly well suited to
digital implementation. The state space approach can deal with:

a) Multi Input Multi Output systems

b) Non-linear and time variant systems

c) Alternative controller design approaches
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Example:

Assume the simple mass-spring system:

F(O)
—
X(t)
—
_/\/{(/\/\_ m Friction, B
A e
Using Newtonian mechanics we get:
2
9% _F _BYX kx=mx=F - Bxkx
dt dt
By choosing as x; = X, X, = X we have:
X —)’(‘—l(F—Bx —kx)| [ %] | T X
2727 2 1 2 m m IL*2

SR 1

m m

EEE8013-EEE3001

The variables x; and x, define the state vector x, which in turn defines the state

(a complete summary/description) of the system. Knowing the current state

and the future inputs we can predict the future states, i.e. the future behaviour

of the system. In the aforementioned case, knowing the values/direction of the

force F, the current displacement x and speed x of the object we can fully

define its future displacement and speed.
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Example 2.1: Write in a state space form the following system:
ul

dx,

— =3X, +2X, + U, —3u, +3U, 3 9 1 -3 3

dt :g Xl X\, o,
dt| x, -1 5] x, 0 01 1

d
a:—x1+5x2+0.1u2 u,

2. General State Space Model

In a more general case when we have n states and m inputs we have:

dx,
E =8, X +a,X, + 83X F e, +a, X, + blllu1 + blyzu2 Forrnnn, + bl,mum
_dx2 =a a a a b b b
dt - 2,1X1 + 2,2X2 + 2,3X3 to + 2,an + 2,lu1 + 2,2u2 to + 2,mum
dx, _ a a a a b b b
dt - n,lxl + n,2X2 + n,3X3 to + n,an + n,lul + n,2u2 to + n,mum
This can be written in a vector form as:
X = Ax+ Bu
where;
X A, Ay e a, X b, b, U,
1 m
X, ;PR a, , X, u,
X: lA: IX: IB: er ,u: .
b b
. i o e B
X, | (8, e e B4 X, U,

Now, in order to “monitor” the system we need sensors to measure various

variables like the displacement and velocity of the mass.
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Let’s assume that we can buy sensors for both variables (the speed and the

displacement), then we define the output of the system to be:

AR |10 B
L’j_{xz}jy_{o Jxay—Cx

Let’s assume that we can buy only one sensor, that measures the displacement,

then the output is: y=x, < y=[1 0]x< y=Cx

Let’s assume that we can buy only one sensor, that measures the velocity, then

the output is: y=x, < y=[0 1]x< y=Cx

Let’s assume that we have only one sensor that measures a linear combination

of the displacement and velocity: y=ax, +a,Xx, & y=[a, a,]x< y=Cx

Hence, the most general case:

A C1 % +Cp X, +---C X, C, GC, - G, W

Y, Cp1X +Cy X, +---C, X, Coi Gy 0 Gy

- |= <Sy= s [ X< y=Cx
_yp_ _Cp,1X1+Cp,2X2 +”'C2ann_ _Cpxl Cp,2 Cp,nJ

Finally let’s assume that (in a rather artificial case) that the input can directly

influence the output, then we have: y =Cx+ Du, For some matrix D.

>'<=Ax+Bu_

So the system is described by ;
y =Cx+ Du

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 5/28



mailto:damian.giaouris@ncl.ac.uk

Chapter 2 EEE8013-EEE3001

Ug

- . Y1 >
Up X = AXx+Bu Yo

> >
U, y =Cx+ Du Yo

P -

Or in a vector form:

u X = AXx+ Bu y

U Y1
u
Where: u=| 2|, y= V2
: Y3
| Un | Y

In general:

o y =Cx+ Du o

X(t) = A(t) x(t) + B(t)u(t)
y(t) =C(t)x(t) + D(t)u(t)

Where

If the system is Linear Time Invariant (LTI):

x is an n x 1 state vector, i.e. xe R™

uisan m x 1 input vector, i.e. ue R™*

y isan p x 1 output vector, i.e. y e R”*

A'is an n x n state matrix, i.e. Ae R™"

B is an n x m input matrix, i.e. Be R™"

C is an p x n output matrix, i.e. C e R™"

D is an p x m feed forward matrix (usually zero), i.e. D e R™"

X(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)
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The state of a system is a complete summary of the system at a particular point
in time. If the current state of the system and the future input signals are known

then it is possible to define the future states and outputs of the system.

The state of a system may be defined as the set of variables (state variables)
which at some initial time t,, together with the input variables, completely

determine the behaviour of the system for time t > t,.

The state variables are the smallest number of variables that can describe the
dynamic nature of a system and it is not a necessary constraint that they are
measurable. The manner in which a state variables change with time can be
thought of as trajectory in n dimensional space called state space. Two
dimensional state space is sometimes referred to as the phase plane when one

state is the derivative of the other.

The choice of the state space variables is free as long as some rules are

followed:

e They must be linearly independent.
e They must specify completely the dynamic behaviour of the system.

e Finally they must not be input of the system.
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Example 2.2: Find the state space model of the following system:
X(t)+3%(t)+2x(t)=u(t)

y =4x(t)

=Ll Sl
X, =X=U—-3X—-2X=U-3X, —2X, X, -2 3|/ x,| |1

ot Ll oo

Example 2.3: Find the state space model of the following system:
X (t)=3%(t)+2x(t)—2x(t)+u,(t)—6u,(t)

¥ =X(t) +u,(t)

Y, = X(t)+3x(t)+5u,(t)

Y, =—3%(t)+ x(t)+5u,(t)

Hence:

X=X

X=X, =% X, 0 1 0|lx 0 O y
X=X =X, =|%[=/0 0 1x[+/0 0 Ll}:
X = 3%+ 2% — 2X + U, — 6U, < % | -2 2 3% ]| [1 -6|-°
X, =3X%; +2X, — 2%, +Uu, —6u, |

y1:5<'(t)+u2(t) Yi =% +U,
Y, =X(t)+3x(t)+5u,(t) ¢=Yy,=%+3x+5u(t) ;=
Yo =—3X(t)+x(t)+5u,(t)|  ¥s=-3%X+X +5U,
] fo o 1]Mx] o 1]
y2=301x2+50{u1} m!
V.| |1 0 -3|x | |0 5|2

;0 0 1;-2 2 3]; B=[0 0;0 0;1 -6]; C=[0 O 1;3 0 1;1 O =-3]; D=|[0
sys=ss (A,B,C,D)

O
U o
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Examples of state space models (NOT ASSESSED MATERIAL)
Example 2.3
Assume the following simple electromechanical that consists of an
electromagnet and

f
VT L% Yl _""F_E

B

The force of the magnetic field is directly related to the current in the RL
-2

network. The force that is exerted on the object is f = kAl_z’ where ka is a
X

positive constant. To simplify the analysis we assume that the displacement x
Is very small and in that small area the current has a linear relationship with
the force: f =Kl

Using circuit theory: % = %(v ~iR)

Using Newton’s 2" law: f —kx— BX = mX <> k 4i —kx — Bx = mX
Now, we can define X, =X, X, =X and X3 =1i. Thus:
1 R v
X =—(V-X3R) <= Xg = —Xqg—+—
3 L( 3 ) 3 3L L
k B k

MX, = KaXq —KX; — BX, < X, = —— X; — — X» +—2 X

2 AM3 1 2 2 m 1 m 2 m 3
Hence the state space model is:
Xq 0 1 0 Xq

. |=|_k _B _kA/ o

Xy |= %n %n ml X2 |+ 0 vex=Ax+Bu
X _R X

3 0 0 A 3

Now let’s assume that we have only one sensor that will return the
displacement x:
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X1
y=[L 0 0]x,
X3
Thus the state space model is: -
Xq 0 1 0 Xq 0
XZ:_% —% _k% Xy |[+]0 |v
X3 0 0 — F‘%_ X3 _%_
X1
y=[1 0 0]x,
X3
Example 2.4
Another example is shown in the next figure.
R L
VoV T .0 T .0
N

v EMF T C f
r2

The shaft of the separately excited DC motor is connected to the load J;
through a gear box.

T, =27 = 36, = K gi, — BG,
" n,
Tm = KT¢ia
. di, . . di, N, -
Vo, =LR, + L, 2+ Ky 00, &V, =,R, + L, =+ Ky 9p—=6,
dt dt n
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s n, e o _ )
‘]00 - n_ KT¢Ia BQO Ko=Kq ¢E \]90 = K2la - B¢90

2
di no (e omy —ir L e kg
Vo =R+ Lt Ky gty | e ThE TR G
1

| define Gy = X, i, = X,:

X =——X +—=X
I% = KyX, — B N R T
— %R, + L%, + K K 1 (7
Va = Xohg + LaXo + Ky % Xz__L_lxl_XZ_a+L_Va
a a a
_B K 0
X X
ol |- 2%l |
La La a
Example 2.4:
It can be proved that a model of the Induction Machine is:
dlé/,:D :_RsisD TUp
dy g, _
o =—R{lq +Ugq
dip _R ol . (LR+LR) . L [T
dt O_l WsD O_l l//sQ sD O_l sQ™r O_l sD
diSQ _Rr @, I—r : (LSRI' + LFRS) r
dt = o, Vo T o, Yo +IsQ o, lsp @y _;lusQ
o [o 0 R, 0 ] 1 T
vol | O 0O 0 R, vol | 0 1
V_/sQ _| R -oL (LR +LR,) o ;.uSQ b g |[Ue
Ip 0, 0, 0 lp O, Uso
L iSQ i oL, —R, @ (LSRr + LrRS) L iSQ i 0 _5
L 01 0, r 0, a L O-lj
Or:
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- 2
dISD :_&isD + L isQ + culi ird L -rq + ! Usp
dt ol L ol L, ol ol ol
di 2
Q _ _ o, Ly, isD B R isQ _a)er ird N LR, irq N 1 U
dt L ol ol ol Lol ol
di_rd_ LmRSi _a)eri B R, i —ﬂi B L, U
dt Lok, ® o, © o, o™ Lo, P
di
o = erm isD + LmRS isQ +ﬂird - Rr irq - Lm usQ
dt oL, L ol ol, Lol
__diSD_ I _ R @y I—2m LR, oLy |
dt oy Loly  Lols ok | -
dISQ W I—?n _& _ oLy, LR .SD
dt = Lol ol ol Lol 'sQ
dl_rd I—m Rs _ @y I—m _ Rr _ ﬂ Irg
dt L ol oL, ol, o irq
dirq oL, LR 23 _& S
L dt | | oL L, ol o oL, |
1 0
ol
0 1
GLS usD
oL
__m 0 |l
Lol
0 — L
L LSGL"_
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3. State space

The system’s states can be written in a vector form as:

X, =%, 0,--, 0], X, =[0, Xy, ---, 0] ,..., x, =[0,0, -, x, ]

=> A standard orthogonal basis (since they are linear independent) for an n-

dimensional vector space called state space.

Examples of state spaces are the state plane (n=2) and state 3D space (n=3),
A A

4 °R 4 °R

XUN
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4. Relation of State Space Models and Transfer Functions

If we have an LTI state space (ss) system, how can we find its TF?

X(t) = AX(t) + Bu(t)=>sX (s) — x(0) = AX (s) + BU (s) =

(sl —A)X(s)=BU(s)+x(0) =
X (s)=(sl —A) " BU(s)+ (sl —A) " x(0)

And from the 2" equation of the ss system:

Y (s)=CX(s)+ DU (s)=>

Y (s) = C((sl ~A)BU(s)+ (sl - A)lx(O)) + DU (s)
Y (s) = (c(sl ~A) B+ D)u (s)+C (sl — A) ™ x(0)

By definition TF: C(sl — A)_1 B+D and C(sl —A) " x(0) the response to the
IC.

ILT

Also: X (s)=(sl —A) BU(s)+(sl — A)" X (0)=
x(t) = Ll{(sl ~A)'BU (s)} + Ll{(sl - A)‘l}x(O)

Ifu=0=> X (t) = L*{(s1 - A)"} X (0)

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 14/28
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So G(S)=C(S|—A)_lB+D is the TF. From linear algebra:

sl—A -B,

o o)
G (s)= | ll A where B; is the i column of the matrix B and C; is the
, s —

j™ row of C.

Hence |sI — Al is the CE of the TF!!!

(Gu(s) Gp(s) ... Gu(s)]
S0: G(s) = G,(s) Gu(s) - qu(S)
_Gpl(s) G,,(s) - qu(s)_
Y. Y. Y Y
U—1:Gn’ U—lzGlz’ U_2621’ U_2:G22,,,
1 2 1 2

Example 2.5: Find the TF of the following system:

M L of]

S -1
|s| —A|: =s(s+0.5)+1
1 s+05 .
_ G(s)= m
° L0 =G(s) s(s+0.5)+1
1 s+05 -1=1
1 0 0

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 15/28
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Example 2.6: Find the TF of the following system:

1
|s|— |:‘ ‘:s(s+0.5)+1
1 s+05
1
_ G -
> 10 =Guls) s(s+0.5)+1
1 s+05 -1=1
1 0 0
S -1
|sI—A|:‘ ‘:s(s+0.5)+l
1 s+05 )
S
_ G —
s 10 = Gaa(s) s(s+0.5)+1
1 s+05 -1=1
0 2 0
Or:

. 1 0l[s -1 T'To
G(s)=C(sl—A) "' B+D= 0
(s)=C(sl -A) B+ {0 2}{1 s+0.5} M+ #

s+05 1 s+05 1
S 1 T -1 s -1 s

= = j—
1 s+05 s -1 s(s+0.5)+1
1 s+05
1 0][s+05 17[0
G(s)=—— > =
s(s+05)+1|0 2] -1 s|1
1 071 1
6(s)=c— -— .
s(s+05)+1/0 2][s| s(s+0.5)+1|2s
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mailto:damian.giaouris@ncl.ac.uk

Chapter 2 EEE8013-EEE3001

Example 2.7: Find the TF of the following system:

M L el O

S
sl — Al= =s(s+05)+1
1 s+05 05
S+ V.
s 1A :G“(S)_s(s+0.5)+1
1 s+05 0|=s+05
1 0 0
|sI—A|:‘S - ‘:s(s+0.5)+l
1 s+05 ,
s :GZ‘(S):s(s+o.5)+1
1 s+05 0]=-2
0 2 0
Sl-A=] " |=s(s+05)+1
1 s+05 .
S+3
_ _ G -
oA = Gials) s(s+0.5)+1
1 s+05 -1=s+3/2
1 0 0
|sI—A|:‘S - ‘:s(s+o.5)+1
1 s+0.5
2s -2
s 1A :GZ*Z(S)_s(s+o.5)+1
1 $+05 -1=25-2
0 2 0
Or:

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 17/28
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1

G(s)=C(sl —A)lB+D:{O

EEE8013-EEE3001

offs -1 T'T1 1
+02><2
211 s+05| |0 1

{s+0.5 1}
-1 S
—

< TW .

1 s+05

s(s+0.5)+1

TS i P

G(S):S(s+3.5) 1_S+05 1}{ ﬂ

1 [s+05 s+0.5+1
—-2+2s

G(s)= s(s+05)+1| -2

2p=10 1;-1 -0.5];

[numl,denl]=ss2tf(A,B,C,D, 1),

Module Leader: Dr Damian Giaouris -

B=[1 1;0 17;

C=[1 0;0 2]; D=zeros(2);
[num2,den2]=ss2tf(A,B,C,D,2)
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5. Controllability and Observability

In the above figure we see the block diagram of a generic state space model,
deliberately there is a grey box on the top, in order to demonstrate that in
reality we cannot see or control the whole system, but we can only control the
input signal u, and we can see (observe) the output signal y. But as it has been
previously stated, the most important signal, is the state vector x. Hence we
want by controlling u to be able to influence all the states in x, and by
observing y, we want to be able to get an indication of how x behaves. The
first concept refers to the “Controllability” of the system and the second on
the “Observability” of the system and they are 2 critical properties of a system

that must be properly understood.

5.1 Controllability

: 12 1 2
Example 2.8: Assume the following system: x = { 1 J X + L}u

X, =—2X +X,+2u

By writing it in a form of 2 ODEs: {
X, =X —X,+U

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 19/28
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It is clear that the signal u influences both ODEs directly as it appears in both
equations, but also indirectly as x; and x, are coupled. Hence, by changing
(how/why/when we will see in chapter 4) the signal u it is possible to influence

both states of the system. This system is controllable. B

: -2 1 2
Example 2.9: Assume the following system: x = { 1 }x +{ }u

X, ==2X +X,+2u

By writing it in a form of 2 ODEs: {
X, =% —X

It is clear that the signal u influences the ODE of x; directly as it appears in
in the equation, but also x, indirectly as x; appears in the ODE of x,. Hence,
by changing the signal u it is possible to influence both states of the system.

This system is controllable. B

-2 0 2
Example 2.10: Assume the following system: x = { 0 }x 7{ }u

X, =—2X +2u

By writing it in a form of 2 ODEs: {
X, ==X, +U

It is clear that the signal u influences both ODEs directly as it appears in both
equations, but not indirectly as x; and x, are not coupled. Hence, by changing
the signal u it is possible to influence both states of the system. This system is

controllable. m

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 20/28
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: . |-2 0 2
Example 2.11: Assume the following system: x = { 0 J X + {O}u

X, =—2X +2u

By writing it in a form of 2 ODEs: {
X, =—X,

It is clear that the signal u cannot influence the second state and hence by
changing the signal u itis NOT possible to influence both states of the system.

This system is uncontrollable. ®

Example 2.12: The flow chart diagrams of the 4 above systems are shown

below and it is clear when x, can be influenced:

dxy/dt dx,/dt

dx/dt st X2 1 X2

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 21/28
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Example 2.13: The transfer functions (assuming C=[3 2]) of the above

systems are

8s+17 6s+10 8s+10
G(s)=——-—, G(s)= -, G(5) = —,
() s +3s+1 () s +3s+1 () s +3s+2
6s+6 _ 6(s+l) 6

G(s)=

_sz+33+2_(s+1)(s+2)_(s+2)

So it is clear that when the system is uncontrollable, there is a pole zero

cancelation. m3

It has to be noted here, that the above concept of pole-zero cancelation is
more complicated, and it should be used on the matrix (sl - A)_1 B instead.

But this is outside the goals of this module.

Unfortunately, the above methods (ODEs, state flow diagrams, TFs...) break
down when the complexity of the system increases. In this case we have a
more systematic way to determine the controllability of the system which is

to find the rank of the following matrix:

Mc=[B AB A’B --- A"'B].If the rank of this matrix is less than n

then the system is uncontrollable. The rank of a matrix is the number of the
linear independent columns/rows. If we have a square matrix, an easy way to
determine its rank, is to calculate its determinant and if it is non zero, then the

rank is n.

3a=[-2 1;1 -1]; B

[2;1];C=[3 2]; [num,den]=ss2tf(A,B,C, [0])

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 22/28
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Example 2.14: Determine the Controllability of the following system:
-2 1 2 -2 112 -3
X = X + u= AB= = =
1 -1 1 1 -1}|1 -1
M. = 2 -3
11 4

And obviously there are 2 LI column/rows. m’
Example 2.15: Determine the Controllability of the following system:

Lo Sferlal=rels Al
G

And obviously there are 2 LI column/rows. u

Example 2.16: Determine the Controllability of the following system:
-2 1 2 -2 1|2 —4
X= X+| |[u= AB= = =
oAl Ao
M. = 2 -4
.

And obviously there are 2 LI column/rows. |

Example 2.17: Determine the Controllability of the following system:

{3 Sk

0 -1}|0 0
y=[3 2]x
v |2 4
10 0
And obviously there is only one LI column/row m°
A=[-2 1;1 -11; B=[2;1]; rank(ctrb(A,B)), det(ctrb(A,B))
SA=[-2 0;0 -1]; B=[2;0]; rank(ctrb(A,B)), det(ctrb(a,B))
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5.2 Observability

-2 0 2
X= X+| U
Example 2.18: Assume the following system: { 0 1} {O}
y=[3 1]x

X, =—2%, +2u

By writing it in a form of 2 ODEs: {
X, =X,

Which is clear to see that the 2" ODE is unstable. BUT as we have mentioned

before, we can only observe/measure the output y =3x, + X, . Hence since X,

will diverge to +/-c0, we will be able to understand that something ““is wrong”

by seeing that y also diverges to +/-o0. This system is observable. |

-2 0 2
X= X+| |u
Example 2.19: Assume the following system: { 0 1} {O}
y=[3 0]x

Now y =3x, which means that we cannot properly observe the system. This

Is an unobservable system. |

-2 1 2
X= X+| U
Example 2.20: Assume the following system: { 0 J {0}
y=[3 0]x

X, ==2X +X,+2u

By writing it in a form of 2 ODEs: {
X, =X,

Now, as before, y =3x, BUT as x; influences the ODE of x; we will see that

“something is wrong” through x;. The system is observable. |
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-2 0 2
X= X+| U
Example 2.21: Assume the following system: { 1 l} {O}

y=[3 0]x
L X, =—2X% +2Uu
By writing it in a form of 2 ODEs: | . :
X, =X, + X,

Now, as before, y=3x, BUT now even though x; influences the ODE of x,,

the ODE of x; is still decoupled from x, and hence by observing y we will not

be able to observe that x; is unstable. This system is unobservable. |

Example 2.22: The flow chart diagrams of the 4 above systems are shown

below and it is clear when x, can be observed:

A more efficient way to test the observability is to determine the rank of the
following matrix: MO:[C CA CA* .. CA”‘lT. If the rank of this

matrix is less than n then the system is unobservable.
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Example 2.23: Determine the Observability of the following system:

x:{—oz _OJXJFLZ}U . CA-[3 0]{—02 0}:[—6 0]

y=[3 0]x -

M_so
° 1.6 0

And obviously there is only one LI column/row

u
Example 2.24: Determine the Observability of the following system:
X= =2 0 X+ 2 u 2 0
Lo -1]7 1] t=cA=[3 2]{_0 1}[—6 2]
y=[3 2]x
M. 3 2
° |16 -2
And obviously there are 2 LI column/rows me

6a=[-2 0;0 -1]; B=[2; 1]; C=[3 2]; rank(obsv(A,C))
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Tutorial Exercise 11

1. Derive a state space representation of the mass spring system assuming that the system

has 2 outputs: the displacement and the velocity.

2. Repeat Question 1 assuming that the displacement is the only system output.
3. Find the state space model of the following system:

X+6X+5x=u(t)

y =4X+X
4. A state space model is given by
1 2 3 4 5] 0.1 -0.2 -0.3]
6 7 8 9 10 -04 -05 -0.6
A=/11 12 13 14 15|,B=|-07 -09 -1 |,
16 17 18 19 20 -11 -12 -13
21 22 23 24 25| |-14 -15 -16]
11 2 2 3
C: , =
0 0 0 -1 152

(a) What is the order of the system?
(b) How many inputs/ outputs do we have in this system?
(c) What are the dimensions of the matrix D?

5. Find the state space model of:

x@ =3x0) 4 ax"-3x'+x + U; —3u, + 5u,
)
=X +U

(@) Y1 1

v, =xW +1.2x+ug —u,

Y3 =X
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X, =3X% +3X, +U; +U, +U; +U,
X, =3X, +U; —2U,

(b) ylle
Yy, =X, +3X, +U, +U,

Y =X, —2X, +U; +U,
In each case find:

e The order of the system?
e How many inputs/ outputs do we have in this system?
6. Find the transfer function of a system with:

A:F 2},8:{3}@:[1 1], D=0.

3 4

7. Find the transfer function of a system with:

A:E ﬂ’B:Ll) ﬂ,cz[l 1,D=[0 0]

8. Find the transfer function of a system with:

1 2 11 11 00
A= ,B= ,C = , D= _
3 4 01 01 00
9. What is the characteristic equation in Q.6-8? What is the system order? Is that system
stable? Why? Are these systems observable/controllable?
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