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Chapter 3 EEE8013-3001
1. General Solution of 2" Order State Space Models

In this chapter we will study the solution of 2nd order linear state space
models. This is an important step in order to describe the behaviour of our
systems and then to define design targets for our control strategies. Instead of
studying a generic and abstract system, in this chapter we will start with a

simple 2nd order system and we will try to see how we can solve it.

1.1 Case 1: Real and unequal eigenvalues

Xy -2 2 ||X%
Assume a general second order system: =
X2

Not assessed material (but read it!)
By transforming the system back to a 2nd order DE:

X =—2% + 2X
1 112X N
X2:2X1—5X2
1.
X1=§(X2+5X2)<:>
. 1. :

1
But we have found that X; = E(Xz + 5X2):

1 5
—Xo +—%Xy ==X, —5X, + 2%, &
2 2 2 2 2 2 2

X2+7X2+6X2 :0
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Similarly for x;:
=
1,.
1., .

2% —5X, = %(xl +2% ) <

2% — 5(%(5(1 + 2x1)j = %(x1 +2% )<

5 1
2% — =X —5X = =¥ + % &
1 2 1 1 2 1 1

X -2 2|
Thus the homogeneous state space model {1}:{ }{ 1} has been
X 2 S X

transformed to X, + 7%, +6x, =0 (and X, + 7% +6x =0)

Then we have a common CE which is: r2+7r+6=0

This will give two solutions: x,, = C,e™ and x,, = D,e™®
Similarly the ODE for x; will give me x;, = Cle‘t and Xy, = Dle‘6t

Thus two LI solutions to our state space model are:

C D C D
Yletand x=| *le® andhence x=| *let+| 'le®.
CZ D2 C2 D2

X
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Obviously the choice of C; (or D;) will influence the choice of C; (or D,) and

C, D, .
thus the vectors c and o are not “completely arbitrary”.
2 2

Thus we should say that our solution is:

Xx=A -t -6t _ C _ D, .
=A-g-e'+B-e,-e™, where e = c 8, = o and A, B are arbitrary
2 2

constants that depend on the initial conditions.

This approach is rather cumbersome and of course we cannot (easily) find the

values of the vectors e, e,.

But, the important point here is the solution will be a linear combination of
two vectors that are multiplied by exponentials and the 2 exponents are the 2

eigenvalues.

X -2 2 | X a
Now back to our system: {1}:{ }{ 1] Let’s try x:{ 1}” as a
X, 2 =5|X, a,

solution (similarly to what we did for 2" order ODES).

-2 2 A —2a, +2a
SO)-(://ialeﬂt: aieit:> al — a:l 2.
a, 2 —5|la, Aa, 2a, — 53,
How can we solve that? It is a nonlinear system with 2 equations and 3

unknowns!

Assume A is a parameter = A homogeneous 2 by 2 linear system:
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{(— 2—A)a, +2a, = o}

2a,+(-5-4)a, =0
Which always has a trivial solution a;=a,=0.
For a nontrivial solution® (see Cramer’s rule from Linear Algebra):

-2-1
2 -5-1

‘:o@fﬂma:o

This last equation is the characteristic equation of the system and it is the same
as the CE that we have from the ODEs (expected as they describe or

characterise the same system given in different forms).

A =-1

AP 4+7A+6=0=> { . Hence for each of these | have to find ai, au:

2:

For 4,=-1

{—al +2a, =0

the same equation twice! (why?)
2a, —4a, =0

| assume that a,=1 which means that a;=2.

a 2 2
l.e. for 1,=-1, we have that Lll} = L} and hence one solution is L }e‘t :
2

L We applied the same idea when we defined the Wronskian
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For A, =—6 the 2 equations are { } | assume that a;=1 so a,=-2

- - 1 _6t
So a second solution is ) e

L 2 1
Hence the general solution is x(t)=C, L}e‘t + C{ z}e““

Example 3.1: Find the response of the previous system when x(0) = Ll)} :

o-eff oo 3]s i

This last system of 2 algebraic equations with 2 unknowns can be solved with

: 2 1
Using x(t)= C{Jet +C{ )

}e‘“ we have that:

various methods like substitution... an easier way is:
2C,+C,] 17 [2 17c,] 1] [c] 2 17 1] [o4
C,-2C, 0 1 -2|C, 0 C, 1 -2| (0] |02

2 1 0.8e'+0.2e™®
x(t)=0.4| "|e"+0.2 et = %l
1 =2 X, | [0.4e—0.4e
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states
o
(e)]

"

0
0 5 10
time, s
In the state space:
0.25
0.2
0.15
N
X
0.1
0.05
0
0
I|2
chc; clear all; close all, A=[-2 2;2 -5];[x,v]=eig(A), C=inv(x)*[1;0]
syms t, sol=C(l)*exp(v(l,1)*t)*x(:,1)+C(2)*exp(v(2,2)*t)*x(:,2)
syms x1(t) x2(t), Dxl= dlff( 1),; Dx2=diff (x2), Dx= [Dxl, Dx2]; x=[x1;x2]
sol2=dsolve (Dx-A*x,x(0)==[1;0]), sys=ss(A,[],eye(2),I[1),
[Y,T,X] = initial(sys, [1l; O]), plot(T,X); figure, plot( (:,1),X(:,2));
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Example 3.2:
A system is given by %+ 7x+6x=0,x(0)=1 %(0)=0
I.  Find the particular solution of the DE for the given initial conditions.
The general solution is x=Ce™" +C,e™.

Using the initial conditions we get C;=6/5, C,=-1/5 and the particular
; icr v_0/at __ —6t
solution is: x_ée %e

Note: since r; and r, are negative the response is stable and it converges

exponentially to zero (homogeneous system) without oscillations.
Ii.  Transform the system to state space form if y=x(t)

You can solve this part as in chapter 2. By defining X; = X, X, =X

S e o

ii.  Find the eigenvalues. Is the system stable? What will be the response

type?

2 0] o 1 A -1
-A=0=> — =0= =0= +7)+6=
A1 - A=0 ‘{ }{ }‘o ‘{ }‘o A(A+T7)+6=0
0 4| |6 -7 6 A+7

Hence the characteristic equation is:

A(A+7)+6=0=2"+72+6=0=(1+1)(21+6)=0
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The eigenvalues of the system are: -1, -6 hence the system is stable with

overdamped response.
iv.  Find the eigenvectors
(Al —A)v=0

For 4, =-1

Ao el ot Al o a,=0,6a +6a,=0=a, =
6 A+7|a,| 6 6 al| %78 =R 08 108, = =74

The eigenvector V, can be [1-1]"

For A, =—6

Aol e o178 Al g 6 a-06at+a-0—a-6
6 A+7]|a,| 6 1]a,| BT TR, 2 =%

The eigenvector V, can be [1 -6]"

v.  Find the general solution using the eigenvalues and eigenvectors

- LJorvc e

vi. Find the particular solution. (Compare your answer with i.)

el el S

C,=6/5, C,=-1/5 and the particular solution is:
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1 1
x(t)= 6/5{_1}@t —1/5{_6}8_6t =C, xv,xe "' +C,xV,xe™
6/5 ] , [-1/5] , | 6/5e"'-1/5e™
= Xx(t)= e+ e’ =
—6/5 6/5 —6/5e" +6/5¢

= x(t)=6/5¢"-1/5e,x,(t)=—6/5¢" +6/5¢™" |

1.2 Case 2: Repeated Eigenvalues
Now it is possible to have 2 sub-cases:

e | can find 2 LI vectors (a rather artificial case)

S

Hence we have 2 uncoupled 1% order ODEs which can be solved

separately.

e | cannot find 2 LI vectors

In that case I have that (A— Al )2 b =0 (b is called the generalised eigenvector
of A), which can be written as (A—A4l)(A—Al)b=0. Now I substitute

v=_(A-24l)b and I have (A—A1)v=0, i.e. v is one eigenvector of A for the
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eigenvalue 4. Now it can be proved that the solution is

x(t)=C,(vt+b)e™ +C,ve™.

So in that case:
B s ey o e e
Hence the solution is: x(t)= Clﬂ_ljt = Elﬂeﬂ +C, {—11} e

If we are given the same initial conditions:

AT
- e Lo i [

---Xl / \
—_— X
2
6 6 ~

} \
< - \
2

e -
-----------
------

% 0.2 0.4 0.6 0.8 g % 0.5 . 1 15
t,s 1
.3
=[1 -1; 1 3]; el= [1, -1]1"';syms bl b2;
*[b b2]-[1;-1]1; s=solve(eqn);

egqn= (A-2*eye (2))
e?2=[s.bl; s.b2]
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Example 3.3 Find the general solution for the homogeneous system:

L S

Solution:
3 -18 A-3 18

ﬂl—{ }‘—‘ :(/1—3)(i+9)+36:0:>
2 -9 -2 A1+9

A+61+9=0=> 4 =4, =-3

e A (A |

-6 18 A vo=1 3
M }=0<:>v1—3v2:0:>v1=3:>v: }

-2 6]V, 1
3 6 -18 b,=0
= <1=2b -6b, b =1/2=
1] |2 -6 ||b,
1
3 = 3
x(t)=C, { }H 2 e3t+C{ }e“ m
1 0 1

4 Why was | allowed to choose b,=0?
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1.3 Case 3: Complex Eigenvalues

If 1 have complex eigenvalues then A4 =4, and the corresponding

eigenvectors are e, = g. In that case the general solution is given by:

X(t)=Cee™ +C,e.e™

Example 3.4
{—1/2 1 } {1}
A= =>A1=-05+]=e= =
-1 -1/2 j
—O.5+j)t{1} (—O.S—j) {1 }
x(t)=C e( | +Coe _
(=4 I -

Assuming x(0) {ﬂ we have that:
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05e°% et|* [+e |t ||=05e0" e’ - e’ =
] ~] '] |-je

05605 | T8 || gseras[[ 2005 |]_ gron| COSE

jet — je ) —2sint —sint

0.2

05
2] <N -0.2
g
s i
7] 0 \ ',x‘ e -
! 0.4
4 N \\_//
-0.5 \\ - 'I"
-0.
0 2 4 6 8 10 85 0 05 1
time, s % [ |
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2. Solution Matrices and Solution of Linear Systems

2.1 2" order systems

For second order systems x = Ax we have seen that we have 2 solutions (xi,
X2) depending on the eigenvalues of A (real and distinct, repeated and

complex):

Xlzeleﬂlt’ X, :ezeﬂ2t if ﬂ“l iﬂ’Z’ /11112 eR.

x, =ee”, x, =(et+b)e™ if 1, =4, =1, A eR.

x,=ee™ x,=8e" if 4, =1, =1, 1eC.
Or x, =Re(ee™), x, =Im(ee”) if 4, =4, =4, 1€C.

Now any combination X=cxX +C,X, is also a solution (principle of

superposition) and also any other solution can be expressed by the above
linear combination. This effectively means that to describe the behaviour of a
2" order system we just need x; and x,. When we are given an initial condition
X, effectively we are asked to find a specific solution that passes (starts)

through X, , and this can be done by finding the appropriate values of ¢, c,

(this is what we have done before).

Now, x; and X, are 2 2byl column vectors. If we put them together in one

matrix (this matrix is called “Fundamental Solution Matrix (FSM)”) we

have X =[x x,] which is 2by2. It will be better if we write as:

X(t)=[x(t) x(t)]
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Thus X =C,X, +C,X, can be written as: x(t)= X (t)xc, where c=[c, ¢,]

We are given the value at t=0 as X,: X, =X (0)xc or c=X"(0)x,. Hence

going back to x(t)= X (t)xc we have: [x(t) =X (t)x X *(0)x,

The product X (t)x X ™(0) is called the State Transition Matrix (STM)®.

This means that if we know X (t) we can easily find X (0) and X ™*(0). Then
using x(t)=X(t)xX*(0)x, we can find any other solution. This is
effectively what we previously did but now it is in a more compact form, it
can easily be extended to high order systems and above all it can be used in
time varying systems (i.e. where the state matrix A is not constant). Before we

see how it can be used for time varying systems let’s see how it can be used

for the systems that we previously studied:

Example 3.5:

X =ee™, x, =ee™ = X (t)=[ee” ee™|=X(0)=[e e,]

Hence x=[ee™ ee™ [x[e, €] x, =
Example 3.6:

x, =ee™, x, =(et+b)e™ = X(t [ee et+b)e“]:>X(0):[e b]

5 You must be clear about the difference between the FSM and the STM
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Hence x:[ee”t (et +b)e“]><[e b]™ %, u
Example 3.7:

X, =Re(ee™), x, =Im(ee™ )= X (1) :[Re(ee“) Im(ee™ )] =

X (0)=[Re(e) Im(e)]
Hence x:[Re(eel‘) Im(ee“)]x[Re(e) Im(e)] " x, ]
Example 3.8:

h=-6e=[-2 1]
A, =-5¢=[1 -3/4]

We know that for A:L_i _ﬂ we have { . Hence

_2e—6t e—5t
the FSM is: X (t)= [eleth ezej?t] = e 3w
4

Thus if x, = {12} ;
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—2¢% e” 15 o 2 1
x| 5[ 2 sd et

Not assessed material

Unfortunately we cannot follow a similar strategy when A is time varying, for

—t 1

—t -2t

example A(t):{ ]

}. In these cases we have to rely on numerical
—e

solutions.

Even though we cannot find X, and X, we know that they exist. Hence we

X, (t) X, (t):l
Xy (t) X2 (t)

(0 %]
% (0) sz<0>} "

know that the FSM exists as well: X (t)=[x,(t) x,(t)] ={
and of course at t=0 we have a constant matrix X (0) = {

the inverse X *(0)= {Xl
X,

-1
} also being constant. Let’s assume

ja}]
(op

that for our case X ‘1(0) ={ } for some constants a, b, c, d. Then:

(@)
o

6clc, clear all, close all, A=[-8 -4; 1.5 -3]; x0=[1;2]; [x,v]=eigs(A);
syms t, STM=[x(:,1)*exp(v(l,1)*t) x(:,2)*exp(v(2,2)*t)];

STM O=subs (STM, t,0); xt=STM*inv(STM 0)*x0, syms x1(t) x2(t),

Dx1l=diff (x1); Dx2=diff(x2); Dx=[Dx1l; Dx2]; x=[x1;x2]; sol2=dsolve (Dx-
A*x,x(0)==[1;2]); x2t=[s0l2.x1; sol2.x2]
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X(t)x”(’){xis(t) 6, 0
Or: [ ax, (t)+cx, () bx, (t)+dx,(t)]

Now, since X, and X, are solutions of x=Ax then so must be
X, =ax (t)+cx,(t) and x, =bx (t)+dx,(t). This means that X, = Ax, and

X, = AX,.

Also X(O)XX_1(0)=|:; ﬂ and hence [x,(0) x4(0)]=L1) ﬂ or

X;(0) :E)} and x,(0)= {ﬂ Be careful we do not yet know the functions
X;(t) and x,(t) since we do not know x,(t) and x,(t).

In order for us to find X5(t) and x,(t) we simply have to numerically solve

1
X, = Ax; and X, = Ax, for x,(0)= {0} and x,(0)= E}

Ve
N—"

Now, in general our solutions x,(t) and x,(t) also depend on to which may
not be zero as in the previous case, hence we should have written x,(t,t,) and
X, (t,t,). Toavoid confusion and to comply with various other authors we will
use x,(t) and x,(t) for most cases and ¢, (z,z,) and ¢,(z,7,) when we want

to say that our solutions also depend on the initial time. Hence the FSM is

®(t,4,) and not X(t). Also sincex(t)=®(t,z,)x D7 (,,1)x,, i.e. our

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 19/23
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solution to the |IVP also depend on the initial condition:

0(t,85,%)) =D (1,8,) x D (15,14 ) X, -
2.3 State transition matrix for LTI systems

For a scalar ODE: x =ax the solution was x(t)=e®x(0) (no special cases)

so can we do the same with X = Ax, i.e. x(t)=e"x(0)?

If only we knew how to calculate e* => No special cases are needed then.

It can be proved "that e* =1+ At + %(At)2 +

1

E(At)3+...8

How?®x(t) =e*x(0) is associated with x(t)=Cee™ +C,e,e™?

Remember: Ae, =€ 4 or in a matrix notation:

2x2
2x2

i of !

\ﬁ/_J
2x2

AT =T A or A=TuT?

2x2 2x2  2x2 2x2

"Taylor Series

8 clc, clear all, close all, A=[-8 -4; 1.5 -3]1; x0=[1;2]; [x,v]=eigs (A);
syms t, STM=[x(:,1)*exp(v(l,1)*t) x(:,2)*exp(v(2,2)*t)];

STM O=subs (STM, t,0); xt=STM*inv(STM 0)*x0, x2t=expm (A*t)*x0

® Similar analysis can be done also for the other 2 cases, but it is rather harder and outside the scope of this
module.
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So:

e =T+ At+ %(A’[)2 + %(At)3 +o.=1+ (TAT‘l)t + %((TAT‘l)t)Z + %((T/lT‘l)t)3 +...

But (TAT) = (74T )(TAT ) = AT
SO.

M =TIT + (TAT‘l)t +%(T/12T‘1)t2 + %(TA?’T—l)z3 to=
1

=T (1 P (A 2 () ...jT‘l = Te"T™
2! 3!

e’ 0
At
And e _{ 0 e@‘}

Hence: x(t)=e"x(0)=T e” T x(0)=

21 2x2 2 2x2 2x2 2x2 2

_e‘“ 0 | -1
X(t)=[e, &] 2t e ] x(0)
2 _ 0 e 175
2x2 < ; 2x2
2x2
et 0 |[w,
(0-le_e]% % ]xo
2x1 2%2 - — per 2x1
2x2 X

Note: the vectors e are 2x1 vectors, and the vectors w are 1x2 vectors.

X(t) =ee™wx(0)+e,e™w,x(0)

This is similar to x(t)=C,ee™ +C,e,e™.
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Tutorial Exercise 111

. -2 2
1. A system is given by x={ 5 5:|X

(a) Find the eigenvalues and eigenvectors of this system.

(b) Find the general solution using the previously found eigenvectors.

1
(c) Find the particular solution if x(O) = L}

2. Asystem is given by X+3%+2x=0,x(0)=1 x(0)=-1
(a) Find the particular solution of the differential equation.
(b) Draw a sketch of the response x(t).

(c) Transform the system to state space form if y = -2x(t).

(d) Find the eigenvalues and eigenvectors of the system. What is the

response type?

(e) Find the general solution using the eigenvectors then find the particular

solution using the given initial conditions.

3. Find the state transition matrix of the homogeneous state space system that

-1
you find in 2 (c) then find the particular solution for x(0) ={ 0 }

o o113
4. A system is given by x:{2 4}x
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(a) Find the state transition matrix.

(b) Find the particular solution for the homogeneous system using the state

. : 0
transition matrix approach for x(0) ={ J.

- 0 1
5. A state space system is given by x ={ . 4}x

(a) Find the state transition matrix.

(b) Find the particular solution for the homogeneous system using the state

. : 0
transition matrix approach for x(0) = {J :

(c) Crosscheck your answer in (b) by finding the particular solution of the

system using eigenvalues and eigenvectors approach.
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