Linear Controller Design and State Space Analysis EEE3001/8013 Tutorial Exercise I

1. By using the general form of the analytic solution try to predict the response of the following systems:

A generic first order system can be written as $\frac{d x}{d t}+k x=u$.

- This system is stable if k is positive and unstable if k is negative.
- If the input signal u is constant (and the system is stable), u will simply shift the overall solution to u / k as at steady state $\frac{d x}{d t}=0$ (for a constant input!) and hence $0+k x_{s s}=u \Rightarrow x_{s s}=u / k$.

With these in mind I can answer the $1^{\text {st }}$ question ${ }^{1}$:
i. $\quad 5 \frac{d x}{d t}+6 x=0, \quad x(0)=0, x(0)=1, x(0)=-1$

In this system the value of k is $6 / 5>0$ so the system is stable. The input is zero (homogeneous system), so the response will converge (exponentially) to zero. When Initial Condition (IC) is $+/-1, x$ will start from $+/ 1$ and it and will converge to zero. If it starts at 0 , it will stay there $\forall t \in \mathbb{R}^{+}$.

From the lecture we know that $x(t)=e^{-k t} x\left(t_{0}\right)+e^{-k t} \int_{t_{0}}^{t} e^{k t_{1}} u\left(t_{1}\right) d t_{1}$

In this case, $x(t)=\left\{\begin{array}{l}e^{-\frac{6}{5} t} \cdot 1=e^{-\frac{6}{5} t} \\ e^{-\frac{6}{5} t} \cdot 0=0 \\ e^{-\frac{6}{5} t} \cdot(-1)=-e^{-\frac{6}{5} t}\end{array}\right.$

[^0]Note that if you were also asked to plot the response you would need to do something like this:

$$
\text { ii. } 5 \frac{d x}{d t}-6 x=0, \quad x(0)=0, x(0)=1, x(0)=-1
$$

Unstable, homogeneous. If it starts from $+/-1$, it diverges exponentially to $+/-\infty$, if it starts from zero, it stays there forever.
iii. $5 \frac{d x}{d t}+6 x=1, \quad x(0)=0, x(0)=1, x(0)=-1$

Stable, converges exponentially to $1 / 6$, regardless of ICs.

$$
\text { iv. } 5 \frac{d x}{d t}+6 x=-1, \quad x(0)=0, x(0)=1, x(0)=-1
$$

Similarly, for this system but now I will converge to $-1 / 6$.

$$
\text { v. } \frac{d x}{d t}+3=0, \quad x(0)=0, x(0)=1, x(0)=-1
$$

This is a "trivial system" as $k=0$ and the output can be found by a simple integration:
$\frac{d x}{d t}=-3 \Leftrightarrow x(t)=\int 3 d t=3 t+C$. The value of C can be found from the ICs as $x(0)=C$.
So the response will diverge linearly to $+\infty$ and for $x(0)<0$ it will hit the axis $x=0$ when $t=-x(0) / 3$.

Tutorial 1 - Solutions/Answers

2. Find the solution of $\ddot{x}+6 \dot{x}+5 x=0, x(0)=2, \dot{x}(0)=3$. Briefly describe how the solution behaves for these initial conditions. Draw a sketch of the response.

This is a homogeneous $2^{\text {nd }}$ order DE. I will start by finding the roots of the characteristic equation:
$\Leftrightarrow r^{2}+6 r+5=0 \Leftrightarrow(r+5)(r+1)=0 \Leftrightarrow r_{2}=-5 \quad r_{1}=-1$

Since the 2 roots are negative the solution is stable and will decay exponentially to zero (since it's a homogeneous system)

This is an overdamped system and the solution can be written as: $x=C_{1} e^{-5 t}+C_{2} e^{-t}$

Using the given initial conditions I can calculate C_{1} and C_{2} :
$\mathrm{C}_{1}=-5 / 4, \mathrm{C}_{2}=13 / 4 \Rightarrow x=-5 / 4 e^{-5 t}+13 / 4 e^{-t}$

For MSc students:

```
clc, clear all, close all,
syms x(t); Dx=diff(x,1); D2x=diff(x,2); ODE=D2x+6*Dx+5*x;
x_sol=dsolve(ODE, x(0)==2, Dx (0)==3)
x_num=double(subs(x_sol,t,0:0.01:10));
plot(0:0.01:10,x_num);
xlabel('time, s'), ylabel('x(t)'), grid
```

3. Find the solution of $\ddot{x}+2 \dot{x}+6 x=0, x(0)=1, \dot{x}(0)=0$. Briefly describe how the solution behaves for these initial conditions. Draw a sketch of the response.

Homogeneous system, with eigenvalues: -1 ± 2.2361 i, so stable, converging to zero with oscillations.

Particular solution: $\exp (-\mathrm{t}) * \cos \left(5^{\wedge}(1 / 2)^{*} \mathrm{t}\right)+\left(5^{\wedge}(1 / 2) * \exp (-\mathrm{t})^{*} \sin \left(5^{\wedge}(1 / 2) * \mathrm{t}\right)\right) / 5$

Response:

4. Find the solution of $\ddot{x}+\dot{x}+0.25 x=0, x(0)=2, \dot{x}(0)=1 / 3$. Briefly describe how the solution behaves for these initial conditions. Draw a sketch of the response.

Eigenvalues -0.5 (twice), so stable, exponentially converging to zero.

Particular solution: $2 * \exp (-t / 2)+(4 * t * \exp (-t / 2)) / 3$

Tutorial 1 - Solutions/Answers

5. Find the Wronskian matrices of the solutions of Q2-5.

For Q2:
$x_{1}=e^{-5 t}, x_{2}=e^{-t} \Rightarrow W=\left[\begin{array}{cc}e^{-5 t} & e^{-t} \\ -5 e^{-5 t} & -e^{-t}\end{array}\right] \Rightarrow|W|=e^{-5 t}\left(-e^{-t}\right)-e^{-t}\left(-5 e^{-5 t}\right)=-e^{-6 t}+5 e^{-6 t}=4 e^{-6 t} \neq 0$
For MSc students:

```
clc, clear all, close all, syms t,
x1=exp(-5*t); x2=exp(-t); Dx1=diff(x1); Dx2=diff(x2);
W=[x1, x2; Dx1, Dx2], det(W)
```

$\mathrm{Q}^{2}:|W|=-\sqrt{5} \cdot 2 i \cdot e^{-2 t}$

Q4: $|W|=e^{-t}$

[^1]
[^0]: ${ }^{1}$ A detailed solution is given for the first question; only brief answers will be given to the rest of the questions.

[^1]: ${ }^{2}$ clc, clear all, close all, syms t, $x=r o o t s([126]) ; ~ x 1=e x p(x(1) * t) ;$ x2=exp(x(2)*t); Dx1=diff(x1); Dx2=diff(x2); W=[x1, x2; Dx1, Dx2]; det(W); simplify(det(W)), pretty(ans)

