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Chapter 1 EEE8013 — EEE3001
Ordinary Differential Equations

1. Introduction

To understand the properties (dynamics) of a system, we can model
(represent) it using differential equations (DEs). The response/behaviour of
the system is found by solving the DEs. In our cases, the DE is an Ordinary
DE (ODE), i.e. not a partial derivative. The main purpose of this Chapter is to
learn how to solve first and second order ODEs in the time domain. This will
serve as a building block to model and study more complicated systems. Our
ultimate goal is to control the system when it does not show a “satisfactory”

behaviour. Effectively, this will be done by modifying the ODE.
2. First Order ODEs

The general form of a first order ODE is:

dx(t)
dt

= f(x(t).t) (1)

wherel xte R

Analytical solution: Explicit formula for x(t) (a solution which can be found

using various methods) which satisfies % = f(x,t)

! The proper notation is x(t) and not x but we drop the brackets in order to simplify the presentation.
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-3t

Example 1.1: Prove that x =e™ and x =—10e *are solutions of % =-3X.

-3t
% = _3Xx <& d (e ) _ _3(6—3t) o _3e—3t _ _3e—3t
dt dt
-3t
& gy, 2 (-10e7) ~3(-10e ™) < 30e ™ =30e ™ _
dt dt

Obviously there are infinite solutions to an ODE and for that reason the found

solution is called the General Solution of the ODE.

First order Initial Value Problem : %: f(xt), x(ty)=x,

An initial value problem is an ODE with an initial condition, hence we do not
find the general solution but the Specific Solution that passes through xo at
t=to.

Analytical solution: Explicit formula for x(t) which satisfies % = f(x,t) and

passes through x, when t=t,.

Example 1.2: Prove that x=e™ is a solution, while x=-10e™ is not a solution
dx

of —==-3x,x, =1
dt %

Both expressions (x=e™ and x=-10e"") satisfy the % =-3x but at t=0
x(t)=e™ =x(0)=1
x(t)=—10e™ = x(0)=-10=1 m
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For that reason some books use a different symbol for the specific solution:

¢(t,t0,xo) :

You must be clear about the difference between an ODE and the solution to
an VP! From now on we will just study IVP unless otherwise explicitly

mentioned.
Linear First Order ODEs

A linear 1% order ODE is given by:

a(t)x+b(t)x=c(t) a(t)=0 Non autonomous
\ )
ax'+bx=c,a=0 Autonomous
with a,b,ce R and a=0.
In engineering books the most common form of (2) is (since a=0):
x+k(t)x=u(t) ©)

with k,ue R

Note: We say that u is the input to our system that is represented by (3)

The solution of (3) (using the integrating factor) is given by:

t
x(t)=e"x(t,)+ e’“_[ektlu (t,)dt,

ty
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t
The term e “x(t,) is called transient response, while e*"‘je"tlu(tl)dtl comes
ty

from the input signal u.

If we assume that u is constant:

t
X(t)=e"x(t,) + e"“je"‘ludtl = x(t)=e™x(t,)+ u%(l— e—k(t—to))

fo

1
Hence: !me(t): O+“E(1—0)—U/k, k>0

+o0, k<0

Thus we say that if k>0 the system is stable (and the solution converges
exponentially at u/k) while if k<O the system is unstable (and the solution

diverges exponentially to +oo,).

Example 1.3: u=0 and k=2 & 5, xo=1

1 [ 1
Transient Transient
/ Total Total
0.5 ! 0.5 K otal
\k
0 ™ 0 ™
Input component Input component

'0'50 0.5 1 1.5 2 05 0.5 1 1.5 2
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Example 1.4: u=0 and k=-2 & 5, xp=1

4
50
Total\ / 2 Total
40 Transient / r Transient
N )
30 \ \ /
\ L
20 \\
Input component Input component
10 N 0.5
0 0.5 1 1.5 2 0 0.5 1 1.5 2
[ |
Example 1.5: u=0 and k=5, xo=1 & 5
2 ‘ 5 ‘
Total 4 Total
1.5 /
’ / Transient \ / Transient
/ 31/
1
< Input component 2 \ Input component
0.5 >< 1 )<
00 0.5 1 1.5 2 00 0.5 1 1.5 2
|
Example 1.6: u=-2 & 2 and k=5, xo=1
1 1 ‘
0.8 Total
- I\
Transient 0.6
Total \\\X\
\ 0.4
0 T ient
ransien
Input component \ 0.2 Input component__—
0% 0.5 1 1.5 2 % 0.5 1 1.5 2
|

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 6/19



mailto:damian.giaouris@ncl.ac.uk

Chapter 1 EEE8013 — EEE3001

Comments:

¢ In real systems we cannot have a state (say the speed of a mass-spring
system) that becomes infinite, obviously the system will be destroyed
when x gets to a high value.

e For the dynamics (settling time, stability...) of the system we should only

focus on the homogenous ODE: x'+k(t)x=0

3. Second Order ODEs
3.1 General Material

A second order ODE has as a general form:

= f(x'(t),x(t),t) (4)

A linear 2" order ODE is given by:

x"(t)+ A(t)x'(t)+B(t)x(t)=u(t), Nonautonomous -
x"(t)+ Ax'(t)+Bx(t)=u(t), Autonomous

And again we focus on autonomous homogeneous systems:

x"(t)+ A(t)x'(t)+B(t)x(t)=0 (6)

Again we define as an analytical solution of (6) an expression that satisfies it.
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Example 1.7: Given x"—2x'-3x=0 prove that x=¢€* and x=e"are two
solutions:

(€%)"-2(e*)-3(e") =0

%9e* —6e* -3 =0

0=0

(e‘t)"— 2(e“)'—3(e“):0 N

el+e' -3 '=0 u
0=0

Assume that you have 2 solutions for a 2" order ODE x; and X, (we will see

later how to get these two solutions), then:

x/(t)+ A(t)x(t)+B(t)x(t)=0 }

X3 (1) + A()%(t)+B(t)x,(t) =0
obviously I can multiply these two equations with arbitrary constants:

Cx((t) + AL X (1) + CB(E) % (t) =0 }
C,%; (t)+C,A(t)x;(t)+C,B(t)x,(t)=0

and now | can add them and collect similar terms:

(Cx () +C.x, (t))"+ A(1)(Cx (1) +Co%, (1)) '+ B(t)(Cx (t) + Cpx, (1)) =0

Common Term Common Term Common Term

which means that C,x, (t)+C,X,(t) (i.e. the linear combination of x; and x)

is also a solution of the ODE.
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Example 1.8: Given x"—2x'—3x =0 prove that x=e +2e™" is a solution:
(" +2e)—2(e” +2¢™)-3(e" +2¢ ') =0

9e™ 4 2e7t - 2(3e3t —2e ) —3* _Ge'=0c
9e* 26t -6t +4e ' -3 -6e'=0>

9e® —6e* —3" +2e ' +4et -6 =0
0=0 |

Now, the question is, if we have x; and X, can ALL other solutions of the
ODE, be expressed as a linear combination of x; and x,? So assume a third

solution(t):

@"(t)+A(t)e'(t)+B(t)e(t)=0
Now, the question can be written as, can we find constants C; and C; such as:

{@(t) =Cy%, (1) +Cyx%, (1) }

@'(1)=Cx'(t)+C,x,'(t)

This equation can be seen as a 2by2 system with unknowns C; and C; as:

20 moleHow

From linear algebra this system of equations has a unique solution if:
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Note: The matrix W (x,(t),x,(t))= { % (1) % (t)} is called the Wronskian?

of the ODE.

We also know from linear algebra that the determinant is not zero if:

So if the two solutions x; and x; are linear independent (LI) then ANY other
solution can be described by the linear combination of x; and X,. So how we

have to look for two LI solutions for the 2" order ODE.

Example 1.9: Prove that two solutions of x"-2x'-3x=0,x =e* and

X, =e™" are linear independent.

X (t) X, (t) e¥ e e e
W(Xi(t),XZ(t)):L%'(t) le(t):|:|:3e3t et}:w\/‘: N
W] (o) 3% = e 55— g _

Example 1.10: Prove that two solutions of x"-2x'-3x=0,x =¢e* and

x, =2€e* are NOT linear independent.

2 From the Polish mathematician J6zef Maria Hoéne-Wronski
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R R M
W=

3t 3t
e 2e
=6e® —6e” =0 u

3e3t 6e3t

Example 1.11: For the ODE x"-2x'-3x=0 prove that the solution
x=—e% +2¢' cannot be written as any combination of x, =e* and x, = 2¢™.

x=Cx +C,x, < —e +2e' =Ce* +C,e* =(C,+C, )e”
From this expression we have that C, + C, =—1 (and hence we have the term
—e*) but there is no term €' for 2e'. |

But how can we find two LI solutions? For homogeneous 1% order ODEs with
u=0 the solution was: x(t)=e"C so we will try a similar approach for 2

order ODE:s:

X'+Ax+Bx=0, assume® x=e"=> x'=re" & x"'=r%"=>
X'+AX+Bx=0<r%e" + Are" +Be" =0 =

r’+Ar+B=0 (7
This is called the Characteristic Equation (CE) and we have to check its roots:

—~A+~\A? - 4B - .
r= 5 , these are the Characteristic values or Eigenvalues.

3 Notice that we do NOT know what is the value of r.
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3.2 Roots are real and unequal

If A% > 4B the system is called Overdamped and the two roots are r; and r-
With ri#ry, 11, r; € R. Then x =e™ and x, = are two linear independent

solutions as:

et ot

=e"re? —e"re" 20
re" re? 2 '
1 2

hence the general solution is
X =CyX, +C,X, =C,e™ +C,e" ®)
If ry and r, <0 then X — O and the system is stable.

If ry or r,>0 then & — Zoo and the system is unstable.

Example 1.12: The CE of x"+11x'+30x =0 is r* +11r + 30 =0 which means

_11+112-4-1. 11+ rr=-5
that the two roots are: I, = 11 112 4130 _ 12_1:{;_ 5
N

— erlt — e—5t

and hence the 2 LI solutions are
_ At 46t
X,=e7 =¢e

This means that the general solution is x=Ce™ +C,e™ and hence the ODE
is stable. The Wronskian is

‘ X1 X2 e—5t e—st

Xll X2 _5975t _6e76t
If the initial condition is x(0)=1,x'(0)=0 then:
C+C,=1 | _C=6

5C, —6C, =0

— e Sttt 4 5a et — _ollt
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3.4 Roots are Complex (and hence not equal)

If A <4Bthen the system is called Underdamped and the two roots are

r,=a+bj and r,=T,=a—bj with ri#r;, r, r eC. Then z, = " = O

r a—bj)t - . -
and z, = e? = e( ) are two linear independent solutions as

a+bj)t a—bj )t

el '
(a+bj)e™™"  (a—bj)e™™"
(a—bj)e* —(a+bj)e* =e* (a—bj—a—bj)=—2e*hj =0

e(a+bj (a bj) (a—bj)t e(a bj )t (a-l-bj) a+bj)t:

Hence the general solution is

x=Cx +Cx =Cge" +C,e" (9)
but remember that C; and C, are complex now variables such as x e R .
Example 1.13: The CE of x"+2x'+5x=0 is r®+2r+5=0 which means

i, SN _ i r=-1+2]
2+-16 _ 2i41:_1i2j:> 1 J
2 2 r,=-1-2]

that the two roots are: 1, =

nt —142j)t

-1-2jt

and hence the 2 LI solutions are
x, =e% =el

This means that the general solution is x = Ce ™" + C,e"™ /" and hence the
ODE is stable. The Wronskian is

Xl X2 e(71+2j)t e(

12 j)t (12 )t (-2t (—l—2j)t:
(-1- 2]) e —(-1+2j)e e
(-1-2j)e™* —(-1+2j)e™ =(-1-2j+1-2j)e™ =
—4je

-1-2j)t

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 13/19



mailto:damian.giaouris@ncl.ac.uk

Chapter 1 EEE8013 — EEE3001

If the initial condition is x(0)=1,x'(0)=0 then:

o 1,1
C,+C,=1 } 1_E+ZJ
: _ = =X
(-1+2j)C,+(-1-2j)C, =0 szl_ij
2 4
X:(l+ljje(—l+2j)t+(E_Ejje(—l—2j)t -
2 4 2 4

An alternative approach is not to use x; & x, but a linear combination of them:

yl:e”+eﬂ, yzzert_eﬁ

et 4 e et _gnt
Notethat| ~— ~ ~ — 1#0
re"+re" re" —re

Using Euler’s formula: €™ =¢* (cosbt + jsinbt) and hence:

a+bj)t a—bj)t

y, = gl

y2 _ e(a1+bj)t _

e™ (cosbt + jsinbt +cosbt — jsinbt) = 2e* cosht

e( a—bj)t

e™ (cosht + jsinbt —cosbt + jsinbt) = j2e™ sinbt

As y; and y, are solutions so do Y, x%, Y, X 2i So the general solution when
J

we have complex roots is:
x(t)=e*(C,cosbt +C,sinbt),C,,C, e R (10)

Example 1.14: The CE of x"+2x'+5x=0 is r*+2r+5=0 which means
2416 -2+4j L=-1+2]

that the two roots are: I, , = > > =-1+ 2j:>{r 122
=1
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x, =€ cos(2t)
X, =e"'sin(2t)
—t

This means that the general solution is x=¢ (C cos2t +C,sin 2t) and hence
the ODE is stable. The Wronskian is

and hence the 2 LI solutions are {

X X e cos(2t) e 'sin(2t) o

1 |_ —t —t .= —t —t 7323
X' X |-e'cos(2t)—2e"'sin(2t) —e'sin(2t)+2e cos(2t)
If the initial condition is x(0)=1,x'(0)=0 then:
C, =1 C, =1

= =

—C,+2C,=0| C,=05

=e™'(cos2t+0.5sin 2t) _

3.3 Roots are real and equal

If A* = /Bthen the system is called Critically damped and the two roots are

r=r =7, withr e R. One solution is x, =e" but how about x,? We can

use x, =te" and the general solution:

Tt rl
r=Cx,+Cx,=Ce" +Cjte’ (12)

The Wronskian is:

nt nt

te
it Qi

e

) t rlt (rterlt rlt) rltterlt rtlelt 2r1t . rltlelt _ e2r1t 20
re ! re

Example 1.15: The CE of X"+ 2x'+x=0 is r*+2r +1=0 which means that

_ -1
zm: I
2 r,=-1

the two roots are: 1, , =

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 15/19



mailto:damian.giaouris@ncl.ac.uk

Chapter 1 EEE8013 — EEE3001

. X =e"
and hence the 2 LI solutions are t
X, =t~
This means that the general solution is x=Ce™ +C,te™ and hence the ODE
is stable. The Wronskian is

te™
=e? £0

—e' —tet4e™

If the initial condition is x(0)=1,x'(0)=0 then:

C, =1 C, =1
—
—C,+C,=0[ " C,=1

X=e"'+te™ |

Not assessed material

To see why x, =te" is the 2" solution go to the ODE and place x=e":
(e”)"+ A(e”)'+ Bx=e" (r2 +Ar + B)

Since ry is a double root of the CE: r® + Ar+B=a(r — rl)2 for some constant
a. So: (e")"+ A(e")+Bx=e"a(r-r,)’

Taking the time derivative wrt r:
d ((ert)u) Ad ((ert)-) . q (e”) q (el‘ta(r B rl)z)

+ e
dr dr dr dr

And as we can change the sequence of the differentiation:

{MJ +A{d(9”)} (e _d(e"alrn))

dr dr dr dr

By using simple calculus:
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i ' rt d _ 2
(ertt) + Ae"t) +Be"t = d(der )a(r—r1)2+e” (a(;r ) )<:>

(e”t)" + A(e”t)' +Be"t=e"ta(r-r,) +e"2a(r-r)

By placing now where r=ry: (e“t)" + A(e"t)' +Be"t=0

Which means that et must be a solution of my ODE and:

nt nt

€ te

_ erlt . (trlerlt T erlt ) —terlt . r.1er1t :trlezrlt i e2r1t _trllelt _ e2r1t £0

nt

re™ tre™ +e"

And hence x,(t)=e"t is my second solution.
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—
O

7

7

7N

Critical or Stable "
overdamped W e fﬁﬁﬁﬁ%
underdamped IHIHIHIHIH Unstablem\\\‘x\\\\ﬁ
Name Oscillations? | Components of solution

Overdamped | No

Two exponentials:

kit pkot
e, e, ki,k, <0

Critically No
damped

Two exponentials:

ekt,tekt, k<0

Underdamped | Yes

One exponential and one

cosine e, cos(at), k <0

Undamped Yes

one cosine cos(at)
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4. Tutorial Exercise |

1. By using the general form of the analytic solution try to predict the response of the
following systems. Your answer must describe the system as stable/unstable,
convergent to zero/nonzero value. Crosscheck your answer by solving the DE:

dx

© 5 +6x=0 x(0)=0,x(0)=1,x(0)=-1
. 5%—6x=0, x(0)=0, x(0)=1, x(0)=-1
. 5%+6x:1, x(0)=0, x(0)=1, x(0)= -1
. 5%+6x=—1, x(0)=0, x(0)=1, x(0)=-1
. %-3:0, x(0)=0, x(0)=1, x(0)= -1

2. Find the solution of X+6%+5x=0, x(0)=2, X(0)=3. Briefly describe how the
solution behaves for these initial conditions. Draw a sketch of the response.

3. Find the solution of X+2X+6x=0, x(0)=1, %(0)=0. Briefly describe how the
solution behaves for these initial conditions. Draw a sketch of the response.

4. Find the solution of X—X+0.25x=0, x(0)=2, x(0)=1/3. Briefly describe how the

solution behaves for these initial conditions. Draw a sketch of the response.

5. Find the Wronskian matrices of the solutions of Q2-5.
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