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1. Introduction

Assume that we have an nt order system: x") = f(x,x',x",..x(“‘l)). Very

difficult to study it as even if it is a linear system we must solve an n" order
polynomial equation. Theoretically we can use geometric and/or analytical
methods but this can be applied only in some specific cases. Computers can
be used to tackle this problem and as they are better with 1 order ODEs we
break the n™" order ODE to a system of n 1% order ODEs. Also by using
matrices we can use powerful tools from linear algebra. The goal of this
chapter is to introduce a new approach in the modelling of dynamical systems,
the method is called state space analysis and it is far more versatile than the

well-known Transfer Functions.

More specifically, the classical control system design techniques (such as root

locus and frequency response methods) are generally applicable to:

a) Single Input Single Output (SISO) systems
b) Systems that are linear and time invariant (have parameters that do not
change with time)

The state space approach is a generalized time domain method for modelling,
analysing and designing control systems and is particularly well suited to
digital implementation. The state space approach can deal with:

a) Multi Input Multi Output systems

b) Non-linear and time variant systems

c) Alternative controller design approaches
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Example:

Assume the simple mass-spring system:

F(D)
—
X(t)
—
_/\/{(/\/\_ m Friction, B
T
Using Newtonian mechanics we get:
2
d—;zF—B%—kx=mX':F—BX—kx
dt dt
By choosing as x; = X, X, = X we have:
o =l B
X2=X:E(F—BX2—|(X1) 2l |"m "X

o 3o

The variables x; and x, define the state vector x, which in turn defines the state

EEE8013-3001

(a complete summary/description) of the system. Knowing the current state

and the future inputs we can predict the future states, i.e. the future behaviour

of the system. In the aforementioned case, knowing the values/direction of the

force F, the current displacement x and speed x of the object we can fully

define its future displacement and speed.
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In a more general case when we have n states and m inputs we have:

dx,
e 8 X+ X, + 8 X F e, +a, X, +b,u +bou, +. +b, U,
dx,
P 8y, X + Ay, X, + 8, 5%y + e +a, X, +b,,u +b,,u, +.. +b, U,
dx,
e A, X + A, X + 85Xy F e, +a, X, +b, U +b U, +... +b, U,
This can be written in a vector form as:
X=Ax+Bu
where:
X CYRTRNEREE ER X U,
bll blm
X, 2 PR a, , X, u,
X= , A= , X= ,B=| ... . U=
b b
. i o e B
X, I TR N X ] '~

Now, in order to “monitor” the system we need sensors to measure various

variables like the displacement and velocity of the mass.

Let’s assume that we can buy sensors for both variables (the speed and the

displacement), then we define the output of the system to be:

10
Y, X, 01
Let’s assume that we can buy only one sensor, that measures the displacement,

then the outputis: y=x < y=[1 0]x< y=Cx

Let’s assume that we can buy only one sensor, that measures the velocity, then

the output is: y=x, < y=[0 1]x< y=Cx
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Let’s assume that we have only one sensor that measures a linear combination

of the displacement and velocity: y=ax +a,x, < y=[a, a,]x< y=Cx

Hence, the most general case:

Y1 C X +C X, +---C X, Cy

Y, G X +Cy 0%, +0-C, X, Co1

= oy=|
_yIO_ _Cp,1X1+Cp,2X2 +“'C2pnxn_ _prl

X< y=Cx

Finally let’s assume that (in a rather artificial case) that the input can directly

influence the output, then we have: y =Cx+ Du, For some matrix D.

. ) X=Ax+ Bu
So the system is described by :
y=Cx+ Du
t - _ Y1 -
Up X=Ax+Bu V2
- _
U, y =Cx+ Du Yo
- .
Or in a vector form:
u X = AXx+ Bu y
o y=Cx+Du >
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_Ul_ —yl_
u

Where: u=| 2|, y= V2
: Ys
[ Un | L Yp

X(t) = A(t)x(t) + B(t)u(t)
y(t) =C(t)x(t) + D(t)u(t)

In general:

Where

e Xxisann x 1 state vector, i.e. xe R™

uis an m x 1 input vector, i.e. ue R™

y is an p x 1 output vector, i.e. ye R™*

A'is an n x n state matrix, i.e. Ae R™"

B is an n x m input matrix, i.e. Be R"™"

C is an p X n output matrix, i.e. C e R™"

D is an p x m feed forward matrix (usually zero), i.e. D e R™"

X(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)

If the system is Linear Time Invariant (LTI):

The state of a system is a complete summary of the system at a particular point
in time. If the current state of the system and the future input signals are known

then it is possible to define the future states and outputs of the system.
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The state of a system may be defined as the set of variables (state variables)
which at some initial time t,, together with the input variables, completely

determine the behaviour of the system for time t > t,.

The state variables are the smallest number of variables that can describe the
dynamic nature of a system and it is not a necessary constraint that they are
measurable. The manner in which a state variables change with time can be
thought of as trajectory in n dimensional space called state space. Two
dimensional state space is sometimes referred to as the phase plane when one

state is the derivative of the other.

The choice of the state space variables is free as long as some rules are
followed:

e They must be linearly independent.
e They must specify completely the dynamic behaviour of the system.

¢ Finally they must not be input of the system.

Example 2.1: Find the state space model of the following system:
X(t)+3%(t)+2x(t)=u(t)

y =4x(t)

S Al

X, =X=U—-3X—2X=U-3X, —2X X, -2 3%, | |1
y=4x=4x < y=[4 O]{f},A:LOZ _13}52{2}32[4 0] u
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Example 2.2: Find the state space model of the following system:
X (t)=3%(t)+2x%(t)—2x(t)+u,(t)—6u,(t)

Y =X(t)+u,(t)

y, = X(t)+3x(t)+5u,(t)

Y, =—3X(t) + x(t) +5u,(t)

Hence:

X=X

X=X, =X, X, 0 1 0fx oou
X=X, =X, =% |=/0 0 1| x,[+/0 O Ll}:
X =3X + 2% — 2X + U, — 6U, < % | |-2 2 3| x| |1 -6]-°
X, = 3%, +2X, — 2%, + U, —6u,

y, = X(t)+u,(t) Y, = X + U,
Y, =X(t)+3x(t)+5u,(t) =Y, =% +3x+5u,(t)r =
Yo ==3%(t)+ x(t)+5uU,(t)]  ¥5=-3%; +X +5U,
nl [0 o 1]x] [0 1],
y2=301x2+50Ll} u
V.| |1 0 -3|x | [0 5]-°

Examples of state space models (NOT ASSESSED MATERIAL)
Example 2.3
Assume the following simple electromechanical that consists of an
electromagnet and

P
v - 1M K

B

The force of the magnetic field is directly related to the current in the RL
2

network. The force that is exerted on the object is f = kAI—Z, where ka is a
X
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positive constant. To simplify the analysis we assume that the displacement x
Is very small and in that small area the current has a linear relationship with
the force: f =Ki

o di 1 :
Using circuit theory: i E(V —iR)

Using Newton’s 2" law: f —kx— Bx = mX <> k 5i —kx— Bx = m¥x
Now, we can define x; =X, X, =X and X3 =i. Thus:

1 R v
X3 =—(V=X3R) & X3 = X3 —+—
3 L( 3 ) 3 SL L
k B k
MX, =KaXs —kX —BX, < X, = —— X; —— X, + —2 X
2 A3 1 2 2 m 1 m 2 m 3
Hence the state space model is:
X, 0 1 0 X, 0
X, |= —% —% —k/%n X, [+]0 V& x=Ax+Bu
X _R X
3 0 0 A 3 _%

Now let’s assume that we have only one sensor that will return the
displacement x:

X1
y=[L 0 0]x
X3
Thus the state space model is:
X, 0 1 0 X, 0
Xzz—% —%—’%nx2+0 Vv
X3 0 0 —% X3 _%_
X1
y=[L 0 0] x
X3
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Example 2.4
Another example is shown in the next figure.

v(t) -

The shaft of the separately excited DC motor is connected to the load J,
through a gear box.

T, =27 = 36, =L K, i, —BE,
m 2
=
Tm:KT(Ma
, di, di, n,
V, =igRy + Ly —2+ Ky 00, <V, =i,R, + L, +KTgp 6,
dt dt n

i, B, <=4 36, = K,i, ~ B,
di, sy iR +L da kg
v, =i,R, +L,—2 K¢ 2, Y Tl T g T

1

| define By = Xy, iy = X,:
, X = —— X +—2X
It = KyX, — B, }@1 Jt g -
Va:XZRa+LaX2+K1X1 X2__ﬁxl_)(2&+iva
La La La
_B K 0

X X
ol |- 2% |

La La a
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Example 2.5:
It can be proved that a model of the Induction Machine is:

Ay _ —Rii, +U
dt
dl//sQ H
o =—Rly + Uy
dip R~ -obl = . (Ler+LrRs)_i L =S
d t O_l l//sD 01 l//sQ sD O_l sQ™r 01 sD
diSQ _Rr +a)rLr +i (LSRF+LFRS)+I T U
0% — AL . LA . ——
dt o, 14 sQ o, Y sQ o, sD™*r ] sQ
[To o R, 0 C 1 1
l//sD 0 0 0 _Rs l//sD 0 1
l/-/SQ _ _Rr —, Lr (Ler + Lr Rs) —, I-FSQ n _5 0 Usp
) 0 0, 0, lo O, Usq
L isQ i @, Lr _Rr o, (LSRF + LFRS) L iSQ i 0 _i
L C)-l O-l 0-1 i L O-l_
Or:
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dg;, R, ol%. LR. oL, 1
T 4 'sD lso rd Ieq Usp
dt ol Lok 2 Lol M o, M ol
di 2
sQ :_a)er .SD_ Rs iSQ_a)er ird N LR, irq N 1 Uso
dt Lol ° ol ol Lol " ol
dig _ LR . _a)eri _Rri D L, y
dt LrOLs sD OLr sQ OLr rd o rq I—sOLr sD
dirq :wrl—mi mRsI ﬂi _ Rr i I—m u
dt o, ° Lok o™ o, ™ Lol ©
__diSD_ _ R a)rLfn LR, oLy
dt oy, Lok Lol ol | -
dI_SQ a)rLfn _& ol LaR; iSD
(_jt = L ol ol ol L ol _SQ
dl_rd I—mRs a)rl—m _ Rr _ O g
dt L, ol oL, oL, o | i
dirq oL, LR 23 _& S
Ldt | [ oL, L ol o oL, i
1 0
ol
0 1
O‘LS Usp
+
3 Ly 0 Usg
LoL,
0 __Lm
L LSO‘LV_

N

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk

12/24



mailto:damian.giaouris@ncl.ac.uk

Chapter 2 EEE8013-3001
State space

The system’s states can be written in a vector form as:

X, =[x, 0,--, 0], X, =[0, %, ---, O] ..., x, =[0,0,---, x, [

=> A standard orthogonal basis (since they are linear independent) for an n-

dimensional vector space called state space.

Examples of state spaces are the state plane (n=2) and state 3D space (n=3),
A A

i ‘R i °R

4+
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Relation of state space and TF

If we have an LTI state space (ss) system, how can we find its TF?

X(t) = Ax(t) + Bu(t);sx (s)—x(0)=AX(s)+BU(s) =

(sl — A)X(s) =BU(s) + x(0) =
X (s)=(sl —A) BU(s)+(sl —A)" x(0)

And from the 2" equation of the ss system:

Y (s)=CX(s)+ DU(s)=>

Y(s)= c((sl —A)BU(s)+ (sl —A)” x(O)) +DU(s)
Y(s)= (C(sl ~A) B+ D)U (s)+C (sl — A)*x(0)

By definition TF: C(sl - A)_1 B+D and C(sl - A)_lx(O) the response to the
IC.

ILT

Also: X (s)=(sl —A) BU(s)+(sl - A) " X(0)=
x(t) = L‘l{(sl ~A)'BU (s)} + L‘l{(sl _ A)‘l} x(0)

If u=0 => X (t) = L‘l{(sl - A)‘l} X (0)

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 14/24
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So  G(s)=C(sl —A)'B+D

sl—-A -B,
C.

J

sl — A

G;;(s)=

j"" row of C.

iIs the TF.

Hence |sI — A is the CE of the TF!!!

[G,(s)  Gy(s)
Gy(s) Gy(s)

So: G(s) =
1G(8) G,(s)
Y Y Y
U_1:Gn’ U_1:C512’ U—2621,
1 2 1

Gyy(9) |
G2q (S)

qu (s)_

2

EEE8013-3001

From linear algebra:

, Where B; is the i column of the matrix B and C;j is the

Example 2.6: Find the TF of the following system:

L e o

-1 ‘:s(s+0.5)+1

S
sl — A=

1 s+05
s -1 0
1 s+05 -1=1
1 0 0

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk
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Example 2.7: Find the TF of the following system:

-1
sl - |:‘ ‘:s(s+0.5)+1
1 s+05
1
10 >:>Gl'1():s(s+05)+1
1 s+05 -1=1 '
1 0 0
-1
sl — |:‘ ‘:s(s+0.5)+1
1 s+05
2S
s 10 jGZ'l(S):S(S+05)+l
1 s+05 -1=1 '
0 2 0
Or:

G(s)=C(sl—A) 'B+D= Ll) Z}E . ;ngm +0,,

s+05 1 s+05 1
{s -1 T -1 s -1 s
= =

s(s+0.5)+1

1 0]s+05 1]f0
G(s)= =
s(s+05)+1|0 2] -1 S}L}
1
0

2
of[1] 1 1
2|ls| s(s+0.5)+1|2s

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk
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Example 2.8: Find the TF of the following system:

Xo| [0 1 ] +1 zuandy:{z O}PJ}
w| L1 =05 ] [0 1 0 2] x,

S
sl — Al= =5(s+05)+1
1 s+05 05
S+ U.

_ _ G -
st =Gu(s) s(s+0.5)+1
1 s+05 O0|=s+05
1 0 0
|sI—A|:‘S - ‘zs(s+0.5)+1

1 s+0.5 ,
s - :Gz’l(s):s(s+0.5)+1
1 s+05 0]=-2
0 2 0
sl-A=| T |=s(s+05)+1
1 s+05 .
s+3
oA =C(8)=55708) 11
1 s+05 -1=s5+3/2
1 0 0
sl-A=[ T |=s(s+05)+1
1 s+05 os_o
S_
s L= :GZ‘Z(S)ZS(S+05)+1
1 s+05 -U=2s-2 '
0 2 0
Or:
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G(s)=C(sl —A) 'B+D {; Z}E 3;3.5}1{

s+05 1 s+05 1
{s -1 T -1 s -1 s
= = =

s -1 s(s+0.5)+1

G(S):s(s+é.5) 1(1) (2){“05 1}{3 ﬂ

G(S):S(s+(1).5) 1_S+05 1}{ ﬂ

G(s)— 1 [s+05 s+05+1
_s(s+0.5)+1 -2 —2+2s

Observability

Assume that we have the following system:

o Sk

y=[3 0]x

11
O 1 +02><2

EEE8013-3001

Notice that the model is uncoupled and since C is 1x2 it is impossible to see

how x, behaves (no problem if A was not diagonal or C was I,). This implies

that we cannot monitor x,, for example it can diverge to infinity with

catastrophic results for our system.

Assume that we have another system: 3
y=29X

X:—2x+2u}

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk
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Clearly these two models are different. In that case it can be proved that the 2

systems have the same transfer function as there is a pole-zero cancelation:

si-A -B

X=-2X+2u — G(s)= C D‘: 6
y =3X sl — A S+2

sil-A -B

jgo]}}{ﬂ” =6(s)= CsuAD(Sf(ZS)Z:L)(SfZ)

which is exactly the same as the TF of the first system, what is wrong? There

Is a pole zero cancellation at the second model

Controllability
Assume that we have the following system:
120 2
X = X+| |u
0 -1 0
y=[3 2]x

In this case we can see how both states behave but we cannot change u in any

way so that we can influence x, due to the form of B. If A was not diagonal

we would be able to control x, through x;.

Similarly we have a pole-zero cancellation in:
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sl-A -B

SRR R CR PR

Hence in the first case by properly defining u we can control both states but
we cannot see the second state, while in the second case we can see both states
but we cannot control the second state. The first system is called
unobservable and the second uncontrollable. The loss of the controllability
and/or observability is due to a pole/zero cancellation. These systems are

unacceptable and the solution to that problem is to re-model the system.

The systems that are both controllable and observable are called minimal

realisation.

We need to develop tests to determine the controllability and observability
properties of the system. Difficult task if the system is nonlinear. In our case
we simply have to find the rank (the number of Linear Independent (LI) rows

or columns) of two matrices.

For observability:

Mo=[C CA CA® - CAH]T. If the rank of this matrix is less than n

then the system is unobservable.

For controllability:

M :[B AB A’B - A”‘lB]. If the rank of this matrix is less than n

then the system is uncontrollable.
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Example 2.9: Determine the Observability of the following system:
. |=2 0 2

X{O —JHMU — CA=[3 o]{_o2 _OJz[—e 0]

y=[3 0]x

M_so
°" 16 0

And obviously there is only one LI column/row

Example 2.10: Determine the Observability of the following system:

2 B on o2 e

y=[3 2]x i

|v|—3 2
°" 16 -2

And obviously there are 2 LI column/rows

Example 2.11: Determine the Observability of the following system:
o I P S 2 072 4
|0 -1 |o :AB:{_ }H:{‘}
0 -1|0 0
y=[3 2]x

|\/|_2—4
clo o0

And obviously there is only one LI column/row
Example 2.12: Determine the Observability of the following system:

SR

0 -1|1 -1
y=[3 2]x

IVI_2—4
11 41

And obviously there are 2 LI column/rows.
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Tutorial Exercise 11

1. Derive a state space representation of the mass spring system assuming that the system

has 2 outputs: the displacement and the velocity.

2. Repeat Question 1 assuming that the displacement is the only system output.
3. Find the state space model of the following system:

X+6X+5x =u(t)

y =4X+X
4. A state space model is given by
1 2 3 4 5 -0.1 -0.2 -0.3
6 7 8 9 10 -04 -05 -0.6
A=11 12 13 14 15|,B=|-0.7 -09 -1 |,
16 17 18 19 20 -11 -12 -13
121 22 23 24 25] 14 -15 -1.6]
c_ 112 2 3 } e
0 0 0 -1 152

(a) What is the order of the system?
(b) How many inputs/ outputs do we have in this system?
(c) What are the dimensions of the matrix D?

5. Find the state space model of:

x4 =3x©®) 4 4x"-3x"+x + uy — 3u,, + 5,
_ (3
@ X >
v, =x@ +1.2x+uy — Uy
Y3 =X

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk
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X, = 3%, +3X, +U; +U, +U, +U,
X, =3X, +U, —2U,
=X
(b) yl 1
y, =X +3X, +U, +U,
Y; =X —2X, +U; +U,

In each case find:

e The order of the system?

e How many inputs/ outputs do we have in this system?
6. Find the transfer function of a system with:

A:E ﬂ,Bzm,cz[l 1] D=0.

7. Find the transfer function of a system with:

A:E ﬂ,Ble) ﬂ,0=[1 1,D=[0 0]

8. Find the transfer function of a system with:

1 2 11 11 0 0
A= ,B= ,C = , D= _
3 4 01 01 00
9. What is the characteristic equation in Q.6-8? What is the system order? Is that system
stable? Why? Are these systems observable/controllable?
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