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1. General Solution of 2nd Order State Space Models 

In this chapter we will study the solution of 2nd order linear state space 

models. This is an important step in order to describe the behaviour of our 

systems and then to define design targets for our control strategies. Instead of 

studying a generic and abstract system, in this chapter we will start with a 

simple 2nd order system and we will try to see how we can solve it.  

1.1 Case 1: Real and unequal eigenvalues 

Assume a general second order system: 
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Not assessed material (but read it!) 

By transforming the system back to a 2nd order DE: 
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Similarly for x1: 
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Thus the homogeneous state space model 
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 has been 

transformed to 067 222  xxx   (and 067 111  xxx  ) 

Then we have a common CE which is: 0672  rr   

This will give two solutions: t
a eCx  22  and t

b eDx 6
22

  

Similarly the ODE for x1 will give me t
a eCx  11  and t

b eDx 6
11

  

Thus two LI solutions to our state space model are: 

1

2

t
C

x e
C

 
  
 

 and 
1 6

2

t
D

x e
D

 
  
 

 and thus 
1 1 6

2 2

t t
C D

x e e
C D

    
    
   

 . 
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Obviously the choice of C1 (or D1) will influence the choice of C2 (or D2) and 

thus the vectors 








2

1

C

C
 and 









2

1

D

D
 are not “completely arbitrary”. 

Thus we should say that our solution is: 

6

1 2

t tx A e e B e e       , where 
1 1

1 2

2 2

,
C D

e e
C D

   
    
   

 and A, B are arbitrary 

constants that depend on the initial conditions.  

This approach is rather cumbersome and of course we cannot (easily) find the 

values of the vectors 1 2,e e . 

But, the important point here is the solution will be a linear combination of 

two vectors that are multiplied by exponentials and the 2 exponents are the 2 

eigenvalues. 

Now back to our system: 
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1
 as a 

solution (similarly to what we did for 2nd order ODEs). 

So 
1 1 1 1 2

2 2 2 1 2

2 22 2

2 5 2 5

t t
a a a a a

x e e
a a a a a

 





         
           

         
.  

How can we solve that? It is a nonlinear system with 2 equations and 3 

unknowns! 

Assume   is a parameter  A homogeneous 2 by 2 linear system: 
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Which always has a trivial solution a1=a2=0. 

For a nontrivial solution1 (see Cramer’s rule from Linear Algebra): 

 0670
52

22 2 








 

This last equation is the characteristic equation of the system and it is the same 

as the CE that we have from the ODEs (expected as they describe or 

characterise the same system given in different forms). 
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 . Hence for each of these I have to find a1, a2: 

For 11   

the same equation twice! (why?)
a a

a a
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I assume that a2=1 which means that a1=2.  

I.e. for   1 1 , we have that 
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1 We applied the same idea when we defined the Wronskian 
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For 62   the 2 equations are 
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So a second solution is te 6

2
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Hence the general solution is   6

1 2

2 1
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t tx t C e C e    
    

   
 

Example 3.1: Find the response of the previous system when  
1

0
0
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. 

Using   6
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 we have that: 
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This last system of 2 algebraic equations with 2 unknowns can be solved with 

various methods like substitution… an easier way is: 
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In the state space:  

  

Example 3.2:  

A system is given by    7 6 0, 0 1, 0 0x x x x x      

i. Find the particular solution of the DE for the given initial conditions. 

The general solution is 6

1 2

t tx C e C e   .  
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Using the initial conditions we get C1=6/5, C2=-1/5 and the particular 

solution is: 66 1
5 5

t tx e e    

Note: since r1 and r2 are negative the response is stable and it converges 

exponentially to zero (homogeneous system) without oscillations. 

ii. Transform the system to state space form if y=x(t)  

You can solve this part as in chapter 2. By defining xx 1 , xx 2    

1 1

2 2

0 1

6 7

x x

x x

    
     

     
,

 

 1 1 0y x y x  

 

iii. Find the eigenvalues. Is the system stable? What will be the response 

type? 

 
0 0 1 1

0 0 0 7 6 0
0 6 7 6 7

I A
 

  
 

     
               

       

Hence the characteristic equation is:  

    27 6 0 7 6 0 1 6 0                 

The eigenvalues of the system are: -1, -6 hence the system is stable with 

overdamped response. 

iv. Find the eigenvectors 

  0I A v    

For 1 1    
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1 1

1 2 1 2 2 1

2 2

1 1 1
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a a a a a a
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The eigenvector 
1v  can be [1 -1]T 

For 
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1 2 1 2 2 1
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The eigenvector 
2v  can be [1 -6]T 

v. Find the general solution using the eigenvalues and eigenvectors 
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vi. Find the particular solution. (Compare your answer with i.)  
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C1=6/5, C2=-1/5 and the particular solution is: 
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1.2 Case 2: Repeated Eigenvalues 

Now it is possible to have 2 sub-cases: 

 I can find 2 LI vectors (a rather artificial case) 
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Hence we have 2 uncoupled 1st order ODEs which can be solved 

separately.  

 I cannot find 2 LI vectors 

1,2 1,2

1 1 1
2

1 3 1
A e

   
       

   
 

In that case I have that  
2

A I b 0   (b is called the generalised eigenvector 

of A), which can be written as    0A I A I b    . Now I substitute 

 v A I b   and I have  A I v 0  , i.e. v is one eigenvector of A for the 

eigenvalue  . Now it can be proved that the solution is 

   1 2

t tx t C vt b e C ve    .  

So in that case: 

  1 1 2 1

2 1 2 2

1 1 1 1 1 0
2

1 1 1 1 1 1

b b b b
A I b

b b b b

                 
                     

                  

Hence the solution is:   1 2

1 0 1

1 1 1

t tx t C t e C e 
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If we are given the same initial conditions: 

  2 2

1 2 1

10 1
0

0 1

C C
x

C C C

     
                  

 

Example 3.3 Find the general solution for the homogeneous system: 
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2 0
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2 

1.3 Case 3: Complex Eigenvalues 

If I have complex eigenvalues then  1 2  and the corresponding 

eigenvectors are 1 2e e . In that case the general solution is given by: 

  1 2

1 1 2 2

t tx t C e e C e e    

Example 3.4  
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1 1 1 1 1 2
1 20 0 1 2

 

                                                 
2 Why was I allowed to choose b2=0? 
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2. Solution Matrices and Solution of Linear Systems     

2.1 2nd order systems 

For second order systems x Ax  we have seen that we have 2 solutions (x1, 

x2) depending on the eigenvalues of A (real and distinct, repeated and 

complex): 

1 2

1 1 2 2,t tx e e x e e    if  2121 ,,  . 

 1 2,t tx ee x et b e     if   ,21 . 

1 2,t tx ee x ee    if   ,21 . 

Or    1 2Re , Imt tx ee x ee    if   ,21 . 

Now any combination 1 1 2 2x c x c x   is also a solution (principle of 

superposition) and also any other solution can be expressed by the above 

linear combination. This effectively means that to describe the behaviour of a 

2nd order system we just need x1 and x2. When we are given an initial condition 

x0  effectively we are asked to find a specific solution that passes (starts) 

through x0 , and this can be done by finding the appropriate values of 21, cc  

(this is what we have done before).  

Now, x1 and x2 are 2 2by1 column vectors. If we put them together in one 

matrix (this matrix is called “Fundamental Solution Matrix (FSM)”) we 

have  1 2X x x  which is 2by2. It will be better if we write as: 

     1 2X t x t x t    . 
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Thus 
1 1 2 2x c x c x   can be written as:    x t X t c  , where  1 2

T
c c c  

We are given the value at t=0 as 
0x :  0 0x X c   or  1

00c X x . Hence 

going back to    x t X t c   we have:      1

00x t X t X x   

The product    1 0X t X   is called the State Transition Matrix (STM)3.  

This means that if we know  X t  we can easily find  0X  and  1 0X 
. Then 

using      1

00x t X t X x   we can find any other solution. This is 

effectively what we previously did but now it is in a more compact form, it 

can easily be extended to high order systems and above all it can be used in 

time varying systems (i.e. where the state matrix A is not constant). Before we 

see how it can be used for time varying systems let’s see how it can be used 

for the systems that we previously studied: 

Example 3.5: 

     1 2 1 2

1 1 2 2 1 2 1 2, 0t t t tx e e x e e X t e e e e X e e             

Hence  1 2
1

1 2 1 2 0

t tx e e e e e e x  
      

Example 3.6: 

         1 2, 0t t t tx ee x et b e X t ee et b e X e b               

                                                 
3 You must be clear about the difference between the FSM and the STM 
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Hence    
1

0

t tx ee et b e e b x  
       

Example 3.7: 

         

     

2 2Re , Im Re Im

0 Re Im

t t t tx ee x ee X t ee ee

X e e

        
 

   

  

Hence        
1

0Re Im Re Imt tx ee ee e e x  
      

  

Example 3.8: 

We know that for 
8 4

1.5 3
A

  
  

 
 we have 
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T

T
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. Hence 

the FSM is:   1 2
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1 2 6 5
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t t

t t

e e
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e e
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2
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6 5

1 6 5
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2
1.5 2 1 2 1
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2 4 2 1 3 / 4

4

t t

t t

t t

e e

x t X t X x e e
e e
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Not assessed material 

Unfortunately we cannot follow a similar strategy when A is time varying, for 

example   2

1
t t

t
A t

e e 

 
  

  
. In these cases we have to rely on numerical 

solutions. 

Even though we cannot find 
1x  and 

2x  we know that they exist. Hence we 

know that the FSM exists as well:      
   

   
1 2

1 2

1 2

A A

B B

x t x t
X t x t x t

x t x t

 
     

  

 

and of course at t=0 we have a constant matrix  
   

   
1 2

1 2

0 0
0

0 0

A A

B B

x x
X

x x

 
  
  

 with 

the inverse  
   

   

1

1 21

1 2

0 0
0

0 0

A A

B B

x x
X

x x




 

  
  

 also being constant. Let’s assume 

that for our case  1 0
a b

X
c d

  
  
 

 for some constants a, b, c, d. Then: 

   
   

   

       

       
1 2 1 2 1 21

1 2 1 2 1 2

0
A A A A A A

B B B B B B

x t x t ax t cx t bx t dx ta b
X t X

c dx t x t ax t cx t bx t dx t


     

      
        

Or:        1 2 1 2ax t cx t bx t dx t     

Now, since 1x  and 2x  are solutions of x Ax  then so must be 

   3 1 2x ax t cx t   and    4 1 2x bx t dx t  . This means that 3 3x Ax  and 

4 4x Ax .  
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Also    1
1 0

0 0
0 1

X X   
   

 
 and hence    3 4

1 0
0 0

0 1
x x

 
    
 

 or 

 3

1
0

0
x

 
  
 

 and  4

0
0

1
x

 
  
 

. Be careful we do not yet know the functions 

 3x t  and  4x t  since we do not know  1x t  and  2x t . 

In order for us to find  t3x  and  t4x  we simply have to numerically solve 

3 3x Ax  and 4 4x Ax  for   









0

1
03x  and   










1

0
04x . 

Now, in general our solutions  1x t  and  2x t  also depend on t0 which may 

not be zero as in the previous case, hence we should have written  1 0,x t t  and 

 2 0,x t t . To avoid confusion and to comply with various other authors we will 

use  1x t  and  2x t  for most cases and  1 0,φ t t  and  2 0,φ t t  when we want 

to say that our solutions also depend on the initial time.  Hence the FSM is 

 0,Φ t t  and not  X t . Also since      1

0 0 0 0, ,x t Φ t t Φ t t x  , i.e. our 

solution to the IVP also depend on the initial condition: 

     1

0 0 0 0 0 0, , , ,φ t t x Φ t t Φ t t x  . 
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2.3 State transition matrix for LTI systems 

For a scalar ODE: axx   the solution was    0xatetx   (no special cases) 

so can we do the same with x Ax , i.e.    0Atx t e x ?  

If only we knew how to calculate Ate  => No special cases are needed then. 

It can be proved 4that    
2 31 1

...
2! 3!

Ate At At At       

How5    0Atx t e x  is associated with   1 2

1 1 2 2

t tx t C e e C e e   ? 

Remember: i i iAe e λ  or in a matrix notation:  

    1

1 2 1 2

2 2 2
2 2 2 2

2 2

0

0
A e e e e




 



 
  

 
 

2 2 2 2 2 2 2 2

A T T Λ
   

  or 1A TΛ    

So: 

           
2 32 3 1 1 11 1 1 1

... ...
2! 3! 2! 3!

Ate At At At TΛ t TΛ t TΛ t                

But     
2

1 1 1 2 1TΛ TΛ TΛ TΛ           

so: 

                                                 
4Taylor Series 
5 Similar analysis can be done also for the other 2 cases, but it is rather harder and outside the scope of this 

module. 
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1 1 2 1 2 3 1 3

2 3 1 1

1 1
...

2! 3!

1 1
...

2! 3!

At

Λt

e TI TΛ t TΛ t TΛ t

T Λt Λt Λt Te

   

 

         

 
         

 

 

And 
1

2

0

0

t

Λt

t

e
e

e





 
  
 

 

Hence:      1

2 2 2 22 2 2 2
2 1 2 1 2 1

0 0At Λtx t e x T e Τ x

  
  

    

       
1

2

1

1 2 1 2

2 1 2 12 2 2 2

2 2

0
0

0

t

t

e
x t e e e e x

e







  



 
  

 
 

     
1

2

1

1 2

22 1 2 12 2

2 22 2

0
0

0

t

t

we
x t e e x

we





 



   
    

  

 

Note: the vectors e are 2x1 vectors, and the vectors w are 1x2 vectors. 

     1 2

1 1 2 20 0t tx t e e w x e e w x    

This is similar to   1 2

1 1 2 2

t tx t C e e C e e   . 
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Tutorial Exercise III 

1. A system is given by 
2 2

2 5
x x

 
  

 
  

(a) Find the eigenvalues and eigenvectors of this system.  

(b) Find the general solution using the previously found eigenvectors.  

(c) Find the particular solution if  
1

0
1

x
 

  
 

. 

2. A system is given by    3 2 0, 0 1, 0 1x x x x x        

(a) Find the particular solution of the differential equation.  

(b) Draw a sketch of the response x(t).  

(c) Transform the system to state space form if y = -2x(t). 

(d) Find the eigenvalues and eigenvectors of the system. What is the 

response type? 

(f) Find the general solution using the eigenvectors then find the particular 

solution using the given initial conditions. 

3. Find the state transition matrix of the homogeneous state space system that 

you find in 2 (c) then find the particular solution for  
1

0
0

x
 

  
 

. 

4. A system is given by 
1 3

2 4
x x
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(a) Find the state transition matrix.  

(b) Find the particular solution for the homogeneous system using the state 

transition matrix approach for  
0

0
1

x
 

  
 

.  

(c) Find the system state response for a unit step input if  
0

0
0

x
 

  
 

 and 

1

0
B

 
  
 

. Comment on the system stability.  

5. A state space system is given by 
0 1

5 4
x x

 
  

  
  

(a) Find the state transition matrix.  

(b) Find the particular solution for the homogeneous system using the state 

transition matrix approach for  
0

0
1

x
 

  
 

.  

(c) Crosscheck your answer in (b) by finding the particular solution of the 

system using eigenvalues and eigenvectors approach.  
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