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EEE8115-EEE8086
Robust and Adaptive Control Systems

Dear Student,

Welcome to Robust and Adaptive Control Systems. This module continues
from where EEE8031 (or EEE3001) stopped, so we will see more advanced
controllers like sliding mode. It also will cover similar topics as in EEE8013
but in greater depth, for example we will also see how nonlinear systems
behave. Itis an interesting module that requires (as the EEE8013 did) constant

work. In this module, very briefly we will work on the following topics:

1) Differential Equations, focusing on High order ODEs.
2) Normal or Canonical Form of state space models.

3) Geometry in the state space.

4) Nonlinear dynamics.

5) Robust and Adaptive control.

As with EEE8013, BB will not be used, but all the material, like handouts,

lecture notes, Simulink files and others will be uploaded regularly at:

https://www.staff.ncl.ac.uk/damian.giaouris/teaching.html

Remember: “There are no stupid questions, but only stupid answers”!
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Chapter 1 EEE8115-EEE8086
Ordinary Differential Equations

1. Introduction

To understand the properties (dynamics) of a system, we can model
(represent) it using differential equations (DEs). The response/behaviour of
the system is found by solving the DEs. In our cases, the DE is an Ordinary
DE (ODE), i.e. not a partial derivative. The main purpose of this Chapter is to
learn how to solve first and second order ODEs in the time domain. This will
serve as a building block to model and study more complicated systems. Our
ultimate goal is to control the system when it does not show a “satisfactory”

behaviour. Effectively, this will be done by modifying the ODE.

Note for EEE8086 students: There are footnotes throughout the notes
containing commands/examples using the Symbolic Toolbox, this is assessed

material!
2. First Order ODEs

The general form of a first order ODE is:

= f(x(t).t) (1)

where! xte R

! The proper notation is x(t) and not x but we drop the brackets in order to simplify the presentation.
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Analytical solution: Explicit formula for x(t) (a solution which can be found

using various methods) which satisfies % = f(x,t)

Example 1.1: Prove that x =€ and x =-10e *are solutions of 3—1( =-3X.

-3t
% =_3X & d (e ) — _3(e—3t) AN _3e—3t _ _3e—3t
dt dt
-3t
% _axe ) (-10e7) -3(-10e™*) < 30e™* =30e™° m’

Obviously there are infinite solutions to an ODE and for that reason the found

solution is called the General Solution of the ODE.

First order Initial Value Problem : %: f(x1), x(ty)=x

An initial value problem is an ODE with an initial condition, hence we do not
find the general solution but the Specific Solution that passes through X, at
t=t,.

Analytical solution: Explicit formula for x(t) which satisfies % = f (x,t) and

passes through x, when t=t;.
Example 1.2: Prove that x=e™ is a solution, while x =-10e™ is not a solution
of %:—SX, X, =1
dt
Both expressions (x=e™ and x=-10e™) satisfy the % =-3xbut at t=0

x(t)=e* =x(0)=1

2clc, clear all, syms t, xl=exp(-3*t); dx=diff(x1,t); isequal(dx,-3*x1)
x2=-10*exp(-3*t); dx=diff(x2,t); isequal (dx,-3*x2)
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x(t)=-10e" = x(0)=-10=1 m3
For that reason some books use a different symbol for the specific solution:

#(t.to, %) -

You must be clear about the difference between an ODE and the solution to
an IVP! From now on we will just study IVP unless otherwise explicitly

mentioned.

Linear First Order ODEs

A linear 1% order ODE is given by:

a(t)x'+b(t)x =c(t),a(t)=0 Non autonomous
: (2)
ax'+tbx=c,a=#0 Autonomous
with a,b,ce R and a=0.
In engineering books the most common form of (2) is (since a+0):
x+k(t)x=u(t) 3)

with k,ue R

Note: We say that u is the input to our system that is represented by (3)

3clc, clear all, syms t, xl=exp(-3*t); x2=-10*exp(-3*t); x0=1;
X0_1=double(subs(x1,t,0)); x0 2=double(subs(x2,t,0)); isequal(x0,x0_1),
isequal (x0,x0_2),
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The block diagram and signal flow representation of this ODE is*:

u dx/dt 1 /S X -
-kx
-k
u 1 dx/dt gt X 1 X
O > () > > O
-k

The solution of (3) (using the integrating factor) is given by:

x(t)=e"x(t,)+ ek‘je"tlu (t,)dt,

ty

t
The term e x(t, ) is called transient response, while ™ j e“u(t,)dt, comes
t

from the input signal u.

If we assume that u is constant:

t
x(t)=e"x(t,)+ ef"‘je“ludt1 o x(t)=e™x(t,) + u%(l— e—k(t—to))

ty

4 The symbols 1/s and s, denote integration and have nothing to do with the Laplace Transform.
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1
Hence: !me(t): O+UE(1—O)—U/k, k>0

+o0, k<0

Thus we say that if k>0 the system is stable (and the solution converges
exponentially at u/k) while if k<O the system is unstable (and the solution

diverges exponentially to +oo,).

Example 1.3: u=0 and k=2 & 5, xo=1,
x(t)=e?-1+0,limx(t)=0,as 2>0

t—oo

1 1 ‘
Transient Tranéient
Total Total
0.5 j 0.5 /
~ | \\\\\
0 N 0 ™~
Input component Input component
05 0.5 1 1.5 2 05 0.5 1 1.5 2
-5
Example 1.4: u=0 and k=-2 & 5, xo=1
4
50
Total\ / 2 Total
40 Transient / T Transient
30 \\\ X . \\\\/
1
20 \\
Input component Input component
10 N 0.5 /
0 0.5 1 1.5 2 0 0.5 1 1.5 2
[ |

Sclc, clear all, syms x(t), dx=diff(x); dsolve(dx+2*x, x(0)==1)
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Example 1.5: u=0 and k=5, xo=1 & 5
2 5

/Total 4 Total

1.5 Transient \ / Transient
~ 3ty
1 \/
\< Input component 2 Input component----
o5l / \%
0

/ i

00 0.5 1 1.5 2 0 5 1 1.5 2
[
Example 1.6: u=-2 & 2 and k=5, xo=1
1 1\ ?
\\ 0.8 Total
0s - I\
Transient 0.6
Total \\l\
\ 0.4
0 .
\\Qgéfs1nputcomponent \ 02<|npUtcomp0nenﬂTan§ent
0% 0.5 1 1.5 2 % 0.5 1 1.5 2
.6

Comments:

¢ In real systems we cannot have a state (say the speed of a mass-spring
system) that becomes infinite, obviously the system will be destroyed
when x gets to a high value.

e For the dynamics (settling time, stability...) of the system we should only

focus on the homogenous ODE: x'+k(t)x=0

6clc, clear all, close all, syms t tl1, x0=1; k=5; t0=0; u=2;
t2=0:0.01:2; x x0=exp(-k*t)*x0; x_u=exp(-k*t)*int(exp(k*tl)*u,t0,t);
X_X0_t=double(subs(x_x0,t,t2)); x u_t=double(subs(x_u,t,t2));

hold on, plot(t2,x_x0_t), plot(t2,x u_t), plot(t2,x u_t+x x0_t)
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3. Second Order ODEs
3.1 General Material

A second order ODE has as a general form:

e f(x'(t),x(t),t) (4)

{x t)+ A(t)x'(t)+B(t)x(t)=u(t), Nonautonomous o)
x"(t)+ Ax'(t)+ Bx(t)=u(t), Autonomous
Its signal flow diagram is:
A
1 X
> O
-B(t)
And again we focus on autonomous homogeneous systems:
x"(t)+A(t)x'(t)+B(t)x(t)=0 (6)

Again we define as an analytical solution of (6) an expression that satisfies it.
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Example 1.7: Given x"—2x'-3x=0 prove that x=e* and x=e™"are two
solutions:

(e%)-2(e*)-3(e") =0

%9e* —6e* -3t =0

0=0

(e‘t)"— 2(e‘t)'— 3(e‘t) =0

e'+e' -3 '=0 m’
0=0

Assume that you have 2 solutions for a 2" order ODE x; and x, (we will see

later how to get these two solutions), then:

X()+A(t)x(t)+B(t)x(t)=0 }

X (1) + A(t)% (1) + B(t)x,(t) =0
obviously I can multiply these two equations with arbitrary constants:

Cx(t)+CA(t)x (1) +C,B(t)x (t) =0 }
C,%; (1) + C,A(t) X, (1) + C,B(t)x,(t) =0

and now | can add them and collect similar terms:

(Cx, (1) +Cyx, (1))"+ A(t)(Cx, (1) +C,%, (1)) + B(t)(Cyx (1) +C,x, (1)) =0

Common Term Common Term Common Term

which means that C,x,(t)+C,X,(t) (i.e. the linear combination of x; and x)

Is also a solution of the ODE.

"clc, clear all, close all, syms x(t) t
Dx=diff(x); D2x=diff(x,2); ODE=D2x-2*Dx-3*x;
subs(ODE, x, exp(-t)), subs(ODE, X, exp(3*t))
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Example 1.8: Given x"—2x'—3x =0 prove that x=e> + 2e™ is a solution:
(" +2e)"-2(e* +2e)-3(e" +2¢ ") =0

9e™ +2e 7t — 2(3e3‘ —2e™ ) 3 e l=0
9 + 2t —6e* +4e ' -3t -6 =0

9e* —6e* -3 +2e ' +4e ' -6 =0
0=0 ms

Now, the question is, if we have x; and X, can ALL other solutions of the

ODE, be expressed as a linear combination of x; and x,? So assume a third

solutiong(t):

0"(t)+A(t)e'(t)+B(t)p(t)=0
Now, the question can be written as, can we find constants C; and C, such as:

{go(t) =C.x (t)+C,x, (t) }

@'(t)=Cx'(t)+C,x, (1)

This equation can be seen as a 2by2 system with unknowns C; and C, as:

20 elaH

From linear algebra this system of equations has a unique solution if:

8clc, clear all, close all, syms x(t) t; Dx=diff(x); D2x=diff(x,2);
ODE=D2x-2*Dx-3*x; subs(ODE, x, exp(3*t)+exp(-t))
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t t
Note: The matrix W(xl(t),xz(t)):{xi( ) %l )} is called the Wronskian®

of the ODE.

We also know from linear algebra that the determinant is not zero if:

t X, (t
x'()] %)
So if the two solutions x; and x; are linear independent (LI) then ANY other

solution can be described by the linear combination of x; and x,. So now we

have to look for two LI solutions for the 2" order ODE.

Example 1.9: Prove that two solutions of x"-2x'-3x=0,x =e” and

x, =€ are linear independent.

Xﬁ(t) Xz(t) et et et ot
W (% (t).%, (t)):{xl'(t) xz'(t)}:Lest _et}zl\’W: o™
NV| =e” (_eit)—cge?’teft =—e” —3* = —4e* w10

® From the Polish mathematician J6zef Maria Hoéne-Wronski
©cic, clear all, close all, syms t, xl=exp(3*t); x2=exp(-t);
Dx1=diff(x1l); Dx2=diff(x2); W=[x1, x2; Dx1, Dx2], det(W)
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Example 1.10: Prove that two solutions of x"—2x'-3x=0,x =€* and

x, = 2™ are NOT linear independent.
X (1) %, (t) e* 2"
W t y t = =
(% (8)%(1) {x (1) x'(t)| [3e* 66" -
W=

1
e3t 2e3t

6t 6t
2% et =6e” —6e" =0 [ |

Example 1.11: For the ODE x"-2x'-3x=0 prove that the solution
x =—€> +2¢' cannot be written as any combination of x, =e* and x, = 2e*.

x=Cx +C,x, < —e* +2e' =Ce* +C,e* =(C, +C, )e*
From this expression we have that C, + C, =-1 (and hence we have the term
—e*) but there is no term €' for 2e". m

3.2 Solution of second order ODESs/IVVPs.

But how can we find two LI solutions? For homogeneous 1% order ODEs with
u=0 the solution was: x(t)=e"“C so we will try a similar approach for 2™

order ODEs:
X'+ AX+Bx =0, assumel! x=e"=> x'=re" & x"=r%"=>
X' +AX+Bx =0 r2e" + Are" +Be" =0 =

r’+Ar+B=0 (7)

11 Notice that we do NOT know what is the value of r.
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This is called the Characteristic Equation (CE) and we have to check its roots:

~A++A?-4B - .
r= > , these are the Characteristic values or Eigenvalues.

3.2.1 Roots are real and unequal

If A% > 4B the system is called Overdamped and the two roots are r; and r»
With ri#ry, r1, r; € R. Then x =e™ and x, =e"" are two linear independent

solutions as:

e nt nt

. rt:emegg_egqgg¢0
re: re:

hence the general solution is x =C X, +C,X, =C,e™ + C,e" 8)
If ry and r, <0 then X — O and the system is stable.
If ry or rp >0 then 2 — +oo and the system is unstable.

Example 1.12: The CE of x"+11x'+30x =0 is r’ +11r + 30 =0 which means

1144117 -41.30 1141 {rl =5

that the two roots are: I, , = =

2 2 r,=—6
' X1 — erlt — e—5t
and hence the 2 LI solutions are
Xg — erzt — e—6t

This means that the general solution is x=Ce™ +C,e™* and hence the ODE
is stable®3. The Wronskian is

2 roots([1 11 30])

Beclc, clear all, close all, syms x(t) Dx=diff(x,1); D2x=diff(x,2);
ODE=D2x+11*Dx+30*x; dsolve(ODE)
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-5t —6t

X e € 5t 6t~ _
‘Xi 2|_ =—6€ Ste 6t+5e Gte 5t:_e 1lt?,__0

X' X |-5e™ -6e™
If the initial condition is x(0)=1,x'(0)=0 then:
C,+C,=1 }:}clzcs
5C,-6C,=0[ C,=-5

} — x =6 —5¢™ m

3.2.2 Roots are Complex (and hence not equal)
If A% <4Bthen the system is called Underdamped and the two roots are

n=a+bj and r, =T, =a—bj with ri#rz, ri,r, eC. Then z, = " = (et

Tyt

a—bj . . .
and z, =e* = e( i) are two linear independent solutions as

e(a+bj )t e(a—bj )t

(a+bj)e™™*  (a—bj)e™
(a-bj)e*™ —(a+bj)e*™ =e**(a—bj—a—bj)=-2e**"bj =0

e(a+bj (a bj) (a—bj)t e(a bj )t (a+bj) a+bj)t:

Hence the general solution is

x=Cx +C,x, =Ce" +C,e" )
but remember that C; and C, are complex now variables such as x e R.
Example 1.13: The CE of X"+2Xx'+5x=0 is r®+2r+5=0 which means

—2++/- - ' L=-1+2]
2+v-16 _ 2i4j:_1i2j:> 1 J_
2 2 r=-1-2]

that the two roots are: r,=

¥4 ci1c, clear all, close all, syms x(t) Dx=diff(x,1); D2x=diff(x,2);
ODE=D2x+11*Dx+30*x; dsolve(ODE, x(0)==1, Dx(0)==0)
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X = e = e(_1+2j)t
and hence the 2 LI solutions are _
x, =e? =gl )

1+2] 12]

This means that the general solution is X =C, gl
ODE is stable. The Wronskian is

' (_1+2j)e(—1+2j)t (_l_zj)e(—l—Zj)t

+C, el and hence the

-1-2j)t

XX
1 _9i\altH2i, (-2 S\ A (-1+2))t (—1—2j)t:
(-1-2j)e e (-1+2j)e" e
(-1-2j)e™ —(-1+2j)e™ =(-1-2j+1-2j)e™ =

—4je® %0
If the initial condition is x(0)=1,x'(0)=0 then:
1 1.
C,+C,=1 Ci=2+7]
=
(-1+2j)C, +(~1-2j)C, =0 1 1.
Cz E‘ZJ

X:(l _J) —1+2j)t +(£_1J) -1-2j)t m
2 2 4

An alternative approach is not to use x; & x, but a linear combination of them:

ylze”+eﬁ, yzzert_eﬂ

ert + eﬂ ert _ eﬁ

re" +re"  re" —1e"

Note that 0

(a+bj)t

Using Euler’s formula: ™" =™ (cosbt + jsinbt) and hence:

a+bj)t a—bj)t

+e(

a+bj)t _ e(a—bj )t

Y1:e(
Y, :e(

e® (cosbt + jsinbt + cosbt — jsinbt) = 2e™ cosbt

=e® (cosbt + jsinbt —cosbt + jsinbt)= j2e® sinbt
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Asy; and y, are solutions so do vy, x % Y, X Zi So the general solution when
J

we have complex roots is:

x(t)=e"(C,cosbt +C,sinbt),C,,C, e R (10

Example 1.14: The CE of X"+2Xx'+5x=0 is r®+2r+5=0 which means
2416 -2+4]j h=-1+2]

that the two roots are: I, , = > > ) 1-2]
2 =T+

:—1J_r2j:>{

X, =€ cos(2t)
X, =€"'sin(2t)
This means that the general solution is x=e™(C, cos 2t + C,sin 2t) and hence
the ODE is stable. The Wronskian is

X X e cos(2t) e”'sin(2t)

X' X%, | |-e"cos(2t)-2e"sin(2t) —e'sin(2t)+2e " cos(2t)

and hence the 2 LI solutions are {

+2e 7

If the initial condition is x(0)=1,x'(0)=0 then:

c, =1 C, =1
= =
—C,+2C,=0| C,=05

x=e"'(cos2t+0.5sin 2t) u

3.2.4 Roots are real and equal

If A* = 4Bthen the system is called Critically damped and the two roots are

r=r =r withr eR.One solution is x, =e" but how about x,? We can

use X, =te" and the general solution:
t=Cux +Cx, = C’lemt + C2ter1t (11)
The Wronskian is:
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nt nt

hty o Rt

e te
t

— r.ltlelt + e2r1t _ r.11:e2r1t — e2r1t + 0
nt nt n
ret rtet+e

=" (rte™ +e™ ) —rete

Example 1.15: The CE of X"+ 2x'+ X=0 is r’ + 2r +1=0 which means that
—2+.0 {G=—1
— =

the two roots are: 1, =
, r =1

= e_t
and hence the 2 LI solutions are % t
X, =te”
This means that the general solution is x=Ce™ +C,te™" and hence the ODE
Is stable. The Wronskian is
e te™
t

2t
' —tet+e =70

If the initial condition is x(0)=1,x'(0)=0 then:

C,=1 C,=1
=
—C,+C,=0| " C,=1

Xx=e"'+te" u

Not assessed material

To see how X, =te" was found go to the ODE and place x =e":

(e")"+ A(e" )+ Bx=e"(r*+ Ar +B)

Since r; is a double root of the CE: r? + Ar + B=a(r —r,)” for some constant
a. So: (e" )"+ A(e")+Bx=e"a(r-r)’

Taking the time derivative wrt r:
a((e)) ,a((e)), o) _dletalr—n))

+ =
dr dr dr dr

And as we can change the sequence of the differentiation:
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[Mj +A[d(e”)J () _d(era(r-n))

dr dr

By using simple calculus:

) d(a(r—rl)z)

dr

rt
(e”t)" + A(e”t)' +Be"t = d (de )a(r — r1)2 +e =

.
(e”t)" + A(e”t)' +Be"t=e"ta(r—r) +e"2a(r-r)

By placing now where r=r: (e”t)" + A(e“t)' +Be"t=0

Which means that e"t must be a solution of my ODE and:

e nt

nt

te
re™ tre™ +e"

=e't. (trle'lt +et ) —te™ - re™ =tre®™ + e®* —tre’™ =e®™ 20

And hence x,(t)=e"t is my second solution.
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Root Space
jb i
A Ib
7 \
- k! - >
v v
Critical or  ; Stable 7
overdamped W W
underdamped FHHHHHH Unstable NN
Name Oscillations? | Components of solution
Overdamped | No Two exponentials:
ekt ekt ki k, <0
Critically No Two exponentials:
damped
e te! k<0
Underdamped | Yes One exponential and one
cosine e, cos(at), k <0
Undamped | Yes one cosine cos(at)
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In the next chapter we will investigate more complicated 2" order ODESs

CL_X1:3X1 + 2X, + U, —3Uu, + 3U,
like the following: ot

2 _

T —X, +5X, +0.1u,

'H
O

'H
O

4. n™ Order ODEs
4.1 General Material

In general, the theory that we have developed until now can be applied to an
n" order system. So a general n' order ODE is given by:
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= £ (X" (0) X" (2),.. (1), x(1) 1) (12)

The homogeneous linear n order ODE is given by:
X () + p X"V () + -+ pox(t) =0 (13)

If we have n solutions x,(t), X, (t), X;(t),...x, (t) then their linear combination

X(t)=Cx () +Cx, (t)+ Cyx; (t) +...+ C,x, (t) is also a solution.

Example 1.16: Given the ODE X" +10% + 35X +50% + 24x =0 prove that
x,(t)=e", x,(t)=3e™ are solutions:

t)=e" ¢ (t)=—e X (t)=e™
w()=e' | k(== ] _%()=e
X,(t)=3e]  %,(t)=-6e"
X t —_ —t _ —t
IR TOR N I OS
X, (t)=-24e] % (t)=487"
e '—10e "' +35e " —50e " +24e"' =0
48e7% + 10(—24e‘2t ) + 35(12e‘2t ) + 50(—6e-2‘ ) + 24(3e‘2t) _o[

1-10+35-50+24=0 0=0
— -15
48—-240+420-300+72=0 0=0

The Wronskian is given by:

W (%, (1), %, (t),+%, (1)) = '5 A ; (14)

15 syms t; x1=exp(-t); diff(x1,4)+10*diff(x1,3)+35*diff(x1,2)+50*diff(x1,1)+24*x1
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and if its determinant is nonzero then the n solutions are linear independent

and they describe any other solution ¢ by taking their linear combination:
@(t)=Cx (1) +C%, (t)+ Coxy (1) +...+C X, (1) (15)

Example 1.17: Given the ODE X" +10% + 35X + 50%x + 24x =0 prove that
X (t)=e", %, (t)=e™, x,(t)=e, x,(t)=e™ are LI solutions:

X (t)=¢" X (t)=—e" X (t)=e" X (t)=—e"
X ()= X (t)=-2e"] X, (t)=4e™ X, (t)=-8e"
X, (t)=e™ - X, (t)=-3e™ - X, (t)=9e - X, (t)=-27e™ -
3 - 3 - 3 - 3 -
X, ()=e™] % (t)=—4e™]| X (t)=16e™] X, (t)=-64e™
B et e—2t e—3t e—4t W
- —2e 3 de™
W (Xl (t)’ X2 (t)’ X3 (t)’ X4 (t)) = e—t 4e—2t 9e—3t 16e—4t =
—et -Be® -27¢* 64|
e—t e—2t e—3t e—4t
- 2e 3 4™ _
|W| = e—t 4e—2t 9e—3t 16e—4t = 12e B > 0 .16
- 8¢ -27¢* 64"
The CE is given by an n*" order polynomial:
"+ Pyl (t) -+ por =0 (16)

And if all the eigenvalues are negative the ODE is stable. If only one is

positive (or with positive real part) it is unstable.

16 syms t; x1=exp(-t);x2=exp(-2*t); x3=exp(-3*t); x4=exp(-4*t); W1=[x1 x2 x3 x4]; W2=diff(W1);
W3=diff(W2); W4=diff(W3); W=[W1;W2;W3;W4]; det(W)
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Example 1.18: Given the ODE X' +10%X + 35X + 50%x + 24x =0 find the CE:

_alt

% +10% + 35% + 50X + 24X = 0 —
r‘e™ +10r3e™ +35r2e™ +50re" + 24e" =0 =

r* +10r* +35r> +50r + 24 =0
{|’1=—1,I’2=—2,I’3=—3,r4:—4} ml’

Of course an obvious problem here is that, in general it is very difficult to
solve an n" order polynomial expression. Having said that, the analysis
remains the same as before regarding stable/unstable, real/complex and

distinct/repeated eigenvalues:

e [frisadistinct (complex or real) root, then x(t) =e" is a solution.

e If r is a repeated root (complex or real) of multiplicity k, then

X (t)=e", x, (t)=te", X, (t)=t%"--- x,_, (t) =t“"e" are solutions.

Example 1.19: The ODE X + 3X+3Xx + X =0 has the following eigenvalues:
n=r,=r,=-1, the 3 LI solutions and hence the general solution are:

x,=e", X, =te”, X, =t’e" = x(t)=C,e™ +C,te" +C,t’e™ ms

Example 1.20: The ODE X +4X+6X+4X+x=0 has the following
eigenvalues: r,=r, =1, =1, =1, the 4 LI solutions and hence the general
solution are: x, =€, x, =te™", x, =t’e™", x, =t’¢™

= x(t)=Ce" +Ce +Ct’%e " +C,t’e™ e

Example 1.21: The ODE X +5X+9X+7Xx+2x=0 has the following
eigenvalues: 1, =r, =1, =—1,1, =2, the 4 LI solutions and hence the general

: . At _ +a-t _ 3424t A2
solutionare: x, =e ", X, =te", X, =t , X, =¢

= X(t)=Ce " +C,te +C,t’e™" +C,e™ u

7 roots([1 10 35 50 24])

18 syms x(t); Dx=diff(x); D2x=diff(x,2); D3x=diff(x,3); dsolve(D3x+D2x*3+Dx*3+Xx)
19 syms x(t); Dx=diff(x); D2x=diff(x,2); D3x=diff(x,3); D4x=diff(x,4);
solve(D4x+4*D3x+D2x*6+4*Dx+X)
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Example 1.22: The ODE X +9X + 30X+ 42%x+20x=0 has the following
eigenvalues: r,=-1r,=-2,r,=-3+1i,r,=-3—1, the 4 LI solutions and

hence the general solution are: x, =e™, x, =€, X, = g3ty = g3

= x(t)=Ce" +C,e? +Ce ¥ 4 Cc g n

Example 1.23: The ODE X +12X + 59X +138x +130x =0 has the following

eigenvalues: 1, =-3+2i,r,=-3-2i,r,=-3+1i,r,=-3—-1, the 4 LI
solutions and hence the general solution are:
X, = e(—3+2i)t1 X, = e(—3—2i)t’ X, = e(—3+i)t’ X, = e(—3+i)t

N X(t) _ Cle(—3+2i)t n Cze(—3+2i)t n C3e(‘3”)t n C4e(‘3‘i)‘ n

Example 1.24: The ODE X +12X + 56X +120x +10x =0 has the following
eigenvalues: r,=-3+1i,r,=-3-1,,=-3+1,r, =-3—1, the 4 LI solutions

and hence the general solution are:
Xl e (-3+i)t X2 _ e(—3—i)t’ X3 _ te(_3+i)t, X4 :te(—3+i)t
= x(t)=Ce +Ce M 4 C e 4 C e n

Example 1.25: A 15" order ODE has the following -eigenvalues:
=-1r=-2r,=-2,1,,=-3%i,1,, =-4+2i,1,, =-4+2i,

oy =—5%3i, rlm— —5+3i,1r,,,=-5%3i, the 14 LI solutions are:

X =€, X, =€ X =te™ X, _ g3 X, _ g

X, = e(—4+2i)t,x7 = g2 X, _ e+ X, _ el

X0 =e(—5+3i)t’x11 _ g5k X _ ta(-5+3i) X, S 3.)

X, =t x = 2l _

As it can be seen by the last examples, the complexity is increasing as the
order increases to levels that it is not possible to use that approach. The next

section will address this issue.
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5. Systems of first order ODEs

5.1 General Material

An n" order homogeneous system can be written as:

X '(t)=a,%(t)+a,X% (t)++a,x,(t)
X, '(t) =a,,% (t)+a,,% (t)+---+a, X, (t) an

X, (1) =a,,% (t)+a,,% (t)+--+a,,X (t)

which can be written in a matrix form as

O] [y a, o a, ][]

Xz'(t) _ & &y v Ay, X2(t) (18)
_an(t)_ _an,l & a“v“__xn (t)_
or X'(t) = Ax(t) ®9)

with xe R™ Aec R™"

In order to simplify the analysis and as we do not have n*" order derivatives

the n solutions are denoted as: x¥(t),x?(t),---x"(t) (with
xW x® .xVep™) and as before their linear combination

x(t)=Cx¥ (t)+C, x? (t)+---+C x"(t) is also a solution.

The Wronskian is given by:
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W (x(l)(t), x? (1), x" (t)) = [x“) (t), x®(t), --x (t)] (20)

And if its determinant is nonzero then any other solution ¢(t) can be written

as their linear combination:

§D(t) - Clx(l) (t) +C, X (t) o Cnx(n) (t) (21)
2 0 1
Example 1.26: For the system x'=| 0 -2 0 [x , prove that
1 0 -2
1] 0 1]
xY =g x® =e?| 1|, x® =et| 0| are 3 LI solutions.
1| o_ 1]
1] 2 0 1 -1 3 2+1
xW=e 0 |=x==30 0 -2 0e*0|<|0|=| O
1] 1 0 -2 1 3| [-1-2
0 2 0 1 0 2] [-2
x? =e?| 1 :>>'<<2):—2e*2t 0 -2 0le?|-1|le]| 2 (=2
0 1 0 -2 0 0| |0
1 1‘ 2 0 1 1 -1 [-2+1
¥ =e*|0|=x¥=—"0|=| 0 -2 0le'|0|=|0]|=| O
1 1] |1 0 -2 1 1| | 1-2
-1 0 1
-1 0 o 0o 0o -
W=0 -1 0 |W|:—1‘ ‘—o‘ ‘+1‘ J1:1—0+1=2;«rs0l
Lo 1 0 1 1 1 1 o
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5.2 Solution matrices

We can define now another matrix which is called the solution matrix as
(t) =] X (t), X7 (1), X" (1) (22)
and hence the general solution is given by:

X(t)=@(t)C (23)
where C is a matrix with constants, C=[C, C, - C,]

At t=t, we have that:

X(t))=®(t,)C < C =07 (t,)x(t,) and hence the general solution is given

by:
X(t) =D (1) (t)x(t) (24)
Now the matrix @, (t,t,)=®(t)®7(t,) (25)

is called the state transition matrix or the normalised (at t =t,) solution matrix

as: Dy (th,t,) =@ (t, )P (t,) =

But how can we find the matrix ®(t)? As before let’s assume that one

solutionis x(t) =e-e" with e e R™ which we do Anot know. Then we have:

x'(t)=Ax(t)er-e-e"=A-e-e"
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As the exponential term is not zero we have that:
re=AecAe-re=0

(A-r-1)-e=0 (26)

with | being the identity matrix and of course | € R™".

Note: You may remember from linear algebra that (26) is effectively the

expression that will give us the eigenvalues and eigenvectors.

If we see (26) as a system of linear equations with unknowns being the
elements of e, then in order to have a nontrivial solution (which is the zero

solution) we must impose:
|A-r-1|=0 (27)

And now for each eigenvalue r we try to find an eigenvector e and as before

we have 3 different cases:
5.3 Roots are real and not equal

In this case it can be proved that for each eigenvalue ry, r, ... r, we can find
a linear independent eigenvector e®, e®@, ... e™ and the general solution is

given by:

x(t)= Zl:cie(i)e”t (28)
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5.4 Roots are Complex and not equal

If we have a complex eigenvalue r=a+bj then we will have a complex

eigenvector e associated it. We will also have the complex conjugate

eigenvalue T=a-bj and eigenvector €. Hence from these complex

eigenvalues we have the two linear independent solutions:

D (1) = ap™ y@(t) ="
X7 (t)=ee", x7(t)=vce (29)
5.5 Roots are real and equal

If we have a root with multicity 2 (for example) then we can have 2 subcases
if we have or not linear independent eigenvectors. If we have? then the two

solutions are:
xV(t) =ee", x? (1) =elle"

If we do not have linear independent eigenvectors then we have to try other

solutions (as we have previously tried te™). So how about if we try te®e":
%(t) = Ax(t) < ePe™ +tere™ = Atee™ < eMe" + (e(l)r — Ae )tert =0
Which means that e =0 and e®”r — AeY =0, hence only the trivial (zero)
exists if we try teVe™. As eWe" +(e(1)r— Ae(l))tert contains terms with e"

and te" a new solution that we try is te”e™ +e?e™, with e@ being an

unknown vector:

20 This will be the case when the state matrix is a multiple of the identity matrix.
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x(t)= Ax(t) < (te(l)ert + el ) = A(te(l)ert + e(z)e”) =

eWe +teVre™ + ePre™ = Atee™ + AePe" <

e +e?r—pae® =0
er—Ae" =0

e" (e(l) +e@r - pe? ) +te" (e(l)r — Ae(l)) =0= {
From these two equations we have that:
re” —Ae¥ =0 (r1-A)eY =0 (A-r1)e" =0

and eV +e@r - Ae® =0 = Ae? —ePr =g & (A=l )e(z) —eW

which implies that e® is an eigenvector of A (as expected) and by setting the

2" expression into the first:
(A-rl)e” =0 (A-rl)(A-rl)e® =0 (A-rl)e? =0
Hence from linear algebra we know that e®@ is a generalised eigenvector?!,

More specifically, a nonzero vector e® is a called a “rank k generalised

eigenvector” associated with the eigenvalue A when:
(A-r1) e =0 and (A-rl)"e" 20
5.6 General Case

To summarise the aforementioned analysis for a system Xx'(t)= Ax(t) we

have the following cases:

21 Note that e is the first generalised eigenvector of A.
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e For distinct eigenvalue A (complex or real), we have an eigenvector e
that will give a term e-e" to the solution.

e Forarepeated eigenvalue A (complex or real), of multiplicity k, we have
the generalised eigenvectors (A— rl )k e® =0 (or

(A-rl)e® =e"Y (A-rl)e* Y =2 (A-rl)e® =e")  which

' ' . e(1) k-1 e(k—z)tz
will create the solutions=-:

4 +.. .e(k‘l)t + e(k) eit
(k-1)! 2!

Example 1.27: An ODE has eigenvalues -1 and -2, find its general solution
by assuming that the 2 eigenvectors are ¥ and e®:

x(t)=Ce'e™ +C,e e u
Example 1.28: An ODE has eigenvalues -1+i and -1-i, find its general
solution by assuming that the 2 eigenvectors are e®™ and e®:

x(t)=Cel e + el e |
Example 1.29: An ODE has eigenvalues -1 and -1, find its general solution
by assuming that the only LI eigenvector is e® :

x(t)=C, (e(l)t +e®? )e‘t +C,eMe m
5.7 Exponential Matrix

For a scalar ODE: x =ax the solution was x(t)=e&x(0) (no special cases)

so can we do the same with z = Ax, i.e. x(t) = eA"‘x(o)?
If only we knew how to calculate ¢ then no special cases are needed.

It can be proved that for LTI systems e’ = I + At + %(Atf + %(At)3 + .

22 In this module k=2, for a deeper analysis see the book from EDWARDS & PENNEY
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Obviously this series is not very easy to calculate and in the next chapter we

will use “Similarity Transformations” to overcome this problem.

6. EXxercises

1. Determine the stability of the following ODEs:

I x'-=3x=5
i. X'+3x=5
iii.  x-3x=-5
Iv. X'+3x=-5
V. —X'-3x=5
vi. —x+3x=5

2. For the stable systems of Q1, determine if you will converge to zero or to
a nonzero value.

3. Find the nonzero values of Q2.

4. Prove that two solutions to x"+ 7x'+12x=0 are: x=e"" are x=e™*.
Also prove that the following are also solutions: x =3e™" + 4e™ and
x=-1e"" +7e™

5. For the ODE x"+ 7x'+12x =0 and with solutions x=e™ are x=¢™
find the determinant of the Wronskian and prove that it is not zero.

6. Repeat Q5 for x=¢* are x=3e™

7. Determine the stability of the following ODEs:

. X"+3x+2x=0
. x"-x-2x=0
.  x"+x'-2x=0
Iv. x"-3x+2x=0
V. xX"+4x'+4x=0

VI. X"—4x'+4x =0
Vil. X"—-4x'+8x=0
Viil. X"+4x'+8x=0

8. For the stable systems of Q7, determine if you will converge
exponentially or with oscillations.
9. Find the general solutions of Q7.
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10.Find the specific solutions of Q7, for x(0)=1,x'(0)=0.
11.For the following ODE X'+ 2X —13X—14x+24x=0
I.  Prove that the following are its solutions
X (1) =€, %, (1) =-3e%, x,(t) = 7e%, x, (t) =<3, %, (t) = 3¢

X(t)=Cx (1) +C,x, (1) +Cyx, (1) + C,x, (1)

Il.  Prove that X1, X2, X3, X4 are LI solutions, while X3, X2, X3, X5 are not.
ii.  Find its characteristic equation.

Iv.  Given that its roots are 1, -2, 3, -4, find the general solution.
12.Given that an ODE has the following eigenvalues, find its general

solution:

L. n=r=r=r=-2

. n=r=rn=-2,1r,=-3

. r=r=-2,r,=r,=-3

iv. n=lrn=2r=4+ir,=4-Ii

V. r=5+43i,r,=5-3i,r,=5+5i,r,=5-5i

vii =-6+2i,r,=-6-2i,r,=-6+2i,r,=-6-2i
13.Solve numerically the following systems

)
i x'::_74 ﬂ,x(o){i}.
i x':_j :ﬂ,x(o){j.

14.Find the analytical solutions of Q13.
15.Find the Wronskian matrices of the solutions of Q13.
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7. Matlab Based Exercises for EEE8086
An ODE is given by x"+3x'+2x=0, x(0)=1,x'(0)=0:

Find its analytical solution.

Find its numerical solution.

Simulate the analytical solution.

Transform the ODE into a system of first order ODEs.
Find the analytical solution of Q4.

Find the numerical solution of Q4.

Simulate the analytical solution of Q4.

O N o g B~ W DN E

Use the exponential matrix to simulate the analytical solution of Q4.

Try to repeat the above for Q13 from section 6.

8. Problem Based Learning Material for Chapter 1

1. What is the Integral Version of an IVP?

2. In the lecture we have seen a method called Integrating Factor to solve a
first order ODE. Which 2 other methods can we use to solve a first order
ODE? Give some examples.

3. By using the fact that if x(t) is a solution then x(t)u(t) is also a solution,
find the function u(t) when we have 2 real and distinct solutions in a 2"
order ODE.

4. By using the fact that if x(t) is a solution then x(t)u(t) is also a solution

prove that the second LI solution of a 2" order ODE with 2 repeated
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eigenvalues, is X, =te". Can it be x, =(C+ Dt)e", where C, D are
arbitrary constants?

5. Prove that if x is a complex solution to a 2" order real ODE then Re(X)
and Im(x) are also solutions of the ODE.

6. Find the response to a sinusoidal input of a first order ODE:
y; +ky; = k cos(at)
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