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Chapter 3 EEE8115-EEE8086
The geometry of the state space
1. Preliminaries

e A set of vectors that satisfy some specific rules (we do not worry about

these rules) is called a Vector Space (VS).

e Two vectors ¢, c, in that VS are Linear Independent (LI) if the only 2

numbers Ky, Kk, that satisfy the equation k.c, +k,c, =0 are k; =k, =0. If

: k :
the two vectors are not LI then we can write ¢, :—k—202 (assuming that
1

k; #0). This implies that c,c, are on the same line or simply speaking
c, is the scaled version of ¢, .

e Finally, the sum k,c, +k,c, is called the linear combination of c , c, .

Now, let's see what we can do with 2 LI vectors:

2 i 1 0 .
A vector a:{ } can be written as a:2{0}+(—4){1] l.e. expressed
: 1 0 : :
using the vectors {0} & L} These two vectors (which are the x, y axes in a

1(1]0
Cartesian plane) are orthogonal (as <LJ LD =1-0+0-1=0) and have unit

length as

1 0
{O}H = HL}H =412 + 0% =1, i.e. they are orthonormal.
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But our original vector can easily be expressed in the case where the two

: : 4 0
basis vectors do not have unit length, for example a=0.5 {0} +8{ 0 5]

The original vector can also be written as a combination of non-orthogonal

4 2
vectors, for example a=-0.5 +2 :
6 -0.5

It is obvious from the above that the first analysis is much easier (and hence
Is more frequently used) but there are many cases where the other 2 can also

be used. In general the coordinates were found by solving the systems.

1] [ 2
Case 1: a +b0}:{ }

0] |1 —4

T R
Case2:al |+b 0 =

0] |[-05] [-4
Case 3: a 4 +b 2 = 2

6| |-05] [-4]

Note: If the 2 new basis vectors are Linear Dependant (LD) then we cannot

find values of a and b that satisfy the above equations:
4 8 2 4a+8b=2 a+2b=05
al |+b = & =
6 12| |-4 6a+12b=-4 a+2b=-2/3
e S0 in the Cartesian plane | need two LI vectors to express all the other

vectors. Thus we say that the Cartesian plane is a 2 dimensional vector

space.
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e These 2 LI vectors are called the basis of the vector space.

e We also say that these 2 vectors span the vector space (this means that
ALL other vectors in that space can be written as a linear combination of
these 2 vectors).

e A final point about this 2 dimensional vector space is that if we take one
vector then we can express all the other vectors with the same direction
(i.e. on the same line) simply by multiplying that vector with a constant.
We say that this new set of vectors (that is smaller than the Cartesian

plane) is a vector subspace.

Obviously we can expand this to higher dimensions. For example in the

Cartesian space (3D vector space):

e We need 3 LI vectors to express any other vector (i.e. to create a basis).

The easiest choice for this vector space is the classical x,y,z axes:
L o of,[0 1 0] and [0 0 1]'. But, as before, I may choose

vectors that are not orthogonal and have length other than 1.

e Again, if we take 2 LI vectors in that 3D vector space then by taking their
linear combination | can express a smaller set of vectors. Note that |
cannot take all possible vectors in that vector space but | can still get a
subspace that is spanned by these 2 vectors (i.e. all the possible linear

combinations of these 2 vectors).
In n-dimensional vector spaces:

e We need n LI vectors to form a basis.
e Any set of k (where k<n) LI vectors define a k-dimensional vector

subspace.
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2. State Space Analysis

We have seen that the state vector can be written as:

0 0
XO=x (1), [+ )] [+
0 0 1

I.e. the state vector can be plotted in a Cartesian space. For example for 2

and 3 dimensions:

. R? . RS

X X

As we have seen in a vector space there are many sets of vectors that can
form a basis. Since the state space is another vector space this implies that in
the state space we can define other bases. It is of particular importance to
find a basis that consists of vectors that are invariant under the solution of
the state equation. The invariance property means that if the solution at some
point in time is on one of these vectors then it will remain on that vector for

all subsequent times. This will greatly simplify our analysis.

The purpose of this chapter is to explain how these bases can be found for
second and third order systems. By doing that we can see how the state
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space is partitioned, and this will give us an easier geometric approach to

study/control the system.
2.1. 2D linear systems

Case A: Distinct and real eigenvalues

{Xl} - {_ 2 2 }{Xﬂ which has a solution:
X, 2 —=5]X

Now if we carefully study this expression we will see that it can be written

as: x(t):a(t)E}b(t){;}, where a(t)=C,e™", b(t)=C,e ™. Hence we

express our state vector into 2 other LI vectors (i.e. we found a new basis,

the eigenbasis). Note that we can easily scale our two vectors:

(oS0 5 ol e ]

where cft) = %t) d(t)= 3bit).

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 6/41



mailto:damian.giaouris@ncl.ac.uk

Chapter 3 EEE8115-EEE8086

>
Xl
As the eigenvectors can be scaled:
A%
el
\\ ;
\ 1
— 7 x(t)
e2
\/
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If we also want to state the stability of the corresponding eigenvalue:

A%

Example:

% |_[-55 457 x| [h=-10_ e, =[-1 1]

X, 45 -55| x, Ay =—1 e, =1 1]
1] _ -17 _

Thus x(t)=C, L}e ‘ +C{ . }e 1ot

Giving the initial condition x(0)=[0.9 0.5]T will give us C, =0.7 and
C2 = _02

The response from Matlab is:
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Response to Initial Conditions

To: Out(1)
©
(6)]

Amplitude

To: Out(2)
©
N

Which is not very revealing, but if we see the response using the

i . 1 -1 .
eigenvectors as basis: x(t)=0.7 L}e‘t —0.2{ | }e‘“”, obviously the term

: _ : : 1 :
e 1% js a lot faster than e™ and hence the main response will be on u as it

Is also seen by the next figure.

0.7

0.6

0.5 -

0.4 initial value

final value

0.3

0.2

0.1/
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Now if on that we plot the eigenvectors:

0.6 N

\ '\
0.4

0.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Using Matlab to draw multiple solutions:

RN T
NURNAN W=
\ —

TN AN
== (NN

h [

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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It is interesting to note that:

If the eigenvalues are negative the solution will converge to zero (stable)
and if they are positive the solution will diverge to infinity (unstable).

Depending on the absolute value of the eigenvalues we may converge or
diverge along one of the two eigenvectors. For example assume that

M, 2 <0 and |4] >>|4,|, then e will converge to zero faster than e’

. This implies that as t — oo the solution will effectively coincide with e,

If I have one stable (4;) and one unstable eigenvalue (4,) (i.e. the system

Is unstable) then the stable one will converge to zero and hence as t — o
the contribution of that eigenvector will be negligible, so the solution for
“big” values of t will almost coincide with the unstable eigenvector. In
that case it is still possible to converge to zero if C, =0, i.e. we start on
the stable eigenvector (see next points for a thorough description of this
statement).

But why is this new basis important? After all it is much harder to

express the solution in that basis. The importance arises from the fact that

in (most of) our cases where x(t)=a(t)e, +b(t)e, the time dependence
of the coefficients a(t), b(t) is due to the exponential terms (multiplied by

a constant factor, remember that a(t)=Ce ™, b(t)=C,e™ in our

example). As these exponential terms can never be zero this implies that

if at any point a(t) (similarly for b(t)) IS zero this is due to the constant
C,, i.e. the choice of the initial condition is such that C; =0. Thus it is

clear that a(t) will be zero for all possible values of t. This implies that
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the solution is going to be x(t):b(t)e,z. Geometrically this means that

the solution will be on the second eigenvector. For that reason we say
that the 2 vectors are invariant. To connect this with the previous
analysis we say that each eigenvector in that case is an invariant
subspace (the eigenspace).

e Each (generalized) eigenvector together with the origin (i.e. the zero

vector) define the (generalized) eigenspace, mathematically:

For each eigenvalue A4 (with multiplicity m) the set of vectors that satisfy
(A—M)ke:O k=12,.m form a basis and hence define a subspace

called eigenspace of A corresponding to A. Obviously in this case of

distinct and real eigenvalues the dimension of each eigenspace is 1.

Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 12/41



mailto:damian.giaouris@ncl.ac.uk

Chapter 3 EEE8115-EEE8086

If we have a diagonal matrix (i.e. a system in a normal form):
-1 0 =-1 =10

N _[a=-t _[m=l o]
0 -10 A, =-10 " |e, =[0 1]

The response to the initial conditions [1, 0.5]:

0.8 \ 2
0.6
X
I \
\l
0.25
]
\

t,s

0.5

initial value

0.4 /
0.3
N
X final value /
0.2

01 /
/ 7

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X
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With the eigenvectors:

0.5

-0.5

And by plotting many solutions:

g

AT

-0.5 0 0.

n

)/
1Y

il
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Hence the generic diagrams will be (note that the eigenvectors are the x-y

axes):

N\
N\

Stable node Unstable node Saddle
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Case B: Repeated eigenvalues.

Now it is possible to have 2 sub-cases:

e | can find 2 LI vectors (a rather artificial case)

A{z o}:ﬂm :2:{% =[1 0]

0 2 e,=[0 1]

Hence we have 2 uncoupled 1% order ODEs which can be solved
separately:

<= >—1p
Y
\/
Unstable Proper Node/Star Stable Proper Node/Star

This is a rather trivial case which we will not study.
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= | cannot find 2 LI vectors

N ., -1
S

In that case | have x(t)=C, (vt+b)e™ +C,ve™, where b is our generalized

eigenvector. The response in the state space will start from an 1C and will
converge to zero. The next figure shows the response from many ICs:

\\ \\\ iR
==\
VNS

AR

-1 -0.5 0 0.5 1

X
1

e Notice that since x(t)=C,(vt+b)e* +C,ve" the vector b is not
invariant. This is because even if C, =0 and hence at t=0 x(0)=C b and
t£>0: x(t)=C, (vt+b)e™.

e But the eigenvector v is invariant as if C; =0 then x(t)=C,ve* for

t>0.
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e Now we can define the generalised eigenspace using the vector b
(A—21) b=0 and obviously the dimension of that space is 2 (it is the

subspace spanned by b and v).

As before we have if we have a system in normal form:

P /
05 // &\
RS
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Case C: Complex eigenvalues

Example:

-3 2 ) 1
A= > A, =—1F2|=>e= .
-4 1 1,2 0.5 £0.5 ]

The response to [1 1]7 is:

0.5
N
x
X’a
0

Y,

And in the state space:

i Intial value
Final value

05 /
<& /

034 0.2 0 0.2 0.4 0.6 0.8 1
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Using many initial conditions:

15 | | | |

W

-0.5

-1.5

To understand this behavior (which shows no invariant vectors) remember

that if 1 have complex eigenvalues then A4, =4,=u+1j and the

corresponding eigenvectors are e, =e, . In that case the general solution is

given by: x(t)= A Re(ee™ )+ A Im(ee*)
Now using the Euler formula e™ = (cos(nt)+ jsin(nt)) :
x(t)=e" (a(C1 cos(vt)+C,sin(vt))+b(C,cos(vt)-C, sin(vt)))

Hence the solution consists of sinusoidal and exponential terms. The
eigenvectors now are not invariant but they define an invariant subspace
which is spanned by the real part and imaginary part of one of the

eigenvectors. This will be obvious in a 3D case!
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Stable Focus Unstable Focus Centre
u<0 u>0 u=0

Or in a canonical form:

-1/2 1 i 1
{ -1 —1/2} L:|

0.8
0.6
0.4

0.2

-0.21

-0.4F

-0.6

-0.81
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Summary:
Eigenvalues | Eigenvectors Type Stability | Eigenspaces
M <A, <0 2Ll Node Stable 2 1-dimensional
invariant sets
M>A,>0 | 2Ll Node Unstable | 2 1-dimensional
invariant sets
A4 <0<, |2LI Saddle | Semi 2 1-dimensional
Point invariant sets
M=4>0 |2LI Proper | Unstable |2 1-dimensional
Node invariant sets
M=4>0 |1=>2LI Improper | Unstable | 1 2-dimensional
Node invariant set
M=4,<0 |2LI Proper | Stable 2 1-dimensional
Node invariant sets
M=4<0 |1=>2LI Improper | Stable 1 2-dimensional
Node invariant set
A= u+Vvj, 1 Complex => | Focus Stable 1 2-dimensional
1<0 2 real LI invariant set
A=pu+vj, |1 Complex =>|Focus Unstable | 1 2-dimensional
1>0 2 real LI invariant set
A=pu+vj, |1 Complex =>| Centre Neutral |1 2-dimensional
1=0 2 real LI invariant set
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Not assessed material

2.2. 3D linear systems

The same analysis can be expanded to higher dimensions:

Case A — Only real eigenvalues

A=[05 05 0 |=4=1=[1 1 0]

00 = Ja=-1= o 1]

X3

el e,
X
1 1 0
And the solution is: x(t)=C,[1/3 |[e*'+C,|1 |e'+C,|0 |e”
0 0 1

Using the previous methodology of classifying the eigenspaces, we see that
we have 3 1-Dimensional eigenspaces.
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If the initial conditions are on the x3 axis [0 0 1]" then we will remain there

forever and we will exponentially converge to the origin:

ts

ts

t,s

The state space response is:

Initial value

& 0.5
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Similarly for the other eigenvectors. Now, if the ICs are such that C,=0

then the solution will always be on the x;-x, plane. For example if

x(0)=[0 1 0] thenc,=-15, c,=15 and C, =0

Response to Initial Conditions

o

To: Out(1)
-
o U

1
(M

= O = DNO1
1

Allplwuue

o

To: Out(3) To: Out(2)

1
[N

0.5 1
Time (sec)

o

P -Final value after t=10s ..
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Now, we can see that if the initial conditions are [1 1 1]T then that the

orbit gradually converges to the x;-x, plane and then it diverges along the

1
1/31:
0

x10™

S —,
J

0 5 10 15 20 25
t,s

35

X 1014

0 5 10 15 20 25 30 35
ts

t,s

0.9
08~

0.7~

[ BLUEIN [ S
X

04~ ..

,,,,,,,,,,,,,,, *Final value after t=10

02 I S s

0.3

0.1~

0~ ..
1000
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So to summarise, the general case is:

<:
RN

This implies that if we start on the x;-x, plane (shown here as plane S) then
we will converge along the eigenvector e;. Effectively the behaviour in the

plane S is exactly the same as the behaviour of a standard unstable node.

Now, if we start on the axis x3 then we will converge to the origin
exponentially. If we start on a general point (not on S or x3), then we will
first converge on the plane S and gradually we will diverge across the
eigenvector that corresponds to the eigenvalue with the maximum absolute

eigenvalue. This is an example of a 3D saddle.

So in that case we have 3 LI eigenvectors that create 3 invariant eigenspaces.
Also, from the above we see that the xi;-x, plane is invariant under the
solution of the state space model. This means that if we start in that plane
then we will always remain there. Similarly if | start on the x5 axis (i.e. the

third eigenvector) then | will remain on that vector as t —«. The x;-x, plane
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Is invariant because is spanned by the 2 unstable eigenvectors. Similarly the
X3-axis is also invariant because is spanned (coincides to be more precise) by
the stable eigenvector. Hence in that case we have a stable 1-dimensional

and an unstable 2-dimensional invariant set.

Hence we can define 3 more invariant sets:

1. The unstable manifold EY(0): The invariant space spanned by all the
“unstable” eigenvectors. In the previous example E"(0)= x;, X, plane

2. The stable manifold E*(0): The invariant space spanned by all the
“stable” eigenvectors. In the previous example E*(0)= x; axis

3. The centre manifold E°(0): The invariant space spanned by all the
“neutral” eigenvectors (eigenvalues with zero real part). In the previous

example E°(0)=9 .
Note: the symbols E€(0), E®(0), E(0) refer to the manifolds of the origin.

Example (another 3D saddle):

4 0 o] |A=1=[1 0 o]
A=[0 -10 0|={4=-10=[0 1 0]
00 1] fy=1=[0 o 1T

So the first eigenspace (corresponding to -10) is the x,-axis, the second (for -
1) is the x;-axis and the third (for 1) is the xs-axis. To test the invariance of
each axis we start on them.
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Case 1: Starting at [0 0 1]7

t, s
4
4x10 | |
><m 2r /
G | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
t, S
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Case 2: Starting at [100]"

1
1 0.5r
O | | L | | | | |
0 1 2 3 4 5 6 7 8 9 10
t, s
1 I
<1 0
_1 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
t, s
1 T
< 0
_1 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
t, s
1

Initial value

»IEAinaI \_(alue éfter}Os
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Case 3: Starting at [010]"

EEE8115-EEE8086

.
—_ 0

10

10

----- v»~..,..,_,,Fir_1§1I valué aftermiA(_')s i

10
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Now, we can see the invariance of the stable manifold, by starting at

[110]":

10

10

10
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And if we start on a general point [1 1 1]":

A

Y
A
v

"

If we start on the stable plane S we will remain there forever and we will
converge to zero exponentially along the slow stable eigenvector [1 0 0]". If
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we start on the unstable eigenvector [0 0 1]7 we will exponentially diverge to
infinity along this vector. And if we start at another general point (i.e. not on
the unstable eigenvector or the plane S) we will diverge to infinity along the
e3 vector but as seen in S plane it slides along the slow eigenvector e;.

The manifolds are:

1. EY(0)=The eigenspace created by e,
2. E*(0)=S
3. E%(0)=0
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Other examples of 3 distinct eigenvalues are:

%3 o
S
DN %
2
€
X
Again 3 invariant eigenspaces, and:
1. EY(0)=The eigenspace created by e,
2. E*(0)=S
3. E°(0)=0
X3,
€3
\\ez -
€
Xy

Again 3 invariant eigenspaces, and:
1. E'(0)=0

2. E*(0)=The whole state space.
3. E%(0)=0
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Case B — Repeated eigenvalues (Assuming no LI eigenvectors)

Multiplicity 2: 4, =v,b & 4, =e

\/

X

2 Invariant eigenspaces (one 2D by b and v and is denoted as S in the above
figure and one from e).

1. EY(0)
2. E*0)
3. E%(0)

The eigenspace from e

S
%,
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\

X1

2 Invariant eigenspaces (one 2D by b and v and is denoted as S in the above

figure and one from e).

1. EY(0)=0
2. E®(0)= The whole state space.
3. E%(0)=0

Multiplicity 3: 4, = v,b, w

A similar case as before but now one of the E*(0), E*(0) ,E®(0) will be
the whole space as well as the invariant eigenspace of 4; while the other

two will be empty.
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Case C — Complex eigenvalues

Now let’s assume that we have a complex eigenvalue (and one real of
course). As before | have an eigenvalue A which is complex and this will
give me a complex eigenvector v. Using the same methodology as before

we have 2 eigenvectors to express the solution: e, =Re(v) and e, = Im(v).

These 2 vectors will define a 2-dimensional eigenspaces S.

2 invariant eigenspaces, and:

1. EY(0)= The eigenspace of e,
2. E’(0)=S

3. E°(0)=0
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2 invariant eigenspaces, and:

1. EY(0)=0

2. E*(0)= The whole state space
3. E°(0)=0
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X3,
S €3
e, X2
€,
X1
2 invariant eigenspaces, and:
1. EY(0)=The eigenspace of e,
2. E*(0)=0
3. E°(0)=S
%y
S €3
e X
€2
X1

2 invariant eigenspaces, and:
1. E'(0)=2
2. E®(0)= The eigenspace of e,
3. E°(0)=S
Module Leader: Dr Damian Giaouris - damian.giaouris@ncl.ac.uk 40/41



mailto:damian.giaouris@ncl.ac.uk

Chapter 3

3. Exercises

EEE8115-EEE8086

For the following systems, find the eigenvalues and eigenvectors, draw

the eigenvectors in the state space, and draw several responses in the
state space. It is crucial that you understand and explain the response in

each case.
. . -1 0 -1 0 ,
I X'= X, X'= X, X
0 -20 0 -10
-1 0 5 0
X' = X, = X, X =
0 -1 0 -1
o 1-20 O
X'= X
0 -1
. (-1 1 -1 10
”. X = X, = ) =
-1 -1 -10 -1
. -2 1 . |-10 1
X'= X, X'= X
-1 -2 -1 -10

4. Matlab Based Exercises for EEE8086

|

-10 O

0

-1 0

-
o)

100
-1

Jx.

Using Matlab crosscheck the results of section 3. You may find the

commands ss and initial useful.
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