Denavit and Hartenberg Method

Define:

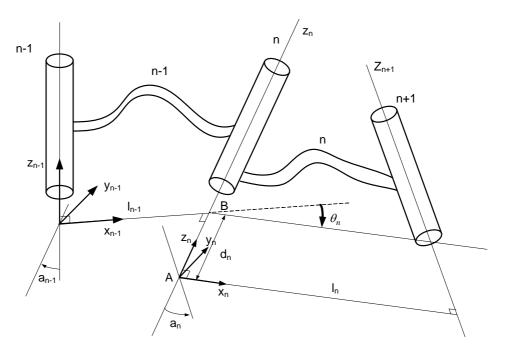
- 1. l_{n-1} : Link length: The distance from z_{n-1} to z_n measured along the x_{n-1} axis.
- 2. a_{n-1} : Link twist: The angle between z_{n-1} and z_n measured about the x_{n-1} axis.
- 3. d_n : Link offset: The distance from x_{n-1} to x_n measured along the z_n axis.
- 4. θ_n : Link angle: The angle between x_{n-1} and x_n measured about the z_n .

Rules:

- 1. Identify the joints (including their variables) and links (including the robot base). We start from n=1 for the robot base, i.e. reference frame n-1=0.
- 2. Identify the joint axes; assign the z axes such as they coincide with the joint axes.
- 3. Identify the common normal between z_{n-1} and z_n . At the point of the intersection of the common normal of n-1 and n, i.e. l_{n-1} , and joint axis n-1 assign the origin of frame {n-1}.
- 4. Assign the x_{n-1} axis to point along the common normal of n-1 and n.
- 5. Find the y_{n-1} by the right-hand rule.
- 6. Assign frame {0} in such a way that it coincides with {1} when the joint variable is zero.
- 7. Last frame (n):
 - a. Prismatic: Assign x_n such as $\theta_n = 0$, and place the origin at the intersection of x_{n-1} and z_n when $d_n=0$.
 - b. Revolute: Assign x_n such as x_n is parallel to x_{n-1} when $\theta_n = 0$, and place the origin such as $d_n=0$.

Special cases:

- 1. If the two joint axes $(z_{n-1} \text{ and } z_n)$ intersect, then the origin of $\{n-1\}$ is located at the intersection and the x_{n-1} axis is orthogonal to the plane that the joint axes create.
- 2. If the two joint axes are parallel, then assign the origin in such a way that it is going to make d_n zero.



 $^{n-1}T_n = Rot(x, a_{n-1})Trans(l_{n-1}, 0, 0)Rot(z, \theta_n)Trans(0, 0, d_n) \text{ and } {}^{R}T_H = {}^{0}T_1 {}^{1}T_2 {}^{2}T_3 \cdots {}^{n-1}T_H$