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Section 1 Introduction & Mathematical 
Background 

1.1 Course Contents 
The area of Industrial Automation (IA) extends from simple On-Off control and 
relays to complicated Programmable Logical Controllers (PLCs) and Artificial 
Intelligent (AI) controlled robotic wrists and arms.  It is therefore impossible in 
a 12-week module to fully examine and thoroughly understand it. This module, 
and consequently these notes, will only try to pinpoint the main applications of 
IA and to examine their principles.  The main areas that will be covered are: 
 

1. Robotics 
 

a. Robot Anatomy & Geometry  
b. Object Location 
c. Forward Kinematics (Position – Velocity (– Static Forces?)) 

 
2. Programmable Logical Controllers 

 
a. On Off Logic 
b. Siemens S7 PLC 
 

3. Artificial Intelligence (mainly Fuzzy Logic (FL)) 
a. Fuzzy Logic Elements (EEE 8005) 
b. Fuzzy Logic Algorithms (EEE 8005) 
c. Fuzzy Logic Control  (EEE 8005) 
d. Artificial Neural Networks (EEE 8005) 
e. Genetic Algorithms (EEE 8005) 
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1.2 Recommended Text Books  
1. Introduction to robotics (Essential reading)  

Author: J. Craig  
Notes: Addison-Wesley  
ISBN: 0201095289  
 

2. Robot Manipulators - Mathematics, Programming and Control  
Author: R.P. Paul  
Notes: MIT-Press  
ISBN: 026216082x  
 

3. Introduction to Robotics  
Author: P.J. McKerrow  
Notes: Addison-Wesley  
ISBN: 0201182408  
 

4. Modelling and Control of Robot Manipulators  
Author: L. Sciavicco and B. Siciliano  
Notes: Spinger Verlag  
ISBN: 1852332212  

 
5. Robot Modelling IFS  

Author: P.G. Ranky and C.Y. Ho  
Notes: Spinger Verlag  
ISBN: 0903608723  
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1.3 Introduction to Robotics 
Robot is a Slavonic word for worker and it was popularised in 1921, in a play 
called Rossum’s Universal Robots.  The machines in this play revolted and 
killed their masters, the humans.  After that, many films involved robots and 
their influence on society.  There are various formal definitions for the term 
“Robot” but the most appropriate is the one that is given from the “Robotic 
Institute of America”: 
 
“A programmable multifunctional manipulator designed to move material, 
parts, or specialised devices through variable programmed motions for the 
performance of a variety of tasks.” (Schlussel, 1985) 
 
Based on this definition the traces of the first robot can be found deep into the 
18th century.  These were simple mechanical puppets that mimicked human 
and animal actions and their main goal was to demonstrate the art of 
mechanical design.  This is the so-called “Generation 0”. 
 
The second level (“Generation 1”) started in the 60s with the help of 
programmable controllers.  They had a Central Processing Unit (CPU) and 
they were programmed to do a sequence of moves, taught by a human.  The 
program was stored in a paper tape and the overall utility of the robot was 
limited.  Also they were rather expensive devices (just the computer could 
cost up to £50,000) and were mainly an academic curiosity even if some first 
industrial applications were found.  
 
“Generation 2” date from the 1980s and their main characteristic is the use of 
a microprocessor.  The impact that the microprocessor had was to fit in a 
small chip a whole programmable computer, which as well as the size 
reduction made the overall mechanism relative cheap.  The robots of this 
generation supported high level languages like VAL and BAPS.  The use of 
coordinate transformations, feedback control and PID, vision, networking and 
sensors made their application attractive to industry and a small revolution 
began.  Soon every large industry began to use robots to replace humans in 
some applications.   
 
“Generation 3” evolved over the last 15 years with main characteristics 
involving the use of human-like sensors and AI.  The robots can now behave 
like human beings and their applications are numerous. For example, from 
Automatic Guided Vehicles (AGVs) to cleaning robots, and from medical 
applications to nano-robots.  The applications of this generation of robots are 
rapidly expanding and it has been said that in the near future robots will be a 
piece of everyday life.  
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1.4 Robot Components 
The main parts of a robot are (not all are a compulsory part of a robot): 
 
1. Vehicles 
2. Manipulator arms 
3. Wrists 
4. End effectors 
5. Actuators 
6. Transmission elements 
7. Sensors 
 
Only “Manipulator arms” and “Wrists” will be studied here due to time 
limits.   
 

1.4.1 Basic Manipulator Arms 
A manipulator arm (often also termed a robot arm) consists of joints and 
links.  The joints connect different parts (the links) of the robot and they can 
slide or rotate.  Therefore they are called sliding (also called prismatic) and 
revolute joints.  For example the revolute and the sliding joints of Figs. 1.1, 1.2 
are joining two different mechanical parts (Link 1 and Link 2) of a robot: 
 

 
Figure 1.1 Revolute joint 

 
Figure 1.2 Prismatic joint 

 
The links are usually mechanically solid objects that connect two joints.  For 
example the elbow and the shoulder are joints that are linked by the upper 
arm.  The joints give the name to the robot.  Hence if a robot has three 
prismatic joints, is called PPP.  Later the joints and the links will be studied in 
a more detail.  A robot arm usually has 3 moving parts (links) and one 
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immobile, the base.  The first part mimics a human torso and is usually the 
part that is directly connected to the robot base by the waist joint (first joint).  
The second link, the upper arm, is connected to the torso by the shoulder joint 
(second joint).  The third part is the forearm, which is connected to the upper 
arm link with elbow joint (third joint).    
 
A robot that has three revolute joints is called “articulated arm” or RRR robot 
and mimics the human arm.  The articulated or revolute arm shown in Figure 
1.3 and Figure 1.4 has a rather complicated workspace.   
   

 
Figure 1.3 Revolute or RRR robot, schematic diagrams 

 
Figure 1.4 Revolute or RRR robot 

 
There are other simple robot geometries that replace one or more revolute 
joints with prismatic ones.  The simplest industrial manipulator is the so called 
Cartesian or PPP robot.  It is extremely simple and it consists of 3 prismatic 
joints as shown in Figure 1.5 and Figure 1.6.  It can reach any position in its 
rectangular workspace by Cartesian motions of the links. 
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Figure 1.5 Cartesian or PPP robot, schematic diagrams 

  
Figure 1.6 Cartesian or PPP robot 

By replacing a joint of a Cartesian arm by a revolute joint, a cylindrical 
geometry arm can be formed.  This robot is called Cylindrical or PRP and it 
has a cylindrical workspace. See Figure 1.7 and Figure 1.8. 

   
Figure 1.7 Cylindrical or PRP robot, schematics  
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Figure 1.8 Cylindrical or PRP robot 

If a revolute joint replaces another prismatic joint then a polar geometry is 
formed.  This robot is called Polar or RRP and it has a spherical workspace. 
See Figure 1.9 and Figure 1.10. 
 

 
Figure 1.9 Spherical or RRP Root, schematic diagrams 

 
Figure 1.10 Spherical or RRP robot 
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Hence there are various robot types with different geometries, which can be 
used in different applications.  Each model has its own advantages and 
disadvantages, which are shown in Table 1.1. 
 
Robot Coordinates Pro and Cons 
PPP or 
Cartesian 

x 
y 
z 

Linear Motion in 3D 
Simple kinematics model 
Rigid structure 
Easy to visualise 
Can use inexpensive pneumatic drives for 
pick and place operation 
Requires large volume to operate in 
Workspace is smaller than robot volume 
Unable to reach areas under objects  
Guiding surfaces of prismatic joints must be 
covered to prevent ingress of dust. 

PRP or 
Cylindrical 

z 
θ 
r 

Simple kinematic model 
Easy to visualise 
Good access into cavities and machine 
openings 
Very powerful when hydraulic drives are 
used 
Restricted workspace 
Prismatic guides difficult to seal from dust 
and liquids 
Back of robot can overlap work volume 

RRP or 
Spherical 

θ 
φ 
r 

Covers a large area from a central support 
Can bend down to pick objects off the floor 
Complex kinematic model 
Difficult to visualise 

RRR or 
Articulated 

θ1 
θ2 
θ3 

Maximum flexibility 
Covers large area of work relative to volume 
of robots 
Revolute joints are easy to seal 
Suits electrical motors 
Can reach over and under objects 
Complex kinematics 
Difficult to visualise 
Control of linear motions is difficult 
Structure not very rigid at full reach 

Table 1.1 Advantages and disadvantages of the robots, PPP, PRP, RRP and RRR  

 
1.4.2 Wrists 

A robot arm has three main joints (waist, shoulder and elbow) and three links 
(torso, upper arm and forearm).  The human body also has a wrist and then 
end effectors (fingers).  Likewise a robot arm has a wrist to orient the end 
effectors.  Usually the wrist has three degrees of freedom; see Figure 1.11, 
and the joints are revolute and not prismatic.  The rotations of the wrists are 
commonly described as roll (z axis rotation), pitch (y axis rotation) and yaw (x 
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axis rotation).  Simplified wrists may have two degrees of freedom (roll & 
pitch). 

  
Figure 1.11 Six motions that a wrist must make to place the gripper in any point and in 

any orientation 
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1.5 Mathematical background 
1.5.1 Geometrical Vectors 

To define the position of the end effector with respect to the base or to any 
other reference object the concept of the “vector” has to be analysed and fully 
defined.  The next paragraph briefly describes these ideas.  This material is 
not directly part of the syllabus, but is essential for proper understanding. 
 
Many students will have some knowledge of vectors.  The need for the vector 
notation rises because a simple number (or scalar) cannot define some 
quantities.  For example the mass of an object can be fully defined by saying 
that it is 5 kg.  But if it is stated that its velocity is 10 m/s then this information 
is not adequate.  The direction of the velocity must also be mentioned.  These 
quantities are termed vectorial and arrows can represent them.  For a vector 
in a plane (2 dimensional, or 2-D) the length of the arrow can represent the 
magnitude of the quantity and the angle represents its direction.  For example, 
see Figure 1.12 below: 

 

F1

1Fθ

2FθF2

 
Figure 1.12 Force F2 has a different direction and magnitude to F1 

Therefore a vector is an arrow with a specific direction and length.  One 
symbolic notation for vectors is to use small case, bold letters like a, b, c…. In 
some books other symbols may be used like a  or a  or even as a . Two 
vectors are called equal if they have the same length and direction but they do 
not have to be on the same axis (Figure 1.13).  If two vectors have the same 
length but opposite directions then they are called opposite vectors and 
obviously b=-a. 

a

b

a

b

a

b

a

b

Start point

End point

  
Figure 1.13 Vectors 

Vector addition can be done with the use of the parallelogram rule.  For 
example if the addition of two vectors (a & b) is required, see Figure 1.14, 
then create a vector equal to the vector b but with a starting point at the end 
point of a, then simply connect the starting point of a with the end point of the 
replaced vector b. 
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a

ka
k>0

a

ka
k<0  

Figure 1.14 Vector addition and Scalar vector multiplication 

The multiplication of a vector with a scalar number will only change its length 
and not its direction (note if the scalar number is negative then the direction 
will be reversed). Now the vector difference can be defined as: a-b=a+(-1)b. 
 
To simplify the manipulation of vectors coordinate frames can be used.  The 
most common is the so-called Cartesian reference frame (Figure 1.15): 
 

y

x

Cartesian
plane

z

y

Cartesian
space

x

 
Figure 1.15 Cartesian plane and space 

By using the previous definition for equal vectors, any vector in the Cartesian 
reference frame can be considered to have as a starting point the origin i.e. 
0(0,0) for a 2-D plane, or 0(0,0,0), for a 3-D space. 
 
In a 3D space three elementary vectors can be defined that will coincide with 
the axes and they will have a length of 1.  The elementary vector for the x-axis 
is i, for the y axis is j and for the z axis is k. 
 
Then every point on an axis will easily be defined by a multiplication of the 
appropriate vector and a scalar number.  The same concept can be used for 
any vector that does not lie on an axis.  The end point now, of a vector will 
have specific coordinates, and these will fully describe the vector.   
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For example, consider Figure 1.16: 
 

 

y

x

A(xA,yA)
yA

xA

a

i

j

 
Figure 1.16 A vector in a Cartesian plane 

The point A, which is the end point of the vector a, fully defines the vector a.  
Hence it can be said that the coordinates of the vector a are (xA,yA) and is 
usually written as:   

⎥
⎦

⎤
⎢
⎣

⎡
=+=

A

A
AA y

x
jyixa  

The vector addition can be simplified to:  
 

   ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+
+

=+++=
BA

BA
BABA yy

xx
jyyixxc  

The multiplication of a vector will be: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=+=

A

A
AA ky

kx
jykixkka  

The length of a vector can be found by its Euclidian norm: 
 

22
2 AA yxa +=  

 
Of course other norms can also be used to define the length of the vector:  
 

( ) pP
A

P
AP

yxa
1

+=  
  
Note: For simplification, the notation of the 2-normis:  
 

aa =
2

 
   
There are two vector multiplications, the inner or scalar or dot product and 
the outer or vector or cross product.  As it is apparent from the names the 
outcome of the first product is a scalar number while the outcome of the 
second is a vector. 
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Consider Figure 1.17. The inner product is defined as:  
 

( ) BABA yyxxbaba +==⋅ θcos , where θ is the angle between the two vectors: 

 

θ

 
Figure 1.17 Vector angle 

Now the angle between two vectors can be defined as: 
 

( )
2222

cos
BBAA

BABA

yxyx
yyxx

ba
ba

++

+
=

⋅
=θ  

 
Orthogonal or perpendicular vectors are those vectors whose inner products 
are zero.  
 
With the use of the dot or inner product we can define the projection of a 
vector x onto a vector y as: 

y
yx

xprojy
,

=  

The cross product of two vectors (in a three dimensional space) can be 
defined as:  

 

BBB

AAA

zyx
zyx
kji

ba =×  

For example the cross product of the x and y axis is the z axis: 

   kkjikji
kji

=++=++= 100
10
01

00
01

01
00

010
001  

Finally two vectors (or lines) in a 2-dimensional space can have either one 
common point or to be parallel.  In a 3-dimensional space there is a third 
possibility and then these lines are called skew lines.  The mutual 
perpendicular to these lines is called common normal and effectively is the 
distance between the two skew lines. 
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1.5.2 Algebraic Vectors 
Until now a vector had a direction and a length and was easily visualised in a 
2 or 3 dimensional space.   But what can be said about vectors that are 
defined in a 4 or even higher dimensional space?  Therefore a more general 
definition is needed.  A vector is an order n-tuple: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nx

x
x

x
M

2

1

  or  .   [ ]421 xxxx L=

Assume now a set of n-dimensional vectors { }mvvvV ,,, 21 L=  that: 
 
• [ ]mjiVvv ji ,1,, ∈∀∈+   
•  [ ] ( )+∞∞−∈∈∀∈ ,,,1, λλ miVvi  
 
There are the zero and the identity vectors: 
 
a.  [ ]miVvvVv iii ,10,00 ∈∀∈=+∈=  
b.  [ ]miVVvv ii ,11 ∈∀∈∈=  
 
Then V is called vector space. 
 
Assume a subset of vectors in V such that the scalar equation  

02211 =++ nnxaxaxa L  is satisfied only for 021 === naaa L . Then these 
vectors are called linear independent and they define a basis for the V, 

{ nB xxxV ,,, 21 L= }  .  All other vectors in V can be expressed as a linear 
combination of the basis vectors VB: ,2211 nnxbxbxby L++= Vy∈ , 

 . [ ]njbj ,10 ∈≠
 
The inner product is defined as: 
 

 ∑
=

=+++=
n

k
kknn yxyxyxyxyx

1
2211, L  

 
And the length of a vector can be defined as: 
 

 ( ) ( )⇒++=⇒++=
=

22
2

2
1

21

21 n

p
pP

n
PP

P
xxxxxxxx LL  

 xxxxxx n ,22
2

2
1

2 =++= L  
 
As it has been said the vector space is a set of vectors that is closed under 
the operations of addition and multiplication.  This concept can be extended to 
sets that consist of functions and matrices (function and matrix spaces).  For 
example the set that contains all the functions that are defined in [0,1]… 
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1.6 Robotic Motion 
1.6.1 Coordinate frames and objects 

The motion of a robot can be described in four different frames of reference.  
These are: 
 

• Motor Frame 
• Joint Frame 
• Tool Frame 
• World Frame 

 
In this course, only the world and the joint reference frames will be 
studied.   
 
The world reference frame is attached to a point in the overall environment 
while in the joint frame can be attached to any joint and its coordinates are the 
link angles (if the joint is revolute) and the distance between the links (if the 
joint is prismatic).  In robotics, the chosen frame forms a right-handed set of 
vectors and the positive rotation is shown in Figure 1.18, i.e. from x to y, and 
from x to y to z, respectively: 
 

 

y

x

Cartesian
plane

z

y

Cartesian
space

x

+

+
+

+

 
Figure 1.18 Positive angles in a Cartesian plane/space 

The location of a point in a 2D frame is described by its two coordinates or by 
a vector that connects the origin with this point. For example in Figure 1.19 
the point A is described either from the pair (xA, yA) or from the vector a.  If 
this point is moved to B ((xB, yB), b) then the translation is the difference of the 
two vectors, i.e. b-a.  By using the coordinates of these vectors it can be 
found that the translation is: 

  ⎥
⎦

⎤
⎢
⎣

⎡
−
−

AB

AB

yy
xx
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y

x

A(xA,yA)

b

a
B(xB,yB)

b-a

 
 Figure 1.19 Point translation  

 

y

x

A

a

D

B

C

b
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D’

B’

C’

b'
a'

 
Figure 1.20 2D object translation (only two vectors are shown) 

 
Assume now that there is a square object in a plane (Figure 1.20).  This 
object is fully described by the coordinates of its corners, i.e. A(xA, yA), B(xB, 
yB), C(xC, yC), D(xD, yD) and hence four vectors, i.e. a, b, c, d. If this object is 
moved to another location then four new vectors will be assigned to describe 
the new location.  Four differences, like the one above, will give the translation.   
 
If the plane now is transformed to a 3D space then eight vectors will be 
needed for the initial description and eight vectors for the new location.  As it 
can be easily understood a more complicated object would need a large 
number of vectors and at every translation or rotation would require numerous 
new vectors.    
 
The solution to this problem is to create a new reference frame on the object, 
for example on point A, and then another four vectors will characterise the 
object (Figure 1.21) (or 8 in a 3D space – see Figure 1.22).  Then the new 
location of the object will require only one new vector which characterises the 
translation of the origin: 
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Figure 1.21 Object 2D translation 
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Figure 1.22 Object 3D translation 

Generally speaking, an object like the one of Figure 1.22 has 6 degrees of 
freedom.  It can translate along the three axis (x,y,z) and it can rotate around 
the three axis: (Figure 1.23) 
 
 
Note: Figure 1.23 shows the positive rotation.  Using the right hand it 
can be found by putting the thumb in the positive direction of the axis.  
Then the direction of the fingers will give the positive angle.  
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Figure 1.23 Six degrees of freedom of a 3D object 

A more complicated movement of the reference frame can be separated to 
successive translations and revolutions.  For example the displacement that is 
shown in Figure 1.24 can be considered to be a translation according to y-axis, 
then a translation according to x-axis, then according to z-axis and finally a 
90o rotation around z-axis. 

 

z

y1

x

y

x1

z1

 
Figure 1.24 Frame displacement 

A “stricter” notation regarding the previous reference frames is to name the 
reference frame with a capital letter in curly brackets (eg.{A}) and to use the 
symbol ^ to denote the unit vectors of the frame (eg. , i.e. the unit 
vectors along the directions of Z, Y, X of the frame A). A point P that is 

AAA XYZ ˆ,ˆ,ˆ
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defined with respect to {A} is written as: . This is shown in 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

z

y

x
A

p
p
p

P Figure 

1.25 

 

AẐ

AŶ

AX̂

PA

}{A

 
Figure 1.25  Vector notation 

Obviously P can be defined with respect to any reference frame, lets say {B}, 
BP: (Figure 1.26) 

 

AẐ

AX̂

AŶ

BẐ

BŶ

BX̂

}{B

PA

}{A

PB

 
Figure 1.26  Two frames defining the same point 

From the above it can be seen that the notation used to describe a vector with 
respect to {A} is a left superscript.  The same can be applied for the unit 
vectors of other reference frames. For example, assume that we have 2 
frames, {A} and {B}, then we can refer or define the unit vectors of {B} with 
respect to {A} as .  B

A
B

A
B

A ZYX ˆ,ˆ,ˆ
 

1.6.2 Three and four dimensional transformation matrices 
Describing the motion of an object is easier if a frame is attached to a point on 
the object and then every translation or rotation of the object is transformed to 
the position and orientation of the new frame.  The basic problem is to find the 
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new position and orientation of the new frame and hence the position and 
orientation of any vector that was attached to the moving frame.  This is the 
concept of the forward transformation, i.e. the translations and rotations are 
given and the question is to find the new position and orientation of the object. 
This is the main topic of the next section.   
 
To simplify the mathematics, initially the object, and hence the moving or new 
frame, is placed on the origin of the original frame. A four by four matrix that 
consists of four vectors can describe a new coordinate frame with 
respect to the old.  The first three vectors represent the direction of the 
new axes and the fourth vector represents the translation of the origin.  
Hence a new frame is fully described by knowing the original frame and this 
transformation matrix. 
 
To visualise this assume a simple 2D frame, a point P (x1,y1) on it with an 
associated vector, p (see Figure 1.27). If this point is multiplied by a 2 by 2 
general transformation matrix, the result is:  
 

⎥
⎦

⎤
⎢
⎣

⎡
+
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

11

11

1

1

dycx
byax

y
x

dc
ba

  , which is another vector (say q).  

 
 
The values of  characterise the transformation of the point.  For 

example, if  , then the new vector is   and is clearly a 

translation parallel to the x-axis: 

dcba ,,,

,2 == cb 1,0 == da ⎥
⎦

⎤
⎢
⎣

⎡

1

12
y
x

 

 

y

x

P(x1,y1)

p

Q(2x1,y1)

q

 
Figure 1.27 x-axis translation 

This translation could have been the translation of a reference frame 
assuming that the initial origin of this frame was on the point P. In the same 
way a 3 by 3 matrix can describe translations in a 3D space:   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ihg
fed
cba
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Another way to illustrate the matrix representation of a translation is to say 
that the general transformation matrix is now:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

r
r
r

100
010
001

   Or simply,   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

r
r
r

100
010
001

where the vector   is the difference of the two vectors, p and q and 

hence the translation of the vector p to the vector q. 
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=
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x

r

r
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As it will be shown later the transformation matrix  will need to 

be inverted and therefore it has to be square: 
⎥
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⎤

⎢
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⎡

z

y

x

r
r
r

100
010
001
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⎢
⎢
⎢
⎢

⎣
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100
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001
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The elements 4,1 to 4,3 correspond to the projection of the object and is 
used mainly in the area of graphic and image processing.  The last 
element is for the scaling of the object and for the purposes of this 
module will always considered to be 1. Therefore the vector dimension 
will not be three but four.   
 
For example, the vector [ ]Tp 31.010 −=   will be written as 

[ ]Tp 131.010 −=  
 

1.6.3 Example 1  

Assume a vector p that was translated from [ ]Toldp 1111=  to 

[ T
newp 1112= ] .  It is obvious that the vector was translated along the x 

axis for 1 unit, while the translations along the z and y axes are zero.  By 
using the previous notation: 
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1.6.4 Example 2 
Assume an object like the one of Figure 1.28, the task now is to translate it 
along the y-axis for “a” units and to find the coordinates after the translation by 
using a transformation matrix.  As it has been said a new frame will be 
attached on this frame and for simplification reasons the world (or original) 
frame is considered to coincide with the new one: 

  
Figure 1.28 New and old frames 

The object is then translated for “a” units along the y-axis: 

  
Figure 1.29 New and old frames after the translation 

The new location of point A after the translation, with respect to the original 
frame, is: 
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By comparing this outcome with Figure 1.29, it can be seen that the above 
calculation was correct.  The same can be done for the other 7 points of the 
object. 
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1.7 Orientation matrices 
Until now, we have seen that the transformation matrix can describe the 
translation (even though this can easily be done by using just one vector). The 
next logical step is to find an expression (obviously of the transformation 
matrix) that will define the relative orientation of two frames.  
 

1.7.1 Intuitive approach 
 
Let’s start with a more “intuitive” method but mathematically less “sound”. 
A 90o rotation around the y-axis: 

x1

y1

z1

z2

x2

y2

 
Figure 1.30 Result of a y-axis 90ο rotation 

Assume now that there is a vector attached on the z axis: , 
after the rotation this vector will have the orientation as shown in 

[ ]T1100=a
Figure 1.31. 

  
x1

y1

z1

a

z2

x2

y2
a

 
 

Figure 1.31 A vector on the z-axis before and after a y-axis 90ο rotation 

Now lets name this new vector as a’.  This vector with respect to the original 
frame is: 
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Figure 1.32 The new vector with respect to the old frame. 

It can be seen that the new coordinates (x2, y2, z2) of a are associated with the 
original as (z1,y1,-x1), or: 
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Therefore the transformation matrix   can simply be: ⎢
⎢ , 
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⎣
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⎥
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or   where φ=90ο.   
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⎥
⎥
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⎤

⎢
⎢
⎢

⎣

⎡

− )cos(0)sin(
010

)sin(0)cos(

φφ

φφ

Hence a simple matrix can describe the rotations or translations of a general 
frame. Again the above transformation matrix is extended to a four by four 
matrix as: 

⎥
⎥
⎥
⎥
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⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
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With the same manipulation as before the rotation around the x-axis is: 
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And the rotation around the z-axis: 
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1.7.2 Mathematical Approach 
Now that we know the result that we want to establish lets try to propose a 
more rigorous/proper mathematical proof. Assume two reference frames {A} 
and {B}: 

 

}{A

}{B

AẐ

AX̂

AŶ

BŶ

BẐ

BX̂

θ

θ

θ

 
Figure 1.33 The new vector with respect to the old frame. 

The rotation of {B} with respect to {A} will be described by using the 
projections of the unit vectors  onto  . It can easily be 
seen that   is nothing else than the projection of the vector  onto {A} 
and therefore: 

B
A

B
A

B
A ZYX ˆ,ˆ,ˆ

AAA ZYX ˆ,ˆ,ˆ
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A X̂ BX̂

{ }

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

AB

AB

AB

A

AB

A

AB

A

AB

BZ

BY

BX

BAB
A

ZX

YX

XX

Z

ZX

Y

YX

X

XX

Xproj

Xproj

Xproj

XprojX

A

A

A

ˆˆ

ˆˆ

ˆˆ

ˆ

ˆˆ

ˆ

ˆˆ

ˆ

ˆˆ

ˆ

ˆ

ˆ

ˆˆ

2

2

2

ˆ

ˆ

ˆ

 

Similarly we can define all 3 vectors ( ) which play a very 
important role in the theory of robotics and therefore they are placed together 
in such away that they create a 3 by 3 matrix: 

B
A

B
A

B
A ZYX ˆ,ˆ,ˆ

[ ]
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B
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B
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(Notice that this matrix has orthonormal columns (length one and 
perpendicular to each other)). This matrix describes the relative rotation of {B} 
with respect to {A} and hence the name  .  RA

B

 
1.7.3 Tutorial Work 

Prove that:    ( )
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Prove that:  ( )
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Comment: Based on the previous analysis it can be said that while the 
position of a point requires a vector to fully define the orientation of an object 
we need a 3 by 3 matrix or simply 9 elements. 
Since the inner product is given as ( )θcosbaba =⋅   and the lengths of the 
unit vectors are 1 then it is clear that the previous rotation matrix will consist of 
cosines. This method of describing the rotation is called direction cosines. 
Later we will encounter other methods. 
With the same process the unit vectors of {A} can be expressed in {B}: 
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We can easily prove that   and therefore   . 33×= IRR A
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A RRR ==−1
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1.7.4 Summary 
To summarise 
 
• The transformation matrix that associates the original reference frame 
with the new when there is a translation by a vector r(rx,ry,rz) is:    
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• The transformation matrix that associates the original reference frame 
(eg. {A}) with the new (eg. {B}) when there is rotation around y-axis is :   
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• The transformation matrix that associates the original reference frame 
with the new when there is rotation around x-axis:   
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• The transformation matrix that associates the original reference frame 
with the new when there is rotation around z-axis:   
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