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Section 4 Velocity Kinematics   

4.1 Introduction 
The following sections analyse the motion (velocity and static force 
components) of a robotic arm. The method that we use is based on the book 
of John Craig “Introduction to robotics”. 
 
Important note: This is by far the most mathematical component of the 
module.  
 
4.2 Manipulator Motion 

4.2.1 Linear Velocity 
 
Initially we have to define the idea of the velocity vector. Assume that at t=t0 
we have a vector Q defined at a general frame {B} ( ( )0tQB  ). Then after time   
the point Q is at  and therefore we can define the difference  ( ttQB Δ+0 )
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Figure 4.1 Definition of velocity vector 

As always/expected the length of that vector describes the magnitude of the 
velocity and the angle of the vector describes the direction of the velocity. 
We can also describe the velocity vector with respect to any general frame: 

 .   ( ) Q
B

B
A

Q
BA VRV =
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Notice that in general .  ( )Q
BA

Q
A VV ≠

It is also possible to move {B} with respect to {A} so if AP is the vector defined 

on {A} that describes the origin of {B}: 
dt

PdV
A

P
A =  

Now we can combine these concepts to define the velocity vector of VQ when 
Q is changing with respect to {B} and at the same time {B} also changes with 
respect to {A}. The two origins are associated with the vector AP:  

( ) Q
B

B
A

P
A

Q
BA

A

Q
A VRVV

dt
PdV +=+=  . 

 
 

4.2.2 Rotational Velocity 
 
The rotational velocity defines the velocity of an object (and not of a point as 
the linear velocity does) and hence we have to define an angular velocity 
vector : B

AΩ
 

}{A

}{B
B

AΩ

AẐ

AX̂

AŶ

BŶ

BẐ

BX̂

 
Figure 4.2 Definition of angular velocity vector 

Intuitively we can say that this angular velocity vector must have a relationship 
with the rotational matrices (or with their derivatives). We will now study this 
relationship:  
 
Remember that we have said that the rotational matrices are orthonormal, 
hence:  IRRT =  and TRR =−1  
 

 ( ) 000 =⎟
⎠
⎞

⎜
⎝
⎛+⇔=+⇔=⇒

•••• T
TT

T
T

T

RRRRRRRR
dt
RRd  
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We define the new matrix and hence  . This implies that S 

is a skew-symmetric matrix (effectively this means that  ). 

TRRS
•

= 0=+ TSS
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Assume now that we have a vector BQ that remains unchanged with respect 
to {B}: . If {B} is rotating with respect to {A} then: ( ) QRQQ B

B
ABAA ==

( ) Q
dt
Rd

dt
QRd BB

AB
B

A

=
dt
Qd

A

=  since BQ is not a function of time. 
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Q
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= . Now let’s express Q with respect to {A}: 
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. Now we can state that S is the angular 

velocity matrix (not vector), , where  is the 

angular velocity vector. 
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A very interesting property of these matrices/vectors is that QSQ B

A ×Ω=  and 
hence QV A

B
A

P
A ×Ω= . 

 
If we combine now the linear velocity of a vector with respect to a frame {B}, 
the linear velocity of {B} with respect to {A} and finally the angular velocity of 
{B} with respect to {A} we have:  
 

QVRVV A
B

A
Q

B
B

A
P

A
Q

A ×Ω++=  Or . QRVRVV B
B

A
B

A
Q

B
B

A
P

A
Q

A ×Ω++=
 

4.2.3 Propagation from link to link 
It has been said that a manipulator is a chain of links.  Link (n) can have a 
velocity relative to links (n-1) and (n+1).  The velocity now of link (n) will be 
equal of the velocity (linear and/or angular) of link (n-1) plus any extra 
components of joint {n}.  At this point it must be mentioned that linear velocity 
of link (n) means linear velocity of the frame {n} while the angular velocity of 
link (n) is the angular velocity of link (n).  Hence the linear velocity is 
associated with a frame, while an angular velocity is associated with a body 
(link).   
 
Nomenclature: 
 

n
nu  is the linear velocity of link (n) with respect to frame {n} 

n
nΩ  is the angular velocity of link (n) with respect to frame {n} 
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Without any further proof we will state the results: 
 
If the joint n is revolute: 
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And if the joint n is prismatic: 
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4.2.4 Example 1: Revolute Joints 
 

1θ

2θ
21 θθ +

21 θθ +

 
Figure 4.3 2 link revolute arm 

 
Assume the two link RR manipulator in Figure 4.3, find the velocities of the 
frames {1}, {2} and {3}. Frame {3} has been attached as we wish to express 
the velocity of the origin of {3} with respect to the frame {3}. 
 
Since all joints are revolute: 
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Furthermore the equations for the position kinematics are: 
  

),(),( 11
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 Hence the linear velocity of the joint 3 is: 
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Now, to transform this with respect to the base, simply multiply with 0R3: 
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4.2.5 Example 2: Prismatic Joints 
For the PP robot find the linear velocity of joint 2: 

1z

1x
1y

0z

0x
0y

1d

2z

2x

2y

2d

 
Figure 4.4 2 link prismatic arm 
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Since the robot has two prismatic joints: 
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Furthermore the equations for the position kinematics are: 
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To transform this with respect to the base, simply multiply with 0R2: 
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Which is the correct vector since the z2 points at the negative y0. 
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