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Chapter 1

Introduction

Almost all of the physical dynamical systems in real life cannot be represented by lin-
ear differential equations and have a nonlinear nature. At the same time, linear control
methods rely on the key assumption of small range of operation for the linear model,
acquired from linearizing the nonlinear system, to be valid. When the required operation
range is large, a linear controller is prone to be unstable, because the nonlinearities in
the plant cannot be properly dealt with. Another assumption of linear control is that the
system model is indeed linearizable and the linear model is accurate enough for building
up the controller. However, the highly nonlinear and discontinuous nature of many, for
instance, mechanical and electrical systems does not allow linear approximation. It is also
necessary, in the design process of controllers, that the system model is well achievable
through a mathematical model and the parameters of the system model are reasonably
well-known. Nevertheless, for many nonlinear plans i.e. chemical processes, building a
mathematical model is very difficult and only the input-output data yielded from running
the process is accessible for an estimation. Many control problems involve uncertainties
in the model parameters. A controller based on inaccurate or obsolete values of the model
parameters may show significant performance degradation or even instability. There are
some complicated approaches like auto-regressive model based on the input-output data to
compensate model uncertainties, which usually use to design a process control. However
due to the high nonlinearity of the process, the order of the model often becomes very
high so that past effects are taken into account, even if that is physically unrealistic.

One way to cope with such difficulty is to develop a nonlinear model composing of a
number of sub-models which are simple, understandable, and responsible for respective
sub-domains. The idea of multi-model approach [1] is not new, but the idea of fuzzy
modeling [2] using the concept of the fuzzy sets theory [3] offers a new technique to build
multi-models of the process based on the input-output data or the original mathematical
model of the system. Facing complex and nonlinear systems, we have to recognize that
modeling is an art and it is important to realize system modeling is generally an act to
understand things directly rather than by computer. At most a linear combination like a
fuzzy model is clearly understandable.

The fuzzy model proposed by Takagi and Sugeno [2] is described by fuzzy IF-THEN
rules which represents local input-output relations of a nonlinear system. The main feature
of a Takagi-Sugeno fuzzy model is to express the local dynamics of each fuzzy implication
(rule) by a linear system model. The overall fuzzy model of the system is achieved by
fuzzy ”blending” of the linear system models. In this tutorial, the reader will find, by
some examples, that almost all nonlinear dynamical systems can be represented by Takagi-
Sugeno fuzzy models to high degree of precision. In fact, it is proved that Takagi-Sugeno
fuzzy models are universal approximators of any smooth nonlinear system [4,5].
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Chapter 2

Takagi-Sugeno fuzzy modeling

A fuzzy controller or model uses fuzzy rules, which are linguistic if-then statements involv-
ing fuzzy sets, fuzzy logic, and fuzzy inference. Fuzzy rules play a key role in representing
expert control/modeling knowledge and experience and in linking the input variables of
fuzzy controllers/models to output variable (or variables). Two major types of fuzzy rules
exist, namely, Mamdani fuzzy rules and Takagi-Sugeno (TS, for short) fuzzy rules.

Lets first start with the familiar Mamdani fuzzy systems. A simple but representative
Mamdani fuzzy rule describing the movement of a car is:

IF Speed is High AND Acceleration is Small THEN Braking is (should be) Modest,

where Speed and Acceleration are input variables and Braking is an output variable.
”High,” ”Small,” and ”Modest” are fuzzy sets, and the first two are called input fuzzy
sets while the last one is named the output fuzzy set.

The variables as well as linguistic terms, such as ”High”, can be represented by math-
ematical symbols. Thus, a Mamdani fuzzy rule for a fuzzy controller involving three input
variables and two output variables can be described as follows:

IF x1 is M1 AND x2 is M2 AND x3 is M3 THEN u1 is M4, u2 is M5, (2.1)

where x1, x2, and x3 are input variables (e.g., error, its first derivative and its second
derivative), and u1 and u2 are output variables (e.g., valve openness). In theory, these
variables can be either continuous or discrete; practically speaking, however, they should
be discrete because virtually all fuzzy controllers and models are implemented using digital
computers. M1, M2, M3, M4, and M5 are fuzzy sets, and AND are fuzzy logic AND
operators. ”IF x1 is M1 AND x2 is M2 AND x3 is M3” is called the rule antecedent,
whereas the remaining part is named the rule consequent.

The structure of Mamdani fuzzy rules for fuzzy modeling is the same. The variables
involved, however, are different. An example of a Mamdani fuzzy rule for fuzzy modeling
is

IF y(n) is M1 AND y(n−1) is M2 AND y(n−2) is M3 AND u(n) is M4 AND u(n−1) is M5

THEN y(n + 1) is M6 (2.2)

where M1, M2, M3, M4, M5, and M6 are fuzzy sets, y(n), y(n− 1), and y(n− 2) are the
output of the system to be modeled at sampling time n, n − 1 and n − 2, respectively.
And, u(n) and u(n − 1) are system input at time n and n − 1, respectively; y(n + 1) is
system output at the next sampling time, n + 1.

Now, let us look at the so-called TS fuzzy rules. Unlike Mamdani fuzzy rules, TS
rules use functions of input variables as the rule consequent. For fuzzy control, a TS rule
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corresponding to the Mamdani rule (2.1) is

IF x1 is M1 AND x2 is M2 AND x3 is M3 THEN u1 = f(x1, x2, x3), u2 = g(x1, x2, x3),

where f() and g() are two real functions of any type. Similarly, for fuzzy modeling, a TS
rule analogous to the Mamdani rule (2.2) is in the following form:

IF y(n) is M1 AND y(n−1) is M2 AND y(n−2) is M3 AND u(n) is M4 AND u(n−1) is M5

THEN y(n + 1) = F (y(n), y(n− 1), y(n− 2), u(n), u(n− 1)),

where F () is an arbitrary function.
Fuzzy inference systems also known as fuzzy rule-based systems or fuzzy models are

schematically shown in Figure 2.1. They are composed of 5 conventional block: a rule-
base containing a number of fuzzy if-then rules, a database which defines the membership
functions of the fuzzy sets used in the fuzzy rules, a decision-making unit which per-
forms the inference operations on the rules, a fuzzification interface which transform the
crisp inputs into degrees of match with linguistic values, a defuzzification interface which
transform the fuzzy results of the inference into a crisp output.

 
Figure 2.1: Fuzzy inference system.

Figure 2.2 utilizes a two-rule two-input fuzzy inference system to show different types
of fuzzy system mentioned above. Type 2 is the widely-used Mamdani type fuzzy system
which the output function is determined based on overall fuzzy output; some of them are
centroid of area, min of maxima, maximum of maxima, etc. Type 3 is the Takagi-Sugeno
type fuzzy system.

In this tutorial, we focus only on fuzzy models that use the T-S rule consequent.

2.1 Construction of Fuzzy Models

Figure 2.3 illustrates the model-based fuzzy control design approach. To design a T-S fuzzy
controller, we need a T-S fuzzy model for a nonlinear system. Therefore the construction
of a fuzzy model represent an important and basic procedure in this approach. In general
there are two approaches for constructing fuzzy models:

1. Identification (fuzzy modeling) using input-output data and

2. Derivation from given nonlinear system equations.

There has been an extensive literature of fuzzy modeling using input-output data following
Takagi’s, Sugeno’s and Kang’s excellent work [6, 7]. The procedure mainly consist of two
parts: structure identification and parameter identification. The identification approach
to fuzzy modeling is suitable for plants that are unable or too difficult to be represented
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Figure 2.2: Commonly used fuzzy if-then rules and fuzzy mechanism.

analytical and/or physical models. On the other hand, nonlinear dynamical models for
mechanical systems can be readily obtained by, for example, the Lagrange method and
the Newton-Euler method. In such cases, the second approach, which derives a fuzzy
model from given nonlinear dynamical models, is more appropriate. This tutorial fo-
cuses on second approach. This approach utilizes the idea of ”sector nonlinearity”, ”local
approximation,” or a combination of them to construct fuzzy models.

2.1.1 Sector Nonlinearity

The idea of using sector nonlinearity in fuzzy model construction first appeared in [8].
Sector nonlinearity is based on the following idea. Consider a simple nonlinear sys-
tem ẋ = f(x(t)), where f(0) = 0. The aim is to find the global sector such that
ẋ = f(x) ∈ [a1 a2]x(t). Figure 2.4a illustrates the sector nonlinearity approach. This
approach guarantees an exact fuzzy model construction. However, it is sometimes difficult
to find global sector for general nonlinear systems. In this case, we consider local sec-
tor nonlinearity. This is reasonable as variables of physical systems are always bounded.
Figure 2.4b shows the local sector nonlinearity, where two lines become the local sec-
tors under −d < x(t) < d. The fuzzy model exactly represents the local region, that is,
−d < x(t) < d. The following two examples illustrate the concrete steps to construct
fuzzy models.
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Parallel distributed compensation (PDC)  
Figure 2.3: Model-based fuzzy control design.
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( ) x t
dd−
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Figure 2.4: (a) Global sector nonlinearity. (b) Local sector nonlinearity.

2.2 Basic Fuzzy Mathematics for Modeling

Lets consider the nonlinear system below:
{

ẋ1 = x2

ẋ2 = x2
1 + x2

2 + u
(2.3)

The goal is to derive a T-S fuzzy model from the above given nonlinear system equations by
the sector nonlinearity approach as if the response of the T-S fuzzy model in the specified
domain exactly match with the response of the original system with the same input u.

The following steps should be taken to derive the T-S fuzzy model of (2.3). For
simplicity, we assume that x1 ∈ [0.5, 3.5] and x2 ∈ [−1, 4]. Here x1 and x2 are nonlinear
terms in the equations in the last equations so we make them as our fuzzy variables.
Generally they are denoted as z1, z2 and are known as premise variables that may be
functions of state variables, input variables, external disturbances and/or time. Therefore
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z1 = x1 and z2 = x2. Equation (2.3) can be written as

ẋ(t) =
[

0 1
x1 x2

]
x(t),

where x(t) = [x1(t) x2(t)]T . The first step for any kind of fuzzy modeling is to determine
the fuzzy variables and fuzzy sets or so-called membership functions. Although there is
no general procedure for this step and it can be done by various methods predominantly
trial and error, in exact fuzzy modeling using sector nonlinearity, it is quite routine. It is
assumed in this tutorial that the premise variables are just functions of the state variables
for the sake of simplicity. This assumption is needed to avoid a complicated defuzzification
process of the fuzzy controllers [9].

To acquire membership functions, we should calculate the minimum and maximum
values of z1(t) and z2(t) which under x1 ∈ [0.5, 3.5] and x2 ∈ [−1, 4], they are obviously
obtained as follows:

max z1(t) = 3.5, min z1(t) = 0.5,

max z2(t) = 4, min z2(t) = −1.

Therefore x1 and x2 can be represented by for membership functions M1, M2, N1 and N2

as follows:
z1(t) = x1(t) = M1(z1(t)) · 3.5 + M2(z1(t)) · 0.5,

z2(t) = x2(t) = N1(z2(t)) · 4 + N2(z2(t)) · (−1),

and because M1, M2, N1 and N2 are actually fuzzy sets according to fuzzy mathematics

M1(z1(t)) + M2(z1(t)) = 1,
N1(z2(t)) + N2(z2(t)) = 1.

We name the membership functions ”Positive”, ”Negative,” ”Big,” and ”Small,” respec-
tively. Figure 2.5 shows these membership functions. Here, we can generalize that the ith

2 1( ( )) M z t 1 1( ( )) M z t
1

0
0.5 3.5

Negative Positive

2 2( ( )) N z t 1 2( ( )) N z t
1

0

1− 2.5 4

Small Big

2 ( )z t1( )z t  
Figure 2.5: Membership functions M1(z1(t)), M2(z2(t)), N1(z2(t)) and N2(z2(t)).

rule of the continuous T-S fuzzy models are of the following forms:

Model Rule i:

IF z1(t) is Mi1 and . . . and zp(t) is Mip,

THEN
{

ẋ = Aix(t) + Biu(t), i=1,2,. . . ,r ;
y(t) = Cix(t), i=1,2,. . . ,r. (2.4)

Here, Mij is the fuzzy set and r is the number of model rules; x(t) is the state vector, u(t)
is the input vector, y(t) is the output vector, Ai is the square matrix with real elements and
z1(t), . . . , zp(t) are known premise variables as mentioned before. Each linear consequent
equation represented by Aix(t) + Biu(t) is called a subsystem.

Therefore, the nonlinear system (2.3) is modeled by the following fuzzy rules (we don’t
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consider input u(t) in this stage):

Model Rule 1: IF z1(t) is ”Positive” and z2(t) is ”Big,” THEN ẋ(t) = A1x(t).

Model Rule 2: IF z1(t) is ”Positive” and z2(t) is ”Small,” THEN ẋ(t) = A2x(t).

Model Rule 3: IF z1(t) is ”Negative” and z2(t) is ”Big,” THEN ẋ(t) = A3x(t).

Model Rule 4: IF z1(t) is ”Negative” and z2(t) is ”Small,” THEN ẋ(t) = A4x(t).

where the subsystems are determined as:

A1 =

[
0 1

max
z1∈Positive

z1 max
z2∈Big

z2

]
, A2 =

[
0 1

max
z1∈Positive

z1 max
z2∈Small

z2

]
,

A3 =

[
0 1

max
z1∈Negative

z1 max
z2∈Big

z2

]
, A4 =

[
0 1

max
z1∈Negative

z1 max
z2∈Small

z2

]
,

which is

A1 =
[

0 1
3.5 4

]
, A2 =

[
0 1

3.5 −1

]
,

A3 =
[

0 1
0.5 4

]
, A4 =

[
0 1

0.5 −1

]
,

Now, ẋ can be derived out of defuzzification process as:

ẋ(t) = h1(z(t))A1x(t) + h2(z(t))A2x(t) + h3(z(t))A3x(t) + h4(z(t))A4x(t)

where
h1(z(t)) = M1(z1(t))×N1(z2(t)),

h2(z(t)) = M1(z1(t))×N2(z2(t)),

h3(z(t)) = M2(z1(t))×N1(z2(t)),

h4(z(t)) = M2(z1(t))×N2(z2(t)).

This T-S fuzzy model can exactly represents the nonlinear system in the region [0.5, 3.5]×
[−1, 4] on the x1 − x2 space. To have a clear picture of the fuzzy modeling procedure
above, we calculate the final output of ẋ for the specific given values of x1 and x2.

According to the model rules above

Model Rule 1: IF z1(t) is ”Positive” and z2(t) is ”Big,” THEN
{

ẋ1 = x2

ẋ2 = 3.5x1 + 4x2
.

Model Rule 2: IF z1(t) is ”Positive” and z2(t) is ”Small,” THEN
{

ẋ1 = x2

ẋ2 = 3.5x1 − x2
.

Model Rule 3: IF z1(t) is ”Negative” and z2(t) is ”Big,” THEN
{

ẋ1 = x2

ẋ2 = 0.5x1 + 4x2
.

Model Rule 4: IF z1(t) is ”Negative” and z2(t) is ”Small,” THEN
{

ẋ1 = x2

ẋ2 = 0.5x1 − x2
.

Therefore, if z1 = x1 = 2.75 and z2 = x2 = 0.25, according to (2.6), the T-S fuzzy
modeling implication can be derived as:

7



1 2.75z = 2 0.25z =

0.25
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2.218
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1( )z t 2 ( )z t
41−3.50.5

1 2( ( )) N z t2 2( ( )) N z t1 1( ( )) M z t2 1( ( )) M z t

Positive  
Figure 2.6: Given the value of z1 = 2.75 and z2 = 0.25 to the membership functions

Implication Premise Consequence Truth value

Rule 1 M1(z1) = 0.7812, N1(z2) = 0.25
{

ẋ1 = 0.25
ẋ2 = 3.5× 2.75 + 4× 0.25 0.7812 ∧ 0.25 = 0.25

Rule 2 M1(z1) = 0.7812, N2(z2) = 0.75
{

ẋ1 = 0.25
ẋ2 = 3.5× 2.75− 0.25 0.7812 ∧ 0.75 = 0.75

Rule 3 M2(z1) = 0.218, N1(z2) = 0.25
{

ẋ1 = 0.25
ẋ2 = 0.5× 2.75 + 4× 0.25 0.218 ∧ 0.25 = 0.218

Rule 4 M2(z1) = 0.218, N2(z2) = 0.75
{

ẋ1 = 0.25
ẋ2 = 0.5× 2.75− 0.25 0.218 ∧ 0.75 = 0.218

Now, the final values for ẋ1 and ẋ2, in T-S fuzzy defuzzification process, can be calculated
as:





ẋ1 = 0.25× 0.25 + 0.25× 0.75 + 0.25× 0.218 + 0.25× 0.218
0.25 + 0.75 + 0.218 + 0.218 = 0.25

ẋ2 = 10.625× 0.25 + 9.375× 0.75 + 2.375× 0.218 + 1.125× 0.218
0.25 + 0.75 + 0.218 + 0.218 = 7.2775

Comparing, the values of ẋ1 = 0.25 and ẋ2 = 7.6225, we can see that the T-S fuzzy
approximation does the good job and small value difference of ẋ2, actually comes from
rounding error of the premise fuzzy variables.

Generally, given a pair of (x(t), u(t)) for the model rule (3.6), the final outputs of
the fuzzy model for the Continuous Fuzzy System (for the general rule of Discrete Fuzzy
Systems see the appendix) are inferred as follows:

ẋ =
∑r

i=1 wi(z(t)){Aix(t) + Biu(t)}∑r
i=1 wi(z(t))

=
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}, (2.5)

y(t) =
∑r

i=1 wi(z(t))Cix(t)∑r
i=1 wi(z(t))

=
r∑

i=1

hi(z(t))Cix(t). (2.6)

where
z(t) = [z1(t)z2(t) . . . zp(t)],

wi(z(t)) =
p∏

j=1

Mij(zj(t)),
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and weighting functions wi should be normalized as

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

(2.7)

for all t. The term Mij(zj(t)) is the grade of membership of zj(t) in Mij . Since
{ ∑r

i=1 wi(z(t)) > 0,
wi(z(t)) ≥ 0, i=1,2,. . . ,r, (2.8)

we have { ∑r
i=1 hi(z(t)) = 1,

hi(z(t)) ≥ 0, i=1,2,. . . ,r, (2.9)

for all t.

Example 1 Consider the following nonlinear system:
(

ẋ1(t)
ẋ2(t)

)
=

( −x1(t) + x1(t)x3
2(t)

−x2(t) + (3 + x2(t))x3
1(t)

)
(2.10)

For simplicity, we assume that x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. Of course, we can assume
any range for x1(t) and x2(t) to construct a fuzzy model. Equation (2.10) can be written
as

ẋ(t) =
[ −1 x1(t)x2

2(t)
(3 + x2(t))x2

1(t) −1

]
x(t),

where x(t) = [x1(t) x2(t)]T and x1(t)x2
2(t) and (3 + x2(t))x2

1(t) are nonlinear terms. For
the nonlinear terms, define z1(t) ≡ x1(t)x2

2(t) and z2(t) ≡ (3+ x2(t))x2
1(t). Then, we have

ẋ(t) =
[ −1 z1(t)
z2(t) −1

]
x(t).

Next, we should calculate the minimum and maximum values of z1(t) and z2(t) under
x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]. They are obtained as follows:

max
x1(t),x2(t)

z1(t) = 1, min
x1(t),x2(t)

z1(t) = −1,

max
x1(t),x2(t)

z2(t) = 4, min
x1(t),x2(t)

z2(t) = 0.

From the maximum and minimum values, z1(t) and z2(t) can be represented by

z1(t) = x1(t)x2
2(t) = M1(z1(t)) · 1 + M2(z1(t)) · (−1),

z2(t) = (3 + x2(t))x2
1(t) = N1(z2(t)) · 4 + N2(z2(t)) · 0,

where
M1(z1(t)) + M2(z1(t)) = 1,
N1(z2(t)) + N2(z2(t)) = 1.

Therefore the membership functions can be calculated as

M1(z1(t)) =
z1(t) + 1

2
, M2(z1(t)) =

1− z1(1)
2

,

N1(z2(t)) =
z2(t)

4
, N2(z2(t)) =

4− z2(t)
4

,

We name the membership functions ”Positive,” ”Negative,” ”Big,” and ”Small,” respec-
tively. Then, the nonlinear system (2.10) is represented by the following fuzzy model.
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Model Rule 1: IF z1(t) is ”Positive” and z2(t) is ”Big,” THEN ẋ(t) = A1x(t).

Model Rule 2: IF z1(t) is ”Positive” and z2(t) is ”Small,” THEN ẋ(t) = A2x(t).

Model Rule 3: IF z1(t) is ”Negative” and z2(t) is ”Big,” THEN ẋ(t) = A3x(t).

Model Rule 4: IF z1(t) is ”Negative” and z2(t) is ”Small,” THEN ẋ(t) = A4x(t).

Here,

A1 =
[−1 1

4 −1

]
, A2 =

[−1 1
0 −1

]
,

A3 =
[−1 −1

4 −1

]
, A4 =

[−1 −1
0 −1

]
,

Figures 2.7a and 2.7b illustrates the above membership functions. The defuzzification is

2 1( ( )) M z t 1 1( ( )) M z t
1

0

1− 0 1

Negative Positive

1( )z t  (a)

2 2( ( )) N z t 1 2( ( )) N z t
1

0
0 2 4

Small Big

2 ( )z t  (b)

Figure 2.7: Membership functions M1(z1(t)), M2(z1(t)), N1(z2(t)) and N2(z2(t)).

carried out as

ẋ(t) =
4∑

i=1

hi(z(t))Aix(t),

where
h1(z(t)) = M1(z1(t))×N1(z2(t)),

h2(z(t)) = M1(z1(t))×N2(z2(t)),

h3(z(t)) = M2(z1(t))×N1(z2(t)),

h4(z(t)) = M2(z1(t))×N2(z2(t)).

This fuzzy model exactly represents the nonlinear system in the region [−1, 1]× [−1, 1]
on the x1 − x2 space.

Figure 2.8 shows the implementation of the above fuzzy model in Matlab/Simulink. As
it is evident in Figure 2.9a, the time responses of the fuzzy model can exactly follow the
responses of the original differential equations, which means the fuzzy model can exactly
represents the original system in the pre-specified domains. It is also clear from Figure
2.9b that even outside of the boundaries of x1 and x2, the above approach can accurately
represents the original system (2.10).

2.2.1 Local Approximation in Fuzzy Partition Spaces

Another approach to obtain T-S fuzzy models is the so-called local approximation in Fuzzy
Partition Spaces. The spirit of the approach is to approximate nonlinear terms by judi-
ciously chosen linear terms. This procedure leads to reduction of the number of model
rules. For instance, if we try to exactly represents the inverted pendulum by T-S fuzzy
model as the way in the previous section, it ends up with 16 rules. In comparison, using
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Figure 2.9: (a) Time response of the fuzzy model and the original system. (b) Function
surface of ẋ2, real and exact fuzzy modeling.

local approximation, a T-S model with 4 or 2 rules can be constructed. The number of
model rules is directly related to the complexity of analysis and design LMI control laws
for the T-S fuzzy controller. This is because the number of model rules for the overall T-S
fuzzy control system is basically the combination of the model rules and control rules (for
further reading on Model-based T-S fuzzy Controllers based on LMI design see [10,11]).
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Example 2 The equations of motion for the inverted pendulum [12] are
{

ẋ1(t) = x2(t),
ẋ2(t) = g sin(x1(t))−amlx2

2(t)sin(2x1(t))/2−a cos(x1(t))u(t)
4l/3−aml cos2(x1(t))

,
(2.11)

where x1(t) denotes the angle (in radians) of the pendulum from the vertical and x2(t) is
the angular velocity; g = 9.8 m/s2 is the gravity constant, m is the mass of the pendulum,
M is the mass of the cart, 2l is the length of the pendulum, and u is the force applied to
the cart (in newtons);a = 1/(m + M).

When x1(t) is near zero, the nonlinear equations can be simplified as

ẋ1(t) = x2(t), (2.12)

ẋ2(t) =
gx1(t)− au(t)

4l/3− aml
(2.13)

When x1(t) is near ±π/2, the nonlinear equations can be simplified as

ẋ1(t) = x2(t), (2.14)

ẋ2(t) =
2gx1(t)/π − aβu(t)

4l/3− amlβ2
, (2.15)

where β = cos(88◦) Just remind that (2.12)-(2.15) are now linear systems. We arrive at
the following fuzzy model based on linear subsystems:

Model Rule 1: IF x1(t) is about 0 THEN ẋ(t) = A1x(t) + B1u(t).

Model Rule 2: IF x1(t) is about ±π/2(|x1| < π/2) THEN ẋ(t) = A2x(t) + B2u(t).

Here,

A1 =
[

0 1
g

4l/3−aml 0

]
, B1 =

[
0

− a
4l/3−aml

]
,

A2 =
[

0 1
2g

π(4l/3−amlβ2) 0

]
, B2 =

[
0

− aβ
4l/3−amlβ2

]
,

and β = cos(88◦). Membership functions for Rule 1 and Rule 2 can be simply defined as
shown in figure 2.10.

1

0
90− 0 90 (deg)

Rule 2

Rule 1

1x  
Figure 2.10: Membership functions of two-rule model.

An important and natural question arises in the construction using local approximation
in fuzzy partition spaces or simplification before sector nonlinearity is that ”Is it possible to
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approximate any smooth nonlinear systems with Takagi-Sugeno fuzzy models (3.1) having
no consequent constant term?”. The answer is fortunately Yes if we consider the problem
in C0 or C1 context. That is, the original vector field plus its first-order derivative can be
accurately approximated(for further reading please see [10]).

Now suppose the pendulum on the cart system is built in such a way that the work
space of the pendulum is the full circle [−π, π]. In this subsection, we extends the result
to the range of x1 ∈ [−π, π] except for a thin strip near ±π/2. Balancing the pendulum
for the angle range of π/2 < |x1| ≤ π is referred to as a swing-up control of the pendulum.
Recall that for x1 = ±π/2 the system is uncontrollable. We add two more rules (Rules 3
and 4) to the fuzzy model.

Model Rule 1: IF x1(t) is about 0 THEN ẋ(t) = A1x(t) + B1u(t).

Model Rule 2: IF x1(t) is about ±π/2(|x1| < π/2) THEN ẋ(t) = A2x(t) + B2u(t).

Model Rule 3: IF x1(t) is about ±π/2(|x1| > π/2) THEN ẋ(t) = A3x(t) + B3u(t).

Model Rule 4: IF x1(t) is about π THEN ẋ(t) = A4x(t) + B4u(t).

Here A1, B1, A2 and B2 are the same as above and

A3 =
[

0 1
2g

π(4l/3−amlβ2) 0

]
, B3 =

[
0

− aβ
4l/3−amlβ2

]
,

A4 =
[
0 1
0 0

]
, B4 =

[
0

− a
4l/3−aml

]
.

The membership functions of this four-rule fuzzy model are shown in Figure 2.12. Figures
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Figure 2.11: Time responses of original Inverted Pendulum system and their fuzzy ap-
proximations.

2.13 and 2.14 shows the construction of fuzzy models with 2 and 4 rules respectively
Matlab/Simulink. Figure 2.11 compares the time response of the original system with
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Figure 2.12: Membership functions of four-rule model.
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Figure 2.13: (a) Simulink implementation of Inverted Pendulum modeled with T-S Fuzzy
with 2 rules (b) Fuzzy operation block.

fuzzy models. Figure 2.15 depicts the error between the real and fuzzy approximation.
One can see that the 4-rule fuzzy model is a better approximation of real system comparing
to 2-rule fuzzy model.
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Figure 2.14: (a) Simulink implementation of Inverted Pendulum modeled with T-S Fuzzy
with 4 rules. (b) Fuzzy operation block.
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Figure 2.15: Error surface (a) with respect to time (b) of 2-rule fuzzy approximation with
respect to ẋ2 (c) of 4-rule fuzzy approximation with respect to ẋ2.
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Chapter 3

Appendix

Discrete Fuzzy System: DFS

Model Rule i:

IF z1(t) is Mi1 and . . . and zp(t) is Mip,

THEN
{

x(t + 1) = Aix(t) + Biu(t), i=1,2,. . . ,r;
y(t) = Cix(t), i=1,2,. . . ,r.

Here, Mij is the fuzzy set and r is the number of model rules; x(t) is the state vector, u(t)
is the input vector, y(t) is the output vector, Ai is the square matrix with real elements and
z1(t), . . . , zp(t) are known premise variables as mentioned before. Each linear consequent
equation represented by Aix(t) + Biu(t) is called a subsystem.

Given a pair of (x(t), u(t)), the final outputs of the fuzzy model are inferred as follows:

x(t + 1) =
∑r

i=1 wi(z(t)){Aix(t) + Biu(t)}∑r
i=1 wi(z(t))

=
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}, (3.1)

y(t) =
∑r

i=1 wi(z(t))Cix(t)∑r
i=1 wi(z(t))

=
r∑

i=1

hi(z(t))Cix(t). (3.2)

where
z(t) = [z1(t)z2(t) . . . zp(t)],

wi(z(t)) =
p∏

j=1

Mij(zj(t)),

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

(3.3)

for all t. The term Mij(zj(t)) is the grade of membership of zj(t) in Mij . Since
{ ∑r

i=1 wi(z(t)) > 0,
wi(z(t)) ≥ 0, i=1,2,. . . ,r, (3.4)
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we have { ∑r
i=1 hi(z(t)) = 1,

hi(z(t)) ≥ 0, i=1,2,. . . ,r, (3.5)

for all t.

Example Assume in the DFS that

p = n, z1(t) = x(t), z1(t) = x(t− 1), . . . , zn(t) = x(t− n + 1).

Then, the model rule can be represented as follows:

Model Rule i:

IF x(t) is Mi1 and . . . and x(t− n + 1) is Min,

THEN
{

x(t + 1) = Aix(t) + Biu(t), i=1,2,. . . ,r;
y(t) = Cix(t), i=1,2,. . . ,r. (3.6)

where x(t) = [x(t) x(t− 1) · · ·x(t− n + 1)]T .
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