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Control of Fast Scale Bifurcations in Power-Factor
Correction Converters
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Abstract—This brief proposes a novel controller which greatly
enhances the performance of a power-factor correction converter.
This controller is optimally tuned to place the eigenvalues of the
system well inside the unit circle and hence it guarantees stable
operation over a wide range of input voltages. The design of the
controller is based on the stability analysis of the system using the
state transition matrix over a clock cycle. It is shown that the tran-
sition matrix across the switching manifold greatly influences the
system’s performance, allowing the system to be stabilized by pe-
riodically altering the manifold. The results are validated by ana-
Iytical and numerical studies.

Index Terms—Bifurcation, control of power electronics, power-
factor correction (PFC).

I. INTRODUCTION

OWER-FACTOR correction (PFC) converters are widely
P used in practical power supplies to regulate the output and
to provide an acceptable ratio of active and apparent power.
The supply voltage (AC at 50/60 Hz) is first rectified by using
a diode bridge rectifier and then the dc voltage is supplied to
a current mode controlled dc—dc converter (Fig. 1). The de-
manded current is derived from the rectified voltage and hence,
assuming satisfactory control of the dc—dc converter, nearly
unity power-factor operation is achieved [1], [2]. The rectified
current consists mainly of two frequency components—one
at twice the frequency of the line signal and the other a high
frequency component related to the clock used by the dc—dc
converter. Historically, boost converters working in continuous
conduction mode (CCM) or in discontinuous conduction mode
(DCM) have been employed using average or peak current
control strategies. Isolated PFC converters working in DCM
have also been studied [3].

Since the system involves switching, the overall model is
piecewise-smooth, and both smooth and nonsmooth bifurca-
tions may occur [4], [5]. In the study of dc—dc converters, the
terms fast-scale and slow-scale bifurcation have been coined:
the former refers to the instability that affects the dynamics at
clock frequency, and the later refers to the generation of a slower
frequency of oscillation [6]. In PFC systems, both types of bi-
furcations have been observed [3], [7]-[9]—which have been
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Fig. 1. Boost converter under current peak control.

shown to reduce the power factor of the circuit, thus down-
grading the overall performance.

Conventionally these bifurcations are analyzed by using a
small signal model of the system [10] or based on the Poincaré
map of the periodic orbit. In this brief, the fast scale bifurca-
tions are studied using a different approach based on the state
transition matrix of the system over one clock cycle [11], also re-
ferred to as the monodromy matrix [12]. Since the system under
study involves switches, the influence of the switching manifold
has to be taken into account when the monodromy matrix is ob-
tained. This is accomplished by using the state transition matrix
across the switching manifold [13], called the saltation matrix.
By using this approach it is possible to locate the bifurcation
point by calculating the Floquet multipliers.

In this brief, we show that the saltation matrix is mainly
responsible for changes in the Floquet multipliers and hence
can have a major influence on the stability of the system. This
idea has been previously employed in stabilizing discontinuous
mechanical systems [14]-[16] where a new and appropriately
chosen discontinuity is introduced into the system. In this
brief, we propose a novel controller that aims at appropriately
altering the saltation matrix so that stable operation is obtained
over almost a full line cycle. This is achieved by introducing an
additional sinusoidal waveform to the reference current. Earlier
it was empirically observed that a sinusoidal perturbation can
stabilize the system [17]. In this brief, we analytically explain
why the technique works, and develop methods for obtaining
optimal choice for the perturbation signal.

A peak current controlled boost converter operating under
CCM — which is known to exhibit fast scale bifurcation [9]—is
used to demonstrate the new method of analysis and control.
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Fig. 2. Response of PFC for V;,, = 110 V RMS/ 50 Hz, V.o = 220 V,
L =2mH, C =470 uF, R = 135 Q, Clock period T' = 20 pus, Tr = 4 ms,
T.=1/70s, P, = 1/60, P, = 0.08.

II. PFC BOOST CONVERTER

The boost converter used in the PFC is shown in Fig. 1. To
achieve near unity power factor the demanded current is in phase
with the demanded voltage. The demanded voltage (Vief) is
compared with the capacitor voltage (z1) and the error signal
is filtered using a typical first-order low-pass filter (time con-
stant: Tr) to remove any unwanted noise. The filtered error is
fed to a conventional PI controller (Kp = P5, K; = Py/T.)
and the output is multiplied by the rectified input voltage times
a proportionality constant P; [9]. The total state-space model is

%= f_(x), Sison
| fi(x), Sisoff
where
—Iy T2 1
RC C T RC
Vin Vin _ =1
£ (X> = Vref—lﬂzl—zs ’ f+(X) = ‘/rel;_ﬁrl_LZES (1
zh z5
T. T.

where z; is the capacitor voltage and x5 is the inductor current.

The two extra states z3 and x4 are related to the control loop
(Fig. 1). The reference current for the peak current controller
(I;ef) 1s obtained as

Liet = (3 + 24) PL Py Vi, ()

A typical response over a full line cycle is shown in Fig. 2,
where it is obvious that for high values of the supply voltage
the system is stable while for low values the output current
waveform is distorted—which degrades the system perfor-
mance. Since the line frequency is a few orders of magnitude
smaller than the switching frequency, it can be assumed that the
supply voltage is constant over one switching cycle [3]. This
widely made assumption is of course an approximation which
will cause some inaccuracies in the overall analysis. Neverthe-
less the fundamental properties of the system are retained, as
demonstrated in [9]. Hence, the converter is studied assuming
constant supply for a range of voltages Vi, from 0 to 110y/2V
(the peak value of the rectified voltage). Fig. 3 shows how the
system loses stability when the supply voltage is progressively
reduced. The values chosen are Vi, = k x 110v/2, k = 1, 0.8,
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Fig. 3. The inductor current waveforms for V,, = k X 110\/5 V,k =(a) 1.0,
(b) 0.8, (c) 0.707, (d) 0.5. The solid circles are the points of discrete observation
taken by sampling the state every 1" s.

0.7, and 0.5. Matlab/Simulink were used for all simulations,
using the differential equation solver ode45, with maximum
step size of 1 us and relative tolerance of 1 ms. For all other
parameters, default settings were used.

III. STABILITY ANALYSIS

A. Derivation of the Monodromy Matrix

In this section we obtain the state transition matrix over a
complete clock cycle, called the monodromy matrix. The eigen-
values of the monodromy matrix are called Floquet multipliers
[12] and are identical to the eigenvalues of the fixed point of
the Poincaré map, and hence they determine the stability of the
orbit.

For a period-1 orbit in CCM, the state vector follows two
smooth vector fields during the on and off periods, and the
switching manifold (h) is defined as h(x(t)) = z2 — Lo,
where I, is given by (2). The state transition matrix during
the on period is given by @ (¢,0) = e“-* and during the off
period by @ (t,dT) = eA+(=9T) where d is the duty cycle of
the converter. The state matrices before and after the switching
can be easily obtained from the two smooth vector fields

r 1

o0
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“ne ¢ 0 0
T B AT @
TF '1TF
L 0 0 £ 0

The transition at the switching event is described by the salta-
tion matrix [13] given by

(£

S=I,+-+— ——/ 5
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where 1, is the identity matrix of order 4, and n is the vector
normal to the switching manifold given by the gradient of A

n=Vh=[0 1 —PPVi, —PPVy]".

All the terms have to be evaluated at the switching instant ¢t =
dr.

By using the basic properties of the state transition matrix we
can describe the monodromy matrix of the system as

M = & (T,dI) S ®_(dT,0). ©®)

In the next section we will locate the period-1 limit cycle for all
values of the supply voltage and we will use this information to
calculate the monodromy matrix and its eigenvalues.

B. Location of the Period-1 Limit Cycle

In order to locate the limit cycle for different values of V;,,,
we need to know the value of the duty cycle for the stable or un-
stable period-1 orbit for every value of Vi, [11]. The expression
for the steady state duty cycle of the boost converter is given by
d =1 — Vi /Vier [9]. The state vectors att = d1 andt = T
are given by

daT
x(dT):tb_(dT,O)x(O)+/ &_(dl—,0)Rdr ()

x(T) =&, (T, dT)x(dT)+ / "®,(T—r.dT)Rdr

dT

—x(0). ®)

To simplify the analysis we will use only the first three states
of the system as the fourth state does not influence the other
three. Hence, the order of the two state matrices will be reduced
to 3, and the input vector R is given by

_ Vin Vet 1T
R=[0 Y U]

By substituting (7) into (8) and by solving for x(0) we get

x(0) = (Is — ®.(T, dT)®_(dT,0))~} (®4(T,dT)L_ +1,).

)
where I_ and I, are the two integrals in (7) and (8). If the
duty cycle is known, (9) gives the state vector at t = 0, and (7)
gives the values of the three states at t = dT'. For a satisfactory
peak current controller, at ¢ = dT we have zo(dT) = I,.f.
From (2) we can find the value of the fourth state at ¢ = d1" as
:E4(dT) = —ng(dT) + Iref/(P1P2Vvin)'

C. Evaluation of the Floquet Multipliers

Thus, we can effectively locate the period-1 (stable or un-
stable) limit cycle for various values of V;,, and can use the
monodromy matrix to determine its stability. From (5), we have
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TABLE 1
FLOQUET MULTIPLIERS FOR VARIOUS SUPPLY VOLTAGES.

k=1 k=0.8
—0.41413 ~0.7679
0.9985 0.9983
10.9979 + 0.0049; | | |0.9980 = 0.00363 |
k=0.7 k=0.5
~1.0205 —1.8287
0.9981 0.9967
[0.9981 £ 0.0028; | | [0.9988 + 0.0014; |
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Fig. 4. Bifurcation diagram of the PFC when the input voltage is used as the
bifurcation parameter. The value & = 1 corresponds to the peak voltage of the
original rectified signal.
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Since the switching manifold does not vary with time, Oh/dt =
0.

Based on these equations, it is thus possible to calculate the
saltation matrix by using (5) and using that, the monodromy
matrix of the system from (6). For & = 1 the monodromy matrix
is

0.9996 0.0568  —0.0055 —0.0055
M = —0.0075 —0.4146 0.2931 0.2934
—0.0050 —0.0002  0.9950 0.0000
—0.0000 —0.0000 0.0014 1.0000

To further illustrate, we calculated the Floquet multipliers for
the values of Vj, used in Fig. 3. The calculated eigenvalues are
given in Table I, which shows that there is a period doubling
bifurcation just before the value of £ = 0.7. This agrees with the
results shown in Figs. 3 and 4. Note that in this specific system,
the variables x3 and x4 do not influence the dynamics of x;
and x» in each subsystem; they only play a role in deciding the
switching instant. Another interesting property of this specific
PFC topology is that 3 out of the 4 eigenvalues are very close
to unity and they do not significantly change with changes in
the bifurcation variable, and therefore they do not influence the
analysis presented in the brief.
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Fig. 5. Area in the a versus k parameter space for which the eigenvalues are
inside the unit circle.

IV. CONTROL OF THE LOCATION OF PERIOD
DOUBLING BIFURCATION

From the structure of the monodromy matrix (6), it is clear
that the saltation matrix S plays an important role in determining
the stability of the limit cycle. Hence, it is possible to alter the
stability property of the orbit by changing that matrix. From
(5) it can be seen that the saltation matrix depends on the two
vector fields (which we cannot change) and on the manifold h.
Hence, by appropriately introducing small changes in A it is
possible to alter the stability properties of the system. We can
either alter h in such a way that the normal vector will change,
or we can simply add a time varying component that will make
the term Oh /0t nonzero. Thus, when the system tends to lose
stability, we can force the eigenvalues back into the unit circle.
This will extend the period one operation allowing us to control
the parameter value where the first period doubling takes place.

To demonstrate this concept, we add a sinusoidal signal to
I,.«¢ such that!

Lot = (z3 4+ 24)P1 P2 Vi + a sin (wt — g) (10)
where w = 27 /T. In Fig. 5 we plot the range of values of a and
k where the eigenvalues are inside the unit circle. It is clear that
for a wide range of supply voltages we can choose the value
of a such that the system is stable (notice that for very small
values of k we cannot stabilize the system). In both regions
the system loses stability through period doubling bifurcation,
which is verified by the corresponding eigenvalues as well as
by cycle-to-cycle simulation. The graph leads to another inter-
esting inference: that an incorrect value of a can even destabilize
a stable system. For example for £k = 1 and ¢ = 0 the system
is stable but if a is wrongly chosen at 0.5 then we have an un-
stable system. This underscores the need for a proper design of
the controller rather than using trial and error techniques.

Now the question is, can we optimally choose the value of a
so that over a large range of k the stability characteristics remain
the same as that for & = 1? We note that for £ = 1 the first
eigenvalue is —0.41413. In order to keep the eigenvalue fixed at
that value, the optimal value of a can be obtained by solving the
nonlinear equation

| - 0.41413 x I, — M| = 0. (11)

IThe injection of a sine wave has also been used in [17] where it was empir-
ically found that it can stabilize dc—dc buck converters.
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Fig.7. Current response of the supervised system for (a) k = 0.7 and (b) k =
0.5.

The result of numerical solution of this equation is plotted in
Fig. 6.

On the basis of the above observation, we propose a super-
vising controller that adjusts the value of a depending on the
supply voltage by using a simple look-up table derived from
(11). Thus, we can achieve a stable period-1 behavior even when
Vi is time varying as in the case of the PFC. Fig. 7 shows the in-
ductor current waveforms of the supervised system for k = 0.7
and 0.5. Comparing with Fig. 3(c) and (d) it is clear that the
instability is avoided. Fig. 8 shows the sampled values of the
inductor current of the system when V;,, is the original rectified
sinusoid. It is clear that the overall performance of the system is
greatly improved. To further test the robustness of the controller
a sudden disturbance was imposed on the system in which the
load was increased by 50% and as it can be seen from Fig. 9 the
system remained stable (after the initial transient of course).

Fig. 8(a) shows that for very small values of V},, the controller
could not stabilize the system. It is possible to introduce other
parameter changes [18] where the system performance could be
further improved. For example, it is possible to alter the feed-
back variables and to introduce a two degrees of freedom con-
troller which can stabilize the system while improving other per-
formance characteristics like settling time and overshoot. Also
it is possible to alter the amplitude and the phase of the injected
sine wave which can guarantee even bigger stability regions.

V. CONCLUSION

In this brief, we have analyzed the stability of the PFC system
with a peak current controlled boost converter. We have used
a method of stability analysis based on the calculation of the
state transition matrix over a complete clock cycle that also sug-
gests a way of improving the stability margin. The monodromy
matrix is composed of the state transition matrices during the
on and off periods, and the state transition matrix across the
switching event, called the saltation matrix. The calculation of

0.1
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Fig. 8. Sampled inductor current of the system, a) with the proposed controller, b) without the proposed controller.
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Fig. 9. Sampled inductor current response of the supervised system when sub-
jected to a sudden disturbance.

the eigenvalues of the monodromy matrix (or the Floquet mul-
tipliers) shows that the system loses stability through a period
doubling bifurcation when the input voltage to the boost con-
verter goes below 0.7 times the peak voltage, thus degrading the
system performance. Further reduction of the input voltage re-
sults in the occurrence of a succession of smooth and nonsmooth
bifurcations which cause the system to behave chaotically. We
propose a control strategy aimed at manipulating the saltation
matrix—a major determinant of the stability—by adding a si-
nusoidal signal to the reference current. We show that it is pos-
sible to optimally choose the amplitude of the added sinusoid
depending on the input voltage to place the eigenvalues at a
convenient position. The resulting supervising controller, which
is easily implementable on digital signal processor, greatly in-
creases the parameter range for stable period-1 operation, and
improves the overall performance of the PFC.

It may be noted that the technique of injecting a sinusoidal
waveform to stabilize a converter circuit, referred to as resonant
chaos control, has been tried by other researchers [17]. This ear-
lier work was mainly empirical in nature, and the controller de-
sign was achieved through trial and error. In this brief we have
shown the theoretical basis behind the success of this technique,
proved that a wrong parameter choice can in fact destabilize the
system, and proposed a semi-analytical method for the optimal
choice of the controller parameters.
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