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ABSTRACT 

Hybrid energy storage systems involve the integration of multifarious energy storage technologies 

which have complementary operational characteristics. Although the incorporation of hybrid energy 

storage systems can suppress renewable energy intermittency and improve energy supply; control and 

coordination become more challenging. By integrating more assets and more functions in the system, 

the complexity becomes prohibiting and hence new versatile and scalable methods must be employed. 

The authors have in the past proposed a graphical energy management strategy based on the power 

pinch analysis framework to address this challenge but was contingent on average energy demand and 

supply profile that reflects only a single scenario case study. This paper proposes a probabilistic 

adaptive power pinch analysis paradigm for energy management of isolated hybrid energy storage 

systems with uncertainty, which is implemented in a model predictive receding horizon. The proposed 

method uses multistate stochastic power grand composite curves realised from the integration of 

distinct energy demand and supply profiles randomly sampled from historic data via Monte Carlo 

simulation. Thus, in a predictive horizon, the multiple possibilities which the state of the energy storage 

can attain must jointly satisfy a probabilistic chance constraint factor with necessary decisions inferred 

in the control horizon to negate uncertainty. The proposed probabilistic method was further improved 

by a correction mechanism that minimises the mean squared error between the actual and predicted 

state of charge of the battery. The performance of probabilistic power pinch analysis was tested on a 

hybrid energy storage system with renewable energy sources, a battery, a fuel cell and an electrolyser. 

The results clearly demonstrate improved robustness to Gaussian uncertainty than a day ahead power 

pinch analysis reference as over-dis/charging the battery and carbon emission was reduced by 98%, 

22% and 100% respectively but, necessitates allocating more hydrogen resources. 
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Nomenclature 

𝐴𝐸𝐸𝑁𝐷 Available excess energy for the next day  

𝐵𝐴𝑇 Battery 

𝐶𝑙 The capacity of accumulator 𝑙 

𝐷𝑆𝐿 Diesel generator 

𝐸𝐿 Electrolyser   

𝐹𝐶 Fuel cell 

𝐻𝑇 Hydrogen Tank 

𝐿𝐷 Load 

𝑀𝐴𝐸 Minimum absorbed energy  

𝑀𝑂𝐸𝑆 Minimum outsourced energy supply 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑛  State of accumulator 𝑙  

𝑆𝐿𝑜
𝑙  Lower pinch limit or utility  

 𝑆𝑈𝑝
𝑙  Upper pinch limit or utility 

𝑃𝑂𝑊 Power flow 

𝑃𝐺𝐶𝐶 Power grand composite curve 

𝒩 Zero mean Gaussian uncertainty 

𝒰 Input ∈ 𝑅𝑚𝑥1 

𝑊𝑇 Water tank 

∆𝑘 
 

Time interval 

𝜂𝐶𝑉,𝜂𝑃𝑉 , 𝜂𝐹𝐶 , 𝜂𝐸𝐿  
 

DC converter, PV panel, fuel cell, electrolyser efficiency factors 

𝜀𝑖 (𝑘) Binary variable for the state of the ith dispatchable unit 

𝜌𝑖
𝑖𝑐 The binary variable related to the temporal conditions of the accumulator  

 
Subscripts/superscripts 

𝑆𝑂𝐴𝑐𝑐 Accumulator or energy storage 

𝑘  Time step 

𝑖 Index of Converter 

𝑙 Accumulator  

𝑚𝑎𝑥 maximum 

𝑚𝑖𝑛 minimum 

𝑚 , 𝑛 Model and the plant respectively 

𝑖𝑐 A set of controllable energy converter elements for PoPA targeting 
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1. Introduction 

The deployment of renewable energy systems (RES) such as photovoltaic (PV) systems have grown 

considerably popular as a global inclination for decreasing greenhouse gas emissions [1]. Nevertheless, 

while RES delivers decent to large-scale energy output, particularly in off-grid locations [1, 2], the RES 

energy output is only available intermittently [3, 4] and cannot provide a 24-hour load demand 

requirement due to weather variations [1]. Thus RES used exclusively is unreliable, necessitating the 

incorporation of energy storage (ES) to offset energy variations or uncertainty, improve power quality, 

especially in islanded systems [5]. 

To simultaneously improve RES reliability and mitigate load demand uncertainty, multiple ES 

technologies (e.g. battery (BAT) and hydrogen (H2)) with complementary properties (such as life cycle, 

seasonality, power, energy density, etc.) are frequently combined to realize the concept of hybrid energy 

storage systems (HESS) [6, 7]. Some common HESS configurations with RES for off-grid applications 

are super-capacitor (SC)/ battery (BAT) [8, 9], fuel cell (FC)/BAT [10, 11], FC/SC [12] and 

BAT/FC/SC [13, 14].  

Particularly an experimental RES-BAT-Hydrogen-based islanded HESS conceptualized and built 

collaboratively by SUNLIGHT and CERTH in Xianti, Greece [7, 15] is used as a case study in this 

research work. The experimental HESS comprises; RES such as photovoltaic panels (PV), non-RES 

such as a DSL for backup supply, electrical load demand (LD), fuel cell (FC), electrolyser (EL), and 

battery storage (BAT) and a compressor between the EL and HT which has been omitted due to low 

voltage application. The principal operation of the islanded HESS is complimentary and regenerative, 

such that excess energy from the PV is stored in the BAT until fully charged, and while the BAT is 

fully charged (i.e. the state of Charge of the battery 𝑆𝑜𝐴𝑐𝑐𝐵𝐴𝑇 >90%). Further, excess energy from 

the PV is transformed to hydrogen by the EL for storage and vice-versa to charge the BAT (i.e. 

𝑆𝑜𝐴𝑐𝑐𝐵𝐴𝑇 < 30%) by the FC during such periods of energy deficit. The backup DSL is activated only 

when the BAT state of charge is below 20% and deactivated once the BAT is charged above 30%. 

Figure 1, shows the schematic diagram of the experimental HESS.  
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Fig. 1: Schematic diagram of the experimental HESS used as a case study [7].  

 

Despite the benefit of enhanced energy reliability HESS can offer, it imposes challenges with regards 

to controlling and coordinating the transformative flow of varied energy/material [16], coupled with the 

problem of RES variability and load demand uncertainty, necessitates the use of an energy management 

strategy (EMS) [17]. 

 

1.1 Conventional Energy Management Strategies for HESS 

EMS algorithms orchestrate the behaviour of the energy system to improve one or more performance 

objectives, such as operational cost, RES penetration, own-consumption, self-sufficiency etc. while 

satisfying technical operational constraints [18]. Majority of these EMS algorithms are based on if-else-

then logic propositions [19], fuzzy logic control (FLC) [20], dynamic programming (DP) [21], 

stochastic optimisation (SO) [22], robust optimization (RO) [23, 24], evolutionary algorithms (EA) 

[25], neural network (NN) [26], reinforcement learning (RL) [27] and advanced model predictive 

control (MPC) [28].  

Specifically, heuristic logical rule-based EMS was used to reduce CO2 emissions, minimise total 

operating cost and maximise RES penetration in BA-RES [19]. Nevertheless, while the rule-based EMS 

are computationally efficient for online control of energy systems operation, calibration is a challenge 

due to uncertainty in a plethora of operational pre-conditions [29]. Further, EMS based on FLC 

optimally coordinated energy flow in a BAT-SC HESS [30] and a BAT-ultra-capacitor HESS [31].  

While the FLC offers robustness, crafting the logical rules requires experience. In [23] a stage-by-stage 
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robust optimisation EMS was proposed to minimise the total operational cost ensuring a combined 

cooling, heating, and power MG while negating uncertainty under the worst-case scenario.  

In [22] DP EMS was proposed to mitigate DC-link voltage variation due to intermittent RES and 

stochastic load in a HESS comprising a battery bank and ultra-capacitor grid-connected HESS 

microgrid. In [24] a dual-stage robust MPC optimisation is proposed, to reduce the impact of load 

demand and RES uncertainty in an islanded MG. However, the robust optimisation method is 

considered a pessimistic approach and can result in over-budgeting in real-world applications [32]. In 

[33] a three-layered hierarchical EMS for HESS with different temporal resolutions (Day-ahead (DA), 

quarterly and minute scale) based on mixed-integer non-linear programming, SO-MPC, and Pontrygin’s 

minimum were to meet operational cost, energy balance and reduce power fluctuations respectively in 

a HESS. More so, stochastic and chance-constrained based optimisation has been applied in [34, 35]. 

In [36] real-time RL based EMSs were used to enhance the lifecycle of BAT-SC HESS in an electric 

vehicle and in [37] to optimally control the charge and discharge cycle and also suppress disturbances 

ensuing from HESS integration in the microgrid.  

On the one hand, DP and optimisation based EMSs can achieve global optimality, however, they are 

computationally cumbersome and intractable and offer only a final solution [27], hence unsuitable as 

an online EMS [29]. On the other hand, EMS based on neural network alone are too simple to offer 

realistic gains in controlling HESS [29], RL-EMS used alone may suffer from sub-optimality [27] and 

the performance of MPC based EMS [28] largely depends on prediction accuracy [29].  

Further, to address these limitations, recently a graphical power pinch (PoPA) EMS [8, 27, 38, 39] 

emerged. The PoPA is inspired by the classical pinch analysis (PA) a process integration technique that 

was first introduced by Linnhoff and Flower [40] for heat integration and energy recovery in heat 

exchanger networks [41]. The power grand composite curve is a simple graphical PoPA tool realised 

via the integration of energy demand and supply with time to precisely identify and conservatively 

match energy deficit and excess energy recovery targets called pinch points with minimum resources. 

This aids the construction of an EMS that enables internal energy recovery rather than use non-RES. 

The PGCC has mostly been utilized to identify energy requirements in deterministic scenarios to 

improve HESS performance [27]. 

 

1.2 Power Pinch analysis for Energy Systems sizing and planning 

Pinch analysis (PA) extends beyond the synthesis of designing and retrofitting HEN [42] to the 

expansion of cleaner cost-effective optimal resource conservation networks [43] such as water recycling 

[44], mass [45], gas [46], hydrogen [47] and quite recently sizing [48], design and planning [49] of 

power systems. In [50] energy demand and supply were integrated to form the PoPA grand composite 

curve tool which aided the optimal sizing of an islanded power generating system. In [51] chance 

constraint programming with PoPA concept validated via MCS was used to size PV in a RES-BAT MG 
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considering uncertainty. In [48] composite curves were used to determine the rated power required to 

satisfy demand in hybrid power systems while minimizing electricity cost. 

 

1.3 Power Pinch analysis for EMS in HESS 

Despite the fact that PoPA has been used for sizing, planning and design of energy systems, recently it 

was used for energy management of HESS islanded MG. The first PoPA EMS [8], was realised by 

shaping a graphical power grand composite curve (PGCC) and further applied in [38] within a day 

ahead (DA) model predictive control (MPC) framework. The DA-PoPA EMS conservatively targeted 

deficit and excess energy recovery targets by shaping the PGCC in a predictive horizon and 

consequently effecting the optimal decisions in a control horizon on an islanded HESS MG. Therefore, 

the advantages of the DA-PoPA method were clearly demonstrated in [38]. Nevertheless, a limitation 

of the DA-PoPA in [38] was the assumption of perfect weather and load demand forecast without 

consideration for uncertainty, which is now being enhanced in this research work. Further, this 

limitation was identified and addressed via an adaptive PoPA EMS [39] which performed deficit energy 

targeting and excess energy recovery in a receding horizon MPC and further enhanced by an intelligent 

agent approach, the ‘RL+adaptive PoPA’ in [27]. The RL adaptive PoPA treated the issue of uncertainty 

in HESS as a Markov decision process (MDP), where an intelligent agent acts optimally to infer EMS 

which maximises a given reward in a state by avoiding over-dis/charging of the BAT. Nonetheless, the 

RL agent’s prior knowledge of the MDP was contingent on the agent training on the deterministic 

adaptive model. 

 

1.4 Motivation for a probabilistic PoPA EMS 

The above EMS algorithms have largely been limited to deterministic scenarios (such as average energy 

demand and supply profiles) that may not reflect real-world complexity and lead to inconsistent results.  

Nevertheless, Monte Carlo simulation (MCS) can account for uncertainty via probabilistic risk 

assessment of reliability [18] and also improves conservatism [52].  

Several studies have suggested strategies for robustness to uncertainty in power systems energy reserve 

planning [53] and peak load shaving [54], economic risk analysis in [55], and RES sizing [51]. 

Specifically, in [51] the minimum area of a solar panel required to conservatively satisfy load demand 

within a specified reliability threshold was determined based on PoPA and chance constraint 

programming respectively, and then validated via MCS.  

It is clear that weather intermittency and stochastic consumer’s load pattern, pose risk to the reliability 

of energy supply and demand balance. Nevertheless, an active probabilistic EMS should suffice for a 

better realistic assessment of uncertainty in HESS. 
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1.3. Main Contributions and Novelties 

From the aforementioned, it is also clear that PoPA EMS for HESS, have mostly been via a deterministic 

approach which can be limiting and insufficient in dealing with uncertainty especially when the 

available historical data demonstrates stochastic variations.  

This paper proposes an improved PoPA EMS framework for hybrid energy storage systems, particularly 

under Gaussian uncertainty. More so, historical data of load demand and PV variation are exploited to 

enhance robustness to uncertainty using a systems-level EMS based on a probabilistic adaptive PoPA 

by conservatively dis/charging the BAT and preserving its life cycle with intermittent RES and limited 

hydrogen resources while satisfying stochastic load demand in an islanded/off-grid HESS.  

 

Specifically, the main contributions in this paper are as follows: 

I. A probabilistic adaptive PoPA approach via Monte Carlo simulation with chance constraint within 

a receding horizon MPC framework for EMS of islanded HESS is proposed. In a prediction horizon, 

MCS runs n-multi-state stochastic graphical PGCCs of the BAT. Thereafter, the safety and desired 

operating limits (30% ≤ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ≤90%) of the PGCCs of the BAT which should never be 

violated are assessed over a reliability chance constraint. Consequently, hydrogen assets; FC and EL 

are conservatively and optimally dispatched in advance in the control horizon to negate the effects 

of uncertainty.  

 

II. An elegantly formulated recursive least square probabilistic adaptive PoPA MPC algorithm using 

estimation error correction factor to mitigate uncertainty by minimising the error between actual and 

estimated energy storage’s state of charge 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  is also presented. This basically, establishes 

an equilibrium between the actual and estimated 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  such that the estimated 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚   is 

corrected. Furthermore, two recursive least square probabilistic (RLS-P) PoPA models, (𝑦 = 𝐴𝑥 and 

𝑦 = 𝐴𝑥 + 𝐵) were investigated to establish the effect of increasing terms in the (RLS-P) adaptive 

PoPA model to counteracting the forecast uncertainty. 

 

III. The proposed probabilistic adaptive PoPA algorithms have been compared to a deterministic 

DA-PoPA [38] reference model and other existing adaptive PoPA EMS [27]. The probabilistic 

(RLS-P) PoPA with a multiplicative mechanism, negated Gaussian uncertainty the most and 

compared to a reference DA-PoPA EMS over-dis/charging the battery and carbon emission were 

reduced by 98%, 22% and 100% respectively. 

 

IV. A battery degradation model which accounts for the total degraded life cycles under PoPA EMSs 

was synthesised based on the cumulative sum of the normalised reciprocal of the total battery life 
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cycle model [72] derived with respect to the battery’s depth of discharge (DoD) and multiplied by 

the range of equivalent DoD cycles that were counted using a rainflow-counting algorithm [71].  

 

 

The rest of the paper is structured as follows: Section 2 briefly describes the Power Pinch analysis 

concept and the Monte Carlo simulation. Section 3 presents the formalisation of the receding 

Probabilistic adaptive MPC-PoPA concept and includes the recursive least square estimation approach 

for correcting the estimated energy storage’s state of charge 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 . The results and discussion are 

presented in Section 4, and Section 5 offers a conclusion. 

 

2. Methodology 

2.1 Power Pinch Analysis for Energy Management of HESS 

The principles of adaptive power pinch analysis for energy management which is well illustrated in [27, 

38], basically involves the use of a power grand composite curve (PGCC) tool which is the net result 

of both energy demand and supply. The PGCC is analogous to the grand composite curve (GCC) in 

heat exchanger networks (HEN) which is an integration of heat transfer between hot (sources) and cold 

(demand) streams as a function of temperature (quality) [50]. 

The predicted PGCC expressed as a plot as illustrated in Figure 2(a) (black dotted line) infers energy 

deficits and excess expressed for specific operating limits in the HESS. Since the lowest point of the 

PGCC 𝑆𝑀𝑖𝑛 is below (or violates) the first lower limit 𝑆𝐿𝑜 (i.e. 𝑆𝐿𝑜 = 30%) a time 𝑘 + 2, this indicates 

energy deficit in a specific HESS energy storage such as the BAT (i.e. 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇  <𝑆𝐿𝑜). Consequently, 

the FC is activated to charge the battery while, the DSL is activated if 𝑆𝑀𝑖𝑛 is below a second limit 

(𝑆𝑀𝑖𝑛 < 20%) to protect the battery’s life time. Similarly, since the PGCC is above (or violates) the 

upper operating limit 𝑆𝑈𝑝 (i.e. 𝑆𝑈𝑝 = 90%) at time 𝑘 + 11, this indicates the excess which must be 

recovered and transformed for storage (such as electrical energy to hydrogen, H2) for future use. 

Specifically, the energy deficit in the HESS can occur in the early hours of the day as a result of the 

BAT state of Charge (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇) being below 30% and the PV not having sufficient exposure to solar 

irradiation. Thus, by shaping the predicted PGCC to pinch on 𝑆𝐿𝑜, the energy deficit at time 𝑘 + 2 is 

averted by charging the BAT in advance at time 𝑘 with the necessary minimum outsourced energy 

supply (MOES). The MOES is supplied typically with the FC, indicated by the upward ‘green’ arrow 

shifting the blue dashed PGCC plot in Figure 2(b). Likewise, the excess energy from the PV when the 

BAT is sufficiently charged (i.e. 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇 > 90%), termed minimum absorbed energy (MAE) is 

identified in advance at time 𝑘 + 11 (or at least an hour before the violation of 𝑆𝑈𝑝) and transformed 

to hydrogen for storage by an EL (indicated by the downward ‘red’ arrow shifting the yellow dashed 

shaped PGCC plot in Figure 2(c)) for use at a later period of energy deficit. Furthermore, the life cycle 

of the PGCC is preserved by equalising the available electricity energy for the next day (AEEND) to 
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the state of charge at the first hour at time 𝑁 − 1 as indicated by the purple plot shown in Figure 2(d). 

Thus, the energy deficit and excess, as well as the AEEND are identified in a predictive receding horizon 

with hourly interval ∆𝑘 which spans 24h ∈ [𝑘: 𝑁] where 𝑘 is the 𝑖𝑡ℎ hour in a day and 𝑁 denotes the 

end of the day (or 24th h). While, in a control horizon, the suitable EMS obtained in the predictive 

horizon is deployed in advance with a DA-PoPA and if there is forecast error +/-5%, the PGCC is 

recomputed using the adaptive PoPA in the receding horizon to negate the uncertainty as shown in 

Figure 2(e) and 2(f) respectively. 

 

 
 Fig. 2(a): PGCC realised in the prediction horizon 

 

 
Fig. 2(b): illustration of PGCC concept for deficit energy targeting with FC to match MOES 
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Fig. 2(c): illustration of PGCC concept for excess energy recovery with EL to match MAE 

 

 

 
Fig. 2(d): AEEND illustration for lifecycle preservation 
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Fig. 2(e): Effect of uncertainty with DA-PoPA PGCC shaped in control horizon  

 

 

 
Fig. 2(f): PGCC shaped with Adaptive-PoPA in control horizon 

 

 

2.1 Monte Carlo Simulation  

The PoPA EMS, ensures a balance between energy demand and supply, as excess supply and 

undersupply of energy result in wastage and degradation of the storage assets, respectively. 

Unfortunately, due to the uncertainty associated with RES and load demand, which is often probabilistic 

and may exhibit daily, seasonal, and geographical variability, forecast error may be introduced [56]. 

Thus, satisfying the energy systems constraints can become challenging to achieve using a deterministic 

model. Furthermore, deterministic models are often considered with a set of deterministic input 
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variables and upon the occurrence of each variation, it becomes imperative to repeat the simulation 

process to obtain a new solution [57]. Therefore, if adequate historical and statistical evidence regarding 

the uncertain parameter is available, it can be leveraged using powerful computational tools such as the 

Monte Carlo Simulation.  

Monte Carlo simulation uses repetitive sampling of random input parameters to statistically 

parameterise the uncertainty associated with a dependent variable via a probability distribution. The 

Monte Carlo integration is expressed mathematically in equation (1) as follows [58, 59]; 

𝐼 = ∫𝑓(𝑥)𝑑𝑥                                                    (1)                                                              

Where, 𝐼 is the integral of a function with input random variable x. 

Furthermore, a good approximate estimation of 𝐼(𝑓) can be obtained such that by repeating the 

simulation in consonance with the theory of large numbers, the expectation 𝐸{𝑓(𝑋)} of the random 

variable 𝑓(𝑋) is as follows in equation (2); 

𝐸{𝑔(𝑋)} =
1

𝑛
∑ 𝑔(𝑥)𝑓(𝑥𝑗)

𝑛
𝑗=1                     (2) 

Where 𝑥 is the value of a stochastic variable drawn from a normal distribution 𝑓(𝑥𝑗) such that X ∈ ℝ 

are independent and identically uniformly distributed i.i.d and 𝑔(𝑥) is a function.  

 

3. Probabilistic Adaptive Power Pinch Analysis 

The adaptive PoPA [39] is recast in a probabilistic framework [56] in this section. Multistate stochastic 

PGCCs obtained by MCS are used to form probabilistic chance-constrained certainty bounds on the 

𝑆𝑂𝐴𝑐𝑐 to proffer robustness to uncertainty. Furthermore, to enhance the EMS, an online recursive 

correction factor which is determined based on the least-squares error approach via the residual error 

between the actual and predicted 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  is used to update the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 . The chance constraint 

sizing approach presented in [51], is used to determine the minimum solar panel array area in the PoPA 

framework, primarily targeted reliability of the deterministic load demand being met as well as the 

battery being charged. However, the energy management aspects if the BAT becomes fully charged and 

the utilisation of the excess energy were not considered. Thus, inspired by [39, 51] an adaptation is 

presented by defining the adaptive energy management algorithm in a recursive least square 

probabilistic MCS chance-constrained framework. Furthermore, the consequence of excess energy in 

the system, represented by the overcharging of the BAT (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) which can damage the BAT 

and energy deficit due to over-discharging the BAT (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 <30%) which degrades BAT life cycle, 

as well as AEEND for preservation of the life cycle of the BAT are considered in the chance constraints 

evaluated with the MCS. 
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3.1 Probabilistic Adaptive Power Pinch Analysis Formulation 

Firstly, the deterministic PGCC computed in the predictive horizon as described in section 2.1 is 

expressed in an adaptive receding horizon model predictive framework, with state error correction as 

follows in (3): 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) = 𝑚𝑖𝑛

𝑈𝑐

∑ [𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘 − 1) + ( ∑ ℱ𝑙←𝑋𝑙

𝑗

𝑋𝑙∈ 𝐸𝑡𝑟

(𝑘) − ∑ ℱ𝑙→𝑌𝑙

𝑗

𝑌𝑙∈𝐸𝑡𝑟

(𝑘)) ∗
∆𝑘 

𝐶𝑙
]         (3)

𝑁

𝑘=1

 

 

Let the vector 𝑚𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 contain elements of corresponding time series state of charge of the Battery 

as follows in (4):  

𝑚𝑆𝑂𝐴𝑐𝑐𝑙
𝑚:= 〈𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑘), 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘 + 1), 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑘 + 2) … 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑁)〉                    (4) 

 

Secondly, by decoupling the energy-consuming assets 𝑌𝑙  ∈ {𝐿𝐷, 𝐸𝐿}  with emphasis on 𝑙 ∈ {BAT} and 

corresponding energy flow ℱ𝑙→𝑌𝑙

𝑗
, the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚  is defined as a function of the flow of energy from the 

Battery to an i.i.d random load 𝐿𝐷𝑖 ∈ (𝐿𝐷1 , … , 𝐿𝐷𝑀) in (5): 

 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) = ∑ ∑ [𝑆𝑂𝐴𝑐𝑐𝑙(𝑘 − 1)

𝑁

𝑘=1

𝑀

𝑖=1

+ ( ∑ ℱ𝑙←𝑋𝑙

𝑗

𝑋𝑙∈ 𝐸𝑡𝑟

(𝑘) − [ℱ𝑙→𝐸𝐿𝑙

𝑗 (𝑘) + (ℱ𝑙→𝐿𝐷𝑙

𝑗 (𝑘) ∗ 𝑓𝑋(𝐿𝐷𝑖(𝑘))]) ∗
∆𝑘 

𝐶𝑙
] 

            (5) 

Where, 𝑓𝑋(𝐿𝐷𝑖) is the probability density of the random variable LD, estimated using a non-parametric 

kernel density estimator, KDE in MATLAB and subscript indicates the 𝑖𝑡ℎ sample of the random variable 

drawn from the prior distribution. 

Furthermore, a matrix that contains 𝑚𝑛-multi-state elements of 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚, is defined as follows in (6): 

𝑀𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 =

[
 
 
 
𝑆𝑂𝐴𝑐𝑐1,1

𝑆𝑂𝐴𝑐𝑐2,1

𝑆𝑂𝐴𝑐𝑐1,2 ⋯

𝑆𝑂𝐴𝑐𝑐2,2 ⋯

𝑆𝑂𝐴𝑐𝑐1,𝑁

𝑆𝑂𝐴𝑐𝑐2,𝑁

⋮ ⋮                     ⋱ ⋮
𝑆𝑂𝐴𝑐𝑐𝑀,1 𝑆𝑂𝐴𝑐𝑐𝑀,2 ⋯ 𝑆𝑂𝐴𝑐𝑐𝑀.𝑁]

 
 
 
= 𝑆𝑂𝐴𝑐𝑐(𝑖, 𝑗) ∈ 𝑅𝑀,𝑁                             (6)      

∗ 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 𝑙 𝑖𝑛 𝑆𝑂𝐴𝑐𝑐𝑚𝑛 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑜𝑚𝑖𝑡𝑡𝑒𝑑 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 𝑓𝑜𝑟 𝑐𝑜𝑛𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠 and 𝑚, 𝑛 ≠ 𝑀,𝑁. 

Therefore, the matrix comprises the posterior distribution of the multistate stochastic 𝑆𝑂𝐴𝑐𝑐𝑙  PGCCs 

as shown in Figure 3(a) for each consumer load, sampled randomly from the prior distribution.  
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Fig. 3(a) : 𝑛-Multistate normally distributed PGCCs predicted with Monte Carlo Simulation. 

Furthermore, the probabilistic PoPA performed with 𝑧 ∈  [1: 𝐿] iterations until the lower and upper 

limits expressed using the chance constraints are matched as follows (7): 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑖, 𝑗)𝑧 = ∑∑ ∑ [𝑆𝑂𝐴𝑐𝑐𝑙(𝑘 − 1) + ( ∑ ℱ𝑙←𝑋𝑙

 𝑗(𝑖)

𝑋𝑙∈ 𝐸𝑡𝑟

(𝑘) − ∑ ℱ𝑙→𝑌𝑙

𝑗(𝑖)

𝑌𝑙∈𝐸𝑡𝑟

(𝑘)) ∗
∆𝑘 

𝐶𝑙
]

𝑁−1

𝑘=1

𝑀

𝑖=1

𝐿

𝑧=1

 

                          (7) 

Thus, analytically by plotting the cumulative density function at each time step 𝑘, the probability, 𝑃𝑟 

of violating the lower limits (i.e. over-discharging the BAT beyond its normal depth of discharge to 

protect the battery’s life cycle from deteriorating and prevent usage of non-RES or backup DSL) is 

constrained by the chance factor 𝛼1 in (8): 

                           

𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑖, 𝑗)𝑧 = ∑∑ ∑ 𝑃𝑟

[
 
 
 
 

[𝑆𝑂𝐴𝑐𝑐𝑙(𝑘 − 1) + ( ∑ ℱ𝑙←𝑋𝑙

 𝑗(𝑖)

𝑋𝑙∈ 𝐸𝑡𝑟

(𝑘) − ∑ ℱ𝑙→𝑌𝑙

𝑗(𝑖)

𝑌𝑙∈𝐸𝑡𝑟

(𝑘)) ∗
∆𝑘 

𝐶𝑙
]

𝑁−1

𝑘=1

𝑀

𝑖=1

𝐿

𝑧=1

≥ 𝑆𝑚𝑖𝑛

]
 
 
 
 

≥ 𝛼1                                                                                                                           (8) 

Where 𝛼1 ∈ [0, 1] is the chance constraint factor as regards the lower pinch limit.  
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Similarly, the chance of violating the upper pinch limit (i.e. overcharging the BAT beyond 90% which 

can impact on the battery’s lifetime and at worse damage the battery) is expressed as follows (9): 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑖, 𝑗)𝑧 = ∑∑ ∑ 𝑃𝑟

[
 
 
 
 

[𝑆𝑂𝐴𝑐𝑐𝑙(𝑘 − 1) + ( ∑ ℱ𝑙←𝑋𝑙

 𝑗(𝑖)

𝑋𝑙∈ 𝐸𝑡𝑟

(𝑘) − ∑ ℱ𝑙→𝑌𝑙

𝑗(𝑖)

𝑌𝑙∈𝐸𝑡𝑟

(𝑘)) ∗
∆𝑘 

𝐶𝑙
]

𝑁−1

𝑘=1

𝑀

𝑖=1

𝐿

𝑧=1

≥ 𝑆𝑚𝑎𝑥

]
 
 
 
 

≤ 1 − 𝛼1                                                                                                              (9) 

Where 𝛼2 ∈ [0, 1] is the chance constraint factor of the upper pinch limit. 

Thus, the probability density function (PDF) of 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 can be analytically computed from the 𝑗𝑡ℎ 

column of the matrix, 𝑀𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 and represented as follows in (10); 

𝑓𝑋(𝑆𝑂𝐴𝐶𝐶𝑙
𝑚) =[𝑓𝑋11

(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚), 𝑓𝑋12

(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚) . . . , 𝑓𝑋1𝑁

(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚)]                                                (10) 

Where, 𝑓𝑋 denotes the PDF and subscript 𝑋 indicates the dependent variable 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚. 

Therefore, the desired operating range for 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 (𝑘) concerning the chance constraint is determined 

analytically with the cumulative distribution function (CDF) as follows in (11): 

∫ 𝑓𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑆𝑂𝐴𝑐𝑐𝑙

𝑚)
𝑆𝑚𝑎𝑥

𝑆𝑚𝑖𝑛
𝑑(𝑆𝑂𝐴𝑐𝑐𝑙

𝑚) =𝐹𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑆𝑚𝑎𝑥) − 𝐹𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑆𝑚𝑖𝑛)                                      (11)        

Where, 𝐹𝑆𝑂𝐴𝑐𝑐𝑙
𝑚  denotes the CDF of 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚  and the left-hand side of equation (11) is the PDF 

equivalent. 

Therefore, the desired operating range for 𝑆𝑜𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘) for the chance constraint can be expressed in 

(12) as follows: 

𝐹𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚

−1 (𝛼1) ≤ 𝐹(𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 ) ≤ 𝐹𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚
−1 (1 − 𝛼2)                                                                      (12)          

Furthermore, to evaluate the probability of the 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 violating the lower limit, the inverse CDF is 

utilised as follows in (13): 

  𝐿𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) = ∑  𝑖𝑛𝑓{𝐹𝑋𝑘

−1(𝛼1) < 𝑆𝑚𝑖𝑛}𝑁−2
𝑘=1                                                                                     (13) 

Where,  𝐿𝑆𝑂𝐴𝑐𝑐𝑙
𝑚  is a vector of 𝑛-elements, which represent point estimates of  𝑆𝑂𝐴𝑐𝑐𝑙

𝑚  (𝑘)  that is 

less than the lower pinch chance constraint factor 𝛼1 evaluated using the inverse CDF 𝐹𝑋
−1. 

In addition, the MOES based on the probabilistic approach is determined as follows: 

 𝐼𝑓 ∃   𝐿𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 < 𝑆𝑚𝑖𝑛 , 
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Then, the MOES; ℱ𝐵𝐴𝑇←𝐹𝐶
𝑃𝑂𝑊 = (𝑆𝑚𝑖𝑛 − argmin [ 𝐿𝑆𝑂𝐴𝑐𝑐𝑙

𝑚]) ∗ 𝐶𝑙                 (14) 

Thus, by activating the dispatchable resources (in this case the FC as shown in Figure 3(b)), the energy 

storage (such as BAT) is supplied with the MOES with an equivalent magnitude of flow  ℱ𝐵𝐴𝑇←𝐹𝐶
𝑃𝑂𝑊   as 

determined in (14) at present step 𝑘. 

 
Fig. 3(b): Multistate PGCCs deficit energy matched with Fuel cell. 

Similarly, after satisfying the lower pinch constraint, the PGCC is recomputed as in (9) and the violation 

of the upper pinch limit is determined as follows in (15): 

𝐼𝑓 ∃   𝑈𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(. ) > 𝑆𝑚𝑎𝑥  

𝑈𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) = ∑ 𝑆𝑢𝑝{𝐹𝑋𝑘

−1(1 − 𝛼2) >  𝑆𝑚𝑎𝑥}𝑁−2
𝑘=1                                                                            (15)    

Where,  𝑈𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 is a vector of 𝑛-point estimates of  𝑆𝑂𝐴𝑐𝑐𝑙

𝑚  (𝑘)  which are greater than the upper 

pinch chance constraint factor 𝛼2 evaluated with the inverse CDF 𝐹𝑋
−1. 

Consequently, the MAE is estimated from equation (15) to recover the excess energy (in this case an 

electrolyser in Figure 3(c)) which violates the upper operating limit as follows in (16): 

ℱ𝐵𝐴𝑇 → 𝐸𝐿
𝑃𝑂𝑊  = (argmax [ 𝑈𝑆𝑂𝐴𝑐𝑐𝑙

𝑚] − 𝑆𝑚𝑎𝑥) ∗ 𝐶𝑙                                 (16) 
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Fig. 3(c): Multistate PGCCs excess energy recovered with Electrolyser. 

Thereafter, the AEEND for life cycle preservation is determined using the upper bound chance constraint 

to complete the PGCC shaping as follows in (17) and shown in Figure 3(d):  

AEEND: 𝑈𝑐(𝑘)={

ℱ𝐵𝐴𝑇←𝐹𝐶  𝐹𝑋𝑘

−1(1 − 𝛼2) < 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘1)

ℱ𝐵𝐴𝑇→𝐸𝐿

0
𝐹𝑋𝑘

−1(1 − 𝛼2) > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘1)

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  ∀𝑘∈ [𝑁−1]                                     (17)      

 

 
Fig 3(d): Complete shaping of the PGCC in the Control Horizon with Probabilistic Adaptive PoPA 

The PoPA EMS decision-making variable 𝑈𝑐(𝑘) with the corresponding magnitude of energy flow 

determined in equations (14), (16) and (17) will satisfy both the lower and upper pinch points and 

AEEND, with regards to the chance constraint equations which have been formulated in a probabilistic 

adaptive receding horizon model predictive framework. Furthermore, the EMS sequence obtained with 
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the probabilistic model is therefore effected in the control horizon while considering the overall risk of 

violating the operational constraints. Figure 4, shows the P+Adaptive PoPA algorithm flowchart.  

 

 
Fig. 4: Probabilistic+Adaptive PoPA Algorithm Flowchart 
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3.2 Recursive Least Square Probabilistic Adaptive PoPA 

To improve the estimation of actual 𝑆𝑂𝐴𝑐𝑐𝑛  via the probabilistic PoPA, a simple correction factor that 

minimises the residual error loss function between the actual 𝑆𝑂𝐴𝑐𝑐𝑛  and estimated 𝑆𝑂𝐴𝑐𝑐𝑚 can be 

incorporated recursively into the process. 

Let the equilibrium relationship between the actual 𝑆𝑂𝐴𝑐𝑐𝑛 , the estimated 𝑆𝑂𝐴𝑐𝑐𝑚  and an unbiased 

multiplicative correction factor 𝑋𝑐𝑓 be: 

𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) = 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘) ∗ 𝑋𝑐𝑓                                                                                                        (18) 

Where, 

𝑆𝑂𝐴𝑐𝑐𝑚(𝑘|) =
[𝐿𝑆𝑂𝐴𝑐𝑐𝑚(𝑘) + 𝑈𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)]

2
                                                                                       (19) 

Such that, 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘) is the expectation of respectively are the lower and upper bound confidence 

intervals (of say 98%) on the expected value, and 𝑋𝑐𝑓 is the multiplicative correction factor. Thus, by 

the ordinary least square error method [60-62], the unbiased residual error correction factor 𝑋𝑐𝑓  is 

determined via a mean squared error (MSE) loss function in equations (20) – (23) as follows: 

𝑀𝑆𝐸 =
1

2𝑁
∑(𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) − 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘) ∗ 𝑋𝑐𝑓)

2

𝑁

𝑘=1

∆𝑘                                                                           (20) 

Taking the derivative of MSE Error denoted as E, w.r.t, 𝑋𝑐𝑓: 

𝑑(𝑀𝑆𝐸)

𝑑(𝑋𝑐𝑓)
= −

1

𝑁
∑(𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) − 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)

𝑁

𝑘=1

∗ 𝑋𝑐𝑓)𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)                                                   (21) 

 

Decomposing the right-hand side of the equation: 

1

𝑁
∑(𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) ∗ 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)

𝑁

𝑘=1

−  
𝑋𝑐𝑓

𝑁
∑(𝑆𝑂𝐴𝑐𝑐𝑚(𝑘))2

𝑁

𝑘=1

= 0                                                     (22) 

Therefore, the correction factor 𝑋𝑐𝑓, is expressed: 

𝑋𝑐𝑓 =
∑ (𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) ∗ 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)𝑁

𝑘=1

∑ (𝑆𝑂𝐴𝑐𝑐𝑚(𝑘))2𝑁
𝑘=1

                                                                                                    (23) 

Thus, 𝑋𝑐𝑓 is a least-square solution that minimises the residual error function in equation (23).  

Furthermore, equation (23) is decomposed into a recursive formulation to form an online correction 

factor with 𝑋𝑐𝑓 in equations (24)-(28) as follows:  

 

Let, 𝑋𝑐𝑓
𝑘
 be the normalised cumulative correction factor at current time 𝑘 = 1:𝑁, 
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𝑋𝑐𝑓
𝑘 =

∑ (𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) ∗ 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)𝑁
𝑘=1

∑ (𝑆𝑂𝐴𝑐𝑐𝑚(𝑘))2𝑁
𝑘=1

                                                                                                  (24) 

And 𝑋𝑐𝑓
𝑘−1

 is the normalised cumulative correction factor at the previous time step 𝑘 = 1:𝑁 − 1, 

𝑋𝑐𝑓
𝑘−1 =

∑ (𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) ∗ 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘)𝑁−1
𝑘=1

∑ (𝑆𝑂𝐴𝑐𝑐𝑚(𝑘))2𝑁−1
𝑘=1

                                                                                               (25) 

While 𝑋𝑐𝑓
∗
, is the correction factor at time step 𝑘 only, 

𝑋𝑐𝑓
∗ =

(𝑆𝑂𝐴𝑐𝑐𝑛(𝑘) ∗ 𝑆𝑂𝐴𝑐𝑐𝑚(𝑘))

(𝑆𝑂𝐴𝑐𝑐𝑚(𝑘))2 
                                                                                                           (26) 

The recursive form of the correction factor is thus, 

𝑋𝑐𝑓
𝑘 = [(𝑁 − 1)𝑋𝑐𝑓

𝑘 + 𝑋𝑐𝑓
∗]/𝑁                                                                                                       (27) 

𝑋𝑐𝑓
𝑘 = 𝑋𝑐𝑓

𝑘−1 + [𝑋𝑐𝑓
∗ − 𝑋𝑐𝑓

𝑘−1]/𝑁            ∀ 𝑘 = 1:𝑁                                                                  (28) 

Therefore, for all real values of 𝑆𝑂𝐴𝑐𝑐𝑛  greater than zero, the optimal value of the error correction term 

is 1, if the prediction of 𝑆𝑂𝐴𝑐𝑐𝑚 is accurate (i.e. error is 0), and less than or greater than 1, if the error 

between the actual and predicted SOAcc is positive or negative respectively. Consequently, 𝑋𝑐𝑓
𝑘
 is 1 

at initialisation. Furthermore, in the MATLAB environment, the regression fitting toolbox is used to fit 

a simple linear model 𝑦 = 𝐴𝑥 + 𝐵 in the same manner as presented in this section for the sake of 

comparison. Thus, the probabilistic adaptive PoPA fitted with the least-square error is denoted as 

RLS+P PoPA (𝑦 = 𝐴𝑥), and RLS+P PoPA (𝑦 = 𝐴𝑥 + 𝐵), where B in the later model is the bias and A 

is the multiplicative factor. 

 

3.3 Load demand and Weather Data   

The historical household load demand profile is shown in Figure 5, with a peak load of 2.08 KW and a 

10KWh peak solar irradiance data shown in Figure 6, corresponding to 54.9783° N, 1.6178° W, are 

obtained from [63] and [64] respectively. The load profile data set consists of the aggregated power 

demand of uncontrollable appliances at each hourly time interval representing the consumer’s usage 

pattern. The historical load profile data set, 𝐴 (𝑖, 𝑗) obtained over 365 days, at each hourly time step k, 

such that i=1, 2, 3…365 is partitioned into disjointed groups of 𝐴(𝑖, 𝑘) = {𝐴1, 𝐴2, 𝐴3, 𝐴4} which forms 

the LD distribution 𝐹𝑋𝐿𝐷𝑖(𝑘). Each group of load demand data set distinctly corresponds to the 

consumer’s power usage pattern correlating to the four seasons in a year [65]. Therefore, from the 

consumer’s historical energy consumption profile (with average load plotted in red) as shown in Figure 

5, a probability distribution 𝐹𝑋𝐿𝐷𝑖(𝑘)  is easily realised. 
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In the Monte Carlo simulation, the load demands in each cluster (for each i at time step 𝑘) are assumed 

to be normally distributed [66]. Furthermore, in other to validate the proposed approach, the actual load 

is randomly selected with uniform probability from the load demand distribution corresponding to the 

time instance (k).  Typically, as shown in Figure 2.3, the historical load profile for Q1 has a dual peak 

characteristic, which mostly peaks on noonday and during the late evening. Specifically, as shown in 

Figure 5, the historical load profile for Q1 has a dual peak characteristic, which mostly peaks at noonday 

and during the late evening period. Similarly, the uncertainty in the solar irradiance can be realised as 

a Gaussian distribution 𝒩(0, σ = 20) or consequently as any type of distribution within the presented 

procedure.  

                   

 
Fig. 5: Load demand profile showing energy consumption pattern variability during winter [63]. 

 
Fig. 6: PV Energy Profile for 8760h [64]. 



- 22 - | P a g e  
 

The histograms of the first quarterly load consumption variability from historical data is shown in Figure 

7, for each hour, k in winter (Q1). The histograms fundamentally depict Weibull, bimodal and normally 

distributed load demand profiles. Furthermore, Table 1, conveys the statistical information of the 

quarterly Load profiles with Q1 exhibiting the most significant uncertainty in contrast to the other 

seasons. Furthermore, the histogram for summer (Q2), spring (Q3) and autumn (Q4) respectively are 

shown in Figures A1 to A3 in the appendices. Precisely, as seen in Table 1, during Q1, the uncertainty 

peaked at noon with a magnitude of 30.2% and thereafter, at 20:00h with a magnitude of 27.9%. 

Similarly, as shown in Table A1 in the appendices, the largest uncertainty occurred at 13:00h, with a 

magnitude of 8.5% in Q2. Furthermore, as depicted in Table A1 to A3 in the appendix, the highest 

uncertainty was recorded during the periods of 14:00h and 13:00h during Q3 and Q4, respectively. 

Thus, the load demand uncertainty mainly depicts both daily and seasonal variation patterns. 

 

Fig. 7: Histogram plot for the hourly daily load distribution in Q1 
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Table 1: Statistical central tendencies in First Quarter (Winter) Load demand profiles 

FIRST QUARTER (WINTER) 

HOUR MIN MEAN MAX 

STD 

DEV. 

UNCERTAINTY 

(%) 

1 337.5 506.5 685.9 99.5 20 

2 219.1 392.5 582.0 101.9 26 

3 182.0 355.6 544.4 102.0 29 

4 137.4 323.0 543.0 109.08 34 

5 161.6 338.3 546.8 103.8 30 

6 388.4 453.4 528.1 38.8 9 

7 561.5 633.7 726.4 40.2 6 

8 668.4 792.6 940.0 76.6 10 

9 517.9 788.1 1068.0 158.8 20 

10 637.1 849.3 1083.3 125.0 15 

11 456.8 749.4 1129.4 173.1 23 

12 334.5 686.3 1148.3 207.9 30 

13 436.3 738.5 1144.0 179.0 24 

14 470.5 724.3 1056.3 150.6 20 

15 304.1 642.9 1048.0 199.8 30 

16 395.4 698.4 1076.1 178.9 26 

17 809.4 949.3 1168.1 83.7 9 

18 825.3 1043.2 1329.6 129.1 12 

19 981.1 1147.9 1352.2 98.6 9 

20 489.2 932.6 1370.9 260.4 28 

21 980.7 1177.6 1403.6 116.8 10 

22 878.2 1070.3 1280.9 113.1 11 

23 727.4 910.2 1096.2 107.5 12 

24 332.5 593.0 873.3 153.2 26 

 

4.  Results and Discussion 

4.1 Monte Carlo Simulation with the probabilistic Adaptive PoPA 

The proposed method utilising the chance-constrained power pinch for energy management is simulated 

in MATLAB based on N-samples randomly generated from a uniform distribution A(i,k). In the Monte 

Carlo simulation, the resulting load demands sampled randomly from the kernel density estimation 

(KDE) [67] distribution in each cluster (for each 𝑖 at time step k) are assumed to be normally distributed, 

since the samples are sufficiently or approximately large (i=1000) enough to support convergence by 

the central limit theorem [68-70]. The chance constraints factors were both set to 1% during the 

simulation. Therefore, the state of charge of the battery has a 98% probability of operating within the 

optimal region (30% ≤ 𝑆𝑂𝐴𝑐𝑐𝑛 𝐵𝐴𝑇
𝑛 ≤ 90%) as illustrated by point 4, in Figure 8. The red line is the 

CDF, and the blue is an equivalent PDF plot, while the dotted black lines represent quantiles 

corresponding to the chance constraints. A summary of the stages in the realisation of the Probabilistic 

Adaptive PoPA EMS is graphically illustrated in Figure 8. 
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Fig. 8:  Illustration of the Probabilistic+Adaptive PoPA EMS 

The parameters of the HESS in Table 2, used as an experimental case study is obtained from a real 

system in [7], with real residential load demand profiles of a typical British home sourced from 

ELEXON [63] with solar irradiance data for Newcastle, United Kingdom sourced from NREL [64]. 

 

Table 2: HESS Micro-grid parameters [7] 

System Components Specification 

Load (peak) 2080 W [63] 

PV (66.64 W rated power) 150   [64] 

DSL 2210 W  

BAT 3000 Ah  / 48 V  

FC 3000 W 
EL 4000 W 

HT 30 bar, 15 m3 

η𝐶𝑉,η𝑃𝑉 , 𝜂𝐹𝐶 , 𝜂𝐸𝐿  0.95, 0.10, 0.87, 0.87 

 

4.2 Uncertainty Analysis of the Probabilistic Adaptive Algorithms 

The performance of the proposed three probabilistic methods; P+Adaptive PoPA, RLS+P PoPA 

with/without bias (𝑦 = 𝐴𝑥 + 𝐵  and 𝑦 = 𝐴𝑥 respectively) are compared against the Day-ahead, 

Adaptive and Kalman+Adaptive PoPA EMSs presented in [27]. The comparison is evaluated over an 

operational period of 72h (short term) and 8760h (long term).  For the sake of consistency in comparing 

the proposed methods to existing methods in previous work, the initialisation settings for the 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚  is 

such that 𝑙 ∈ {BAT, HT and WT} corresponds to 70%, 80% and 30% respectively.. Similarly, the same 

properties of the non-Gaussian (Bimodal distribution) and Gaussian load demand used in [27] are used 

to project the uncertainty dynamics here for uniformity and consistency.  
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The performance indices expressed in (29) - (31) for EM evaluation  is for the total number of times the 

𝑆𝐿𝑜
𝑙  (30%) and 𝑆𝑈𝑝

𝑙  (90%) Pinch limits are violated and the DSL activated [27];  

Sum of Deficit=∑ {1  𝑆𝐿𝑜
𝑙 > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 ( 𝑘 ) 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}𝑁=8760
𝑘=1                                                                                        (29) 

Sum of Surplus=∑ {
1  𝑆𝑈𝑝

𝑙 > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ( 𝑘 ) 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}𝑁=8760

𝑘=1                                                                                      (30) 

Sum of DSL activation =∑ {
1  20% > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 ( 𝑘 ) 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}𝑁=8760

𝑘=1                                                                       (31)              

 

4.2.1 Short Term Analysis under Non-Gaussian Uncertainty 

The proposed P+Adaptive PoPA method utilising the chance-constrained power pinch for energy 

management is simulated in MATLAB based on 𝑁-samples randomly generated from a uniform 

distribution 𝐴(𝑖, 𝑘).  The chance constraints factors were both set to 1% during the simulation. 

Therefore, the state of charge of the battery has a 98% probability of operating within the optimal region 

(30% ≤ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ≤ 90%) as illustrated in Figure 6. The red line is the CDF and the blue is an 

equivalent PDF plot, while the black lines represent quantiles corresponding to the chance constraints. 

Furthermore, as shown in Figure 7, the systems PGCC is bounded, by both the probabilistic lower and 

upper PGCC. The response of the system throughout 72 hrs is shown in Figure 9. The red and blue lines 

in Figure 9, are the lower and upper predicted PGCC based on the chance constraint. The yellow dashed 

line represents the actual response of the system. The PGCC upper pinch violation at 40th hr accurately 

predicts the pinch during the first 72 hrs hence the EL is activated.  

 
Fig. 9: P+Adaptive PoPA CDF-PDF Quantile plot of the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇  PGCC evaluated at 1h. 
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As shown in Figure 10, the actual PGCC is bounded by both the probabilistic lower and upper PGCC 

based on a 98% chance of violating the 𝑆𝐿𝑜 and 𝑆𝑈𝑝 pinch utility under non-Gaussian uncertainty. The 

upper and lower predicted PGCC bounds are shown as the red and blue plots in Figure 10, while the 

actual PGCC is indicated by the yellow dashed line. The operational constraints were never violated by 

the P+Adaptive PoPA. Nevertheless, as seen in Figure 11, the FC and EL were activated 6 and 3 times, 

respectively and the corresponding HT and WT response over 72h with the P+Adaptive PoPA is shown 

in Figure 12.  

 
Fig. 10: Response of the Battery’s state of charge to P+Adaptive PoPA 

 
Fig. 11: P+Adaptive PoPA converter logic over 72h 
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Fig. 12: P+Adaptive PoPA HT and WT response over 72h 

Similarly, the RLS+P PoPA with and without the bias also recorded no violations concerning the 𝑆𝐿𝑜 

and 𝑆𝑈𝑝 pinch utility as shown in Figures 13 and 16 respectively. Nevertheless, while, RLS+P PoPA 

without bias activated the FC 7 times and the EL 3 times as shown in Figure 14, with the RLS-P PoPA 

with the bias, the activation of the FC and EL increased to 8 and 5 times respectively as shown in Figure 

14. Hence, an increase in operational cost or resources with a probabilistic PoPA approach, particularly 

with an increase in the complexity of the residual error regression model is a trade-off for robustness. 

The HT and WT response of the P+Adaptive, the RLS-P without bias and with bias are shown in Figures 

15 and 18, respectively. The performances are presented in Table 3. 

It is important to note that the DA, Adaptive, Kalman, RL+Adaptive, P+Adaptive, RLS-P(𝑦 = 𝐴𝑥), and 

RLS-P (𝑦 = 𝐴𝑥 + 𝐵) PoPA EMS are referred to as methods M1-7 respectively in Tables 3 to 8, for 

conciseness. 

 
Fig. 13: Performance of the RLS-P PoPA (𝑦 = 𝐴𝑥) strategy over 72h  
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Fig. 14: RLS-P PoPA (𝑦 = 𝐴𝑥) converter logic over 72h 

 

 

Fig. 15: RLS-P PoPA (𝑦 = 𝐴𝑥) HT and WT response over 72h 
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Fig. 16: Performance of the RLS-P PoPA (𝑦 = 𝐴𝑥 + 𝐵) strategy over 72h 

 

 

Fig. 17: RLS-P PoPA (𝑦 = 𝐴𝑥 + 𝐵) converter logic over 72h 
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Fig. 18: RLS-P PoPA (𝑦 = 𝐴𝑥 + 𝐵) HT and WT response over 72h 

 

Table 3: Summary of performance of EMS methods under Non-Gaussian Uncertainty over 72h 

Operational parameters PoPA EMS 

M1 M2 M3 M4 M5 M6 M7 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) 14 7 7 1 0 0 0 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) 0 0 0 0 0 0 0 

DSL Activation 2 0 0 0 0 0 0 

 

 

 

4.2.2 Short Term Analysis under Gaussian Uncertainty 

 

Similarly, under the Gaussian uncertainty case study, the RLS+PoPA with the simple correction factor 

(i.e. without the bias), violated the 𝑆𝑈𝑝 once, while the P+Adaptive, RLS+Adaptive with bias as shown 

in Table 4. Nevertheless, in contrast to the DA and Adaptive PoPA which had 13 and 3 violations of 

the 𝑆𝐿𝑜, the P+Adaptive, RLS+PoPA without bias, Kalman+Adaptive PoPA had none. Accounting for 

robustness and accuracy results in an increased frequency of FC and EL activation cycles and 

consequently incur losses, further increasing the operating cost with the simple least-squares 

mechanism aimed at minimising the mean squared error between the actual SOAccn𝐵𝐴𝑇
𝑛  and estimated 

SOAccn𝐵𝐴𝑇
𝑚   from the MCS process. Nevertheless, further investigation using a long term (8760h) 

scenario case study will be presented. 
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Table 4: Summary of performance of EMS methods under Gaussian Uncertainty algorithms over 

72h. 

Operational parameters PoPA EMS 

M1 M2 M3 M4 M5 M6 M7 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) 13 3 0 0 0 0 0 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) 0 0 0 0 0 1 0 

DSL Activation 0 0 0 0 0 0 0 

 

4.2.3 Long term under Non-Gaussian uncertainty 

P+Adaptive PoPA 

The probabilistic approach P+Adaptive PoPA which violated the 𝑆𝐿𝑜 and 𝑆𝑈𝑝 321 and 828 times as 

shown in Figures 19 and 20, was only better in performance than the RLS+P (𝑦 = 𝐴𝑥 + 𝐵) concerning 

the 𝑆𝑈𝑝 and DA-PoPA concerning the 𝑆𝐿𝑜 indices. The DSL, FC and EL were activated by the 

P+Adaptive PoPA EMS 126, 1935, and 926 times respectively, as shown in Table 5. Therefore, the 

consequence of the P+Adaptive PoPA using the FC robustly to maintain the PGCC bound led to 

premature exhaustion of the H2 in the HT as the SOAcc𝐻𝑇 dipped below 10% at 7500 h, as seen in 

Figure 21. Consequently, the FC become unavailable for dispatch at 7500h. Nevertheless, as shown in 

Figure 19, the P+Adaptive PoPA showed sensitivity in curtailing the excessive overcharging of the 

BAT. Furthermore, the probability of violating the 𝑆𝑈p had a steep rise even in the months of poor 

sunshine and even so steeper in the periods of peak sunshine, as shown in Figure 21. Therefore, an 

adaptive mechanism to correct the prior distribution should suffice as this would adjust the prior 

distribution or the estimated PGCC bound based on the residual error to match the reality. 

  

Fig. 19: 8760h BAT response with P+Adaptive PoPA 
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Fig. 20: HT and WT response for 8760h with P+Adaptive PoPA 

 
Fig. 21: Probability of violating the upper and lower limits of BAT in 8760h with P+Adaptive PoPA 

RLS+P PoPA (y=Ax)  

In Table 5, the RLS+P is shown to have had an enhanced performance compared to the P+RLS as the 

𝑆𝐿𝑜 which was violated 198 times and 𝑆𝑈𝑝 666 times amounted to a 15% and 20% reduction 

respectively. The response of the BAT over 8760 h is shown in Figure 22. Consequently, despite a 75% 

reduction in the 𝑆𝐿𝑜 violation, the 𝑆𝑈𝑝 violation only improved by 12% against the performance of the 

DA-PoPA. Nevertheless, the improvement is a result of the residual error correction factor, which was 

based on the simplest linear model 𝑦 = 𝐴𝑥. Again, with the RLS+P (𝑦 = 𝐴𝑥) PoPA, the effect of the 
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robust bound led to the accelerated exhaustion of the H2 as shown in Figure 23 only after which the 

violation of the 𝑆𝐿𝑜 had a steep rise from 2.2% to 7% as shown in Figure 24.  

 

 

 

 

Fig. 22: 8760h BAT response with RLS+P PoPA 

 

 

 
Fig. 23: HT and WT response for 8760h with RLS+P PoPA  
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Fig. 24: Probability of violating upper and lower limits of BAT in 8760h with RLS+P PoPA 

 

RLS+P PoPA (𝒚 = 𝑨𝒙 + 𝑩)  

Furthermore, RLS+P (𝑦 = 𝐴𝑥 + 𝐵) which had the worst SLo violation of 1217 times, consequently 

also activated the DSL 673 times and the FC 2754 times. Thus, benchmarked against the performance 

of the DA PoPA utilising the RLS+P (𝑦 = 𝐴𝑥 + 𝐵), led to 51.4% in SLo violation, 194% and 432% 

increase in DSL and FC activation as shown in Table 5 and in Figure 25. Thus, despite a decently sized 

HT of 15m3 (initialised with SOAccnHT at 80%), the SOAccnHT violated the 10% constraint limit on 

the HT; hence, causing the unavailability of the FC in periods requiring energy supply as shown in 

Figure 26. Nevertheless, the RLS+P (𝑦 = 𝐴𝑥 + 𝐵) activated the PV 8582 times, which was a record 

high and also a 7.2% increase compared to the DA PoPA which activated the PV 8004 times as shown 

in Table 5. However, Figure 27 which shows the progression of the probability of violating the 𝑆𝐿𝑜 and 

𝑆𝑈𝑝 insightfully reveals that the bulk of the 𝑆𝐿𝑜 violation occurred after 5979 h as seen by the 

immediate steep rise in the 𝑆𝐿𝑜 probability of violation from 4% to 14% due to lack of H2 carrier in 

the HT. 

Therefore, investigating further with HT capacity of 25𝑚3 confirms this assertion as the SLo violation 

reduces to 197 times which is a 75.5% decrease as shown in Table 5. Also, the 𝑆𝑈𝑝 violation and DSL 

activation were decreased by 42.2% and 67.7% as well. Typical of a robust approach; the RLS+P 

(A=Ax+B) algorithm requires more allocation of H2 resources, which will consequently increase 

operational cost in contrast to the rest of the methods. 
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Fig. 25: 8760h BAT response with RLS+P PoPA with bias 

 

 

Fig. 26: HT and WT response for 8760h with RLS+P PoPA with bias 
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Fig. 27: Probability of violating upper and lower limits of BAT in 8760h with RLS+P PoPA with bias 

 

Table 5: Summary of the EMS methods over 8760h under Non-Gaussian 

Operational parameters PoPA EMS 

 M1 M2 M3 M4 M5 M6 M7 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) 804 271 64 51 321 198 1217 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) 756 303 265 226 828 666 178 

FC start-stop (cycles/year) 296 577 1837 3802 1935 2281 1574 

EL start-stop (cycles/year) 262 654 931 3503 926 1253 1356 

DSL start-stop (cycles/year) 229 1 0 0 126 79 673 

PV start-stop (cycles/year) 8004 8457 8495 8534 7932 8094 8543 

 

4.2.4 Long Term Analysis under Gaussian Uncertainty 

P+Adaptive PoPA 

The P+Adaptive PoPA had a better performance index of 202 times concerning the 𝑆𝐿𝑜 compared to 

the DA and adaptive PoPA, which both had 876 and 209 violations. However, the P+Adaptive had the 

worst 𝑆𝑈𝑝 violation of 813 times, which was a 5% increase compared to the DA PoPA’s performance. 

Also, the DSL was activated 104 times, which was only marginally better than the DA PoPA’s 

performance of 108 times, as shown in Table 6. 

 

RLS+P PoPA (𝒚 = 𝑨𝒙)  

The RLS-P PoPA with the simplest residual error linear model (𝑦 = 𝐴𝑥), had the second-best 𝑆𝐿𝑜 

performance of 15 times which was a tremendous improvement to the P+Adaptive PoPA which had 

202 𝑆𝐿𝑜 violations as shown in Table 6. Also, compared with the performance of the DA to the RLS-P 
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PoPA (𝑦 = 𝐴𝑥), the 𝑆𝐿𝑜 violation was reduced by 98%, and the 𝑆𝑈𝑝 violation was also decreased by 

22%. Furthermore, DSL was never activated; hence, a 100% reduction in fossil fuel emission was 

achieved with the RLS-PoPA. The FC and EL which were activated 1480 and 900 times was only 

utilised more compared to the DA and Adaptive PoPA EMS as shown in Table 6. 

 

RLS-P PoPA (𝒚 = 𝑨𝒙 + 𝑩) 

The RLS-P PoPA with bias had the worse 𝑆𝐿𝑜 performance, as shown in Table 6. Nonetheless, a further 

investigation which was carried out by increasing the HT capacity from 15m3 to 25m3 revealed the 

main reason for the sub-optimal performance of the RLS-P with a biased linear model was as a result 

of limited H2 resources. Therefore, with the HT at 25m3, the RLS-P PoPA with a first-order residual 

linear model, had an improved performance as the 𝑆𝐿𝑜 violation and DSL activation 1023 reduced from 

1023 to 235 times and from 510 to 86 times respectively. However, the 𝑆𝑈𝑝 violation increased from 

217 to 448 times. Nevertheless, the RLS-P PoPA with a first-order linear residual model as with a 

typical probabilistic approach introduces robustness which is only achieved at the cost of increased 

usage of H2 resources. 

 

Table 6: Long Term Analysis under Gaussian Uncertainty 

Operational parameters PoPA EMS 

 M1 M2 M3 M4 M5 M6 M7 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) 867 209 94 38 202 15 1023 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) 777 287 229 216 813 609 217 

FC start-stop (cycles/year) 264 550 1607 3087 2290 1480 2754 

EL start-stop (cycles/year) 265 264 1113 3111 1149 900 1411 

DSL start-stop (cycles/year) 108 0 0 0 104 0 510 

PV start-stop (cycles/year) 7983 8473 8544 8490 7947 8151 8543 

 

Tables 7 and 8 presents a quantitative summary of the percentage change between the performance of 

the DA-PoPA EMS reference, existing methods and the proposed methods under non-Gaussian and 

Gaussian uncertainty respectively. In Table 7 and 8, negative percentage change indicates a better 

performance and positive percentage increase signifies worsening performance excluding PV start-stop 

cycles where a decrease indicates a reduction in PV penetration or usage and vice versa. 
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Table 7: Percentage change in the performance of the proposed methods to the DA PoPA reference under 

non-Gaussian uncertainty and the HT sized at 15m3 

Operational parameters PoPA EMS 

M2 M3 M4 M5 M6 M7 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) -66% -92% -94% -60% -75% 51% 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) -60% -65% -70% 10% -12% -76% 

FC start-stop (cycles/year) 95% 521% 1184% 554% 671% 432% 

EL start-stop (cycles/year) 150% 255% 1237% 253% 378% 418% 

DSL start-stop (cycles/year) -100% -100% -100% -45% -66% 130% 

PV start-stop (cycles/year) 6% 6% 7% -1% 1% 7% 

 

Table 8: Percentage change in the performance of the proposed methods to the DA PoPA reference under 

Gaussian uncertainty and the HT sized at 15m3 

Operational parameters PoPA EMS 

M2 M3 M4 M5 M6 M7 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) -76% -89% -96% -77% -98% 18% 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) -63% -71% -72% 5% -22% -72% 

FC start-stop (cycles/year) 108% 509% 1069% 767% 461% 943% 

EL start-stop (cycles/year) 174% 320% 1074% 334% 240% 432% 

DSL start-stop (cycles/year) -100% -100% -100% -4% -100% 372% 

PV start-stop (cycles/year) 6% 7% 6% 0% 7% 7% 

 

 

4.3 Analysis of Battery Degradation with PoPA EMS using Rainflow Counting Algorithm 

The effect of uncertainty has been shown to potentially distort the shape of the PGCC which 

consequently results in the degradation of both full and/or partial life cycles in the BAT by fluctuating 

the depth of discharge (DoD) (i.e., the compliment of the state of charge of the BAT). Therefore, for 

accurate analysis of the BAT’s life span or degradation both full and partial dis/charge cycles must also 

be considered.  

Hence, the rainflow-counting algorithm for analysing fatigue/stress analysis in materials [71], has been 

adapted to count the number of cycles (both full and partial) with respect to the depth of discharge 

pattern which were determined by the EMS algorithms. The rainflow-counting algorithm considers both 

full and partial counts with respect to the state of charge of the battery which can be interpreted as a 

compliment of the depth of discharge.  

Experimental data for life cycle versus different depths of discharge rates obtained in [72] was used to 

determine a regression model, 𝑓(𝐷𝑜𝐷) with norm of residuals validated as  3.4127𝑒 − 11 via cubic 

curve fitting in this work. 
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Total number of cycles, 𝑓(𝐷𝑜𝐷)  =  𝑝1 ∗ 𝐷𝑜𝐷3  +  𝑝2 ∗ 𝐷𝑜𝐷2  +  𝑝3 ∗ 𝐷𝑜𝐷 +  𝑝4                         (32)                                                              

Where, the coefficients of the cubic polynomial regression model are;  𝑝1 = −0.09375, 𝑝2 = 22.396,

𝑝3 = −1868.8, 𝑝4 =  59167. 

Figure 28, shows the model versus the empirical data for DoD relationship with respect to lithium 

Battery life cycles   

 

Fig 28: Battery Life Cycle with respect to Depth of Discharge [72] 

 

The remaining battery life cycle at time 𝑘 is modelled as the difference between the initial battery life 

cycle at time 𝑘 − 1, and the total degraded life cycle during the operation of the battery. The total 

degraded life cycle during the operation of the battery is the cumulative sum obtained from the 

normalised reciprocal of life cycle with respect to DoD multiplied by the equivalent rainflow DoD cycle 

count. It is important to note that cycles incurred with larger DoD in contrast to a small DoD, will have 

more detrimental impact on the BAT lifespan. The remaining battery cycle lifespan is expressed 

mathematically as follows:  

𝑇𝑐𝑦𝑐
𝑅 (𝑘) = 𝑇𝑐𝑦𝑐

𝑅 (𝑘 − 1) − ∑ ([
𝑇𝑐𝑦𝑐

𝑚𝑎𝑥

𝑓(𝐷𝑜𝐷(𝑞))
⁄ ] ∗ 𝛿(𝐷𝑜𝐷(𝑞)))𝑄

𝑞=1                                                 (33)                                                                                                                                                              
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Where, the number of DoD bins with an incurred cycle count is 𝑞 ∈  [1 −  𝑄] computed in Appendix 

Table A4 and A5, 𝛿(𝐷𝑜𝐷) is the number of cycles function obtained using rainflow-counting algorithm 

with respect to the depth of discharge range (bin width). While, 𝑓(𝐷𝑜𝐷) computed in Appendix Table 

A6, is the cubic regression model function of the lithium-ion battery’s maximum life cycle with respect 

to DoD.  However, for consistency with the cycle counts obtained as per histogram bin width resolution 

using rainflow counting algorithm, the average DoD or the centre of bin width is used with 𝑓(𝐷𝑜𝐷). 

And 𝑇𝑐𝑦𝑐
𝑚𝑎𝑥  is the total life cycle count in the battery at initialisation which is obtained as 5.9e-04 by 

evaluating 𝑓(𝐷𝑜𝐷) with DoD at 0%. 

The remaining BAT capacity is expressed as the difference between the initial BAT capacity and the 

ratio of degraded BAT cycles and the total BAT cycles at initialisation scaled by the nominal BAT 

capacity as follows:  

Remaining Battery Capacity (𝑊ℎ) = 𝐶𝐵𝐴𝑇(1 − [
𝑇𝑐𝑦𝑐

𝑅

𝑇𝑐𝑦𝑐
𝑚𝑎𝑥⁄ ])                                                              (34) 

While, the percentage of the battery’s degraded capacity is expressed as follows: 

Degraded Battery Capacity (%) = Degraded Battery Capacity (𝑊ℎ) ∗ 100/𝐶𝐵𝐴𝑇                            (35) 

The degradation of the BAT over 8760h with respect to life cycles depletion and its equivalent 

percentage decrease in the overall battery capacity is presented in Table 9. The benchmark DA-PoPA 

(M1) has the least degradation with respect to cycles lost during the yearly operation under both non-

/Gaussian uncertainty by 4.3% and 4.13% respectively. Nevertheless, the RLS (y=Ax) which was had 

5.43% degradation, depleted only 677 cycles more than the DA-PoPA with an overall better 

performance under gaussian uncertainty and similarly only 5.5% of the total cycle count was degraded 

under non-Gaussian uncertainty. Furthermore, the P+Adaptive (M5) and RL (M4) PoPA degraded the 

battery the most under non-Gaussian and Gaussian uncertainty by 6.74% and 6.47% respectively.  
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Table 9: Yearly (8760 h) Battery Capacity Degradation with PoPA - EMS algorithms 

Battery lifetime index  M1 M2 M3 M4 M5 M6 M7 

Remaining Battery Life cycle 

under Gaussian uncertainty 

(counts) 57037 56231 56944 55746 55939 56362 56075 

Degraded Battery Capacity under  

Gaussian Uncertainty (%)  4.30 5.65 4.46 6.47 6.14 5.43 5.91 

Remaining Battery Life cycle 

under non-Gaussian uncertainty 

(counts) 57,139 56,359 56,193 55,983 55,584 56,320 56,190 

Degraded Battery Capacity under 

Non-Gaussian Uncertainty (%) 4.13 5.44 5.72 6.07 6.74 5.50 5.72 

 

5. Conclusions 

Three Probabilistic+Adaptive PoPA strategies were proposed for energy management of HESS 

uncertainty which uses a stochastic process based on Monte Carlo simulation. The Monte Carlo 

simulation was enabled by historical data and decent computer processing speed (intel Core i5). 

Analysis with Gaussian uncertainty showed the proposed RLS+P (y=Ax) method performed better in 

clipping the PGCC from violating the 𝑆𝐿𝑜 (i.e. over-discharging the BAT below 30%) in contrast to 

the reference DA, Adaptive and Kalman +Adaptive PoPA, state of the art RL+Adaptive PoPA methods 

which utilised the average PV and load data for prediction.  Nevertheless, the RL+adaptive PoPA 

method which had the best performance with over-charging the BAT beyond 90%, was only negligibly 

better than the RLS+P (y=Ax+B) method.  

However, under non-Gaussian uncertainty, the utilisation of hydrogen increased with the proposed 

methods which resulted in increased violation of the lower operating limit of the BAT due to hydrogen 

unavailability which consequently led to frequent DSL activation. This is not unexpected since Monte 

Carlo simulation assumes the uncertainty is of Gaussian distribution. Nevertheless, the RLS+P with 

bias showed better performance with preventing over-charging of the BAT, the RL+Adaptive PoPA 

EMS has better performance with lower BAT limit violation and no DSL usage under non-Gaussian 

uncertainty. 

The DA had the least battery degradation of 4.3% and 4.13% which was better than the RLS+P (y=Ax) 

by 1.1% and 1.4% under both Gaussian and non-Gaussian uncertainty respectively. Regardless of the 

DA having the least degradation indices, the DA-PoPA activated the DSL the most due to the frequent 

cycling of the battery at small DoD within the lower operating limit.  
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Therefore, the probabilistic Adaptive EMS RLS+P (𝑦 = 𝐴𝑥) which uses MCS with historical data 

rather than average PV and load demand profiles like in existing PoPA EMS can conservatively enhance 

reliability in off-grid HESS particularly under Gaussian uncertainty. Also, the proposed methods, 

satisfied the operational constraints which enforces conservation of the hydrogen resources, while 

limiting both the impact of battery degradation and carbon emission from the DSL.  
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