Article

The Landscape and Roadmap of the Research and Innovation Infrastructures in Energy: A review of the case study of the UK

Zoya Pourmirza 1*, Seyed Hamid Reza Hosseini 2, Sara Walker 3, Damian Giaouris 1, and Phil Taylor 3
Abstract: Research and development are critical for driving economic growth. To realise the UK government’s Industrial Strategy, we develop an energy Research and Innovation Infrastructure roadmap and landscape for the energy sector looking to the long term (2030). This study is based on a picture of existing UK infrastructure on energy. It shows the links between the energy sector and other sectors, the distribution of energy Research and Innovation Infrastructures, the age of these infrastructures, where most of the energy Research and Innovation Infrastructures are hosted, and the distribution of energy Research and Innovation Infrastructures according to their legal structure. Next, this study identifies the roadmap of energy Research and Innovation Infrastructures by 2030 based on a categorisation of the energy sector into seven subsectors. Challenges and future requirements are explored for each of the sub-sectors, encompassing fossil fuels and nuclear energy, to renewable energy sources and hydrogen, and from pure science to applied engineering. The study discusses the potential facilities to address these challenges within each sub-sector. It explores the e-infrastructure and data needs for the energy sector and provides a discussion on other sectors of the economy that energy Research and Innovation Infrastructures contribute to. Some of the key messages identified in this study is the need for further large-scale initiative and large demonstrators of multi-vector energy systems, need for multi-disciplinary research and innovation, and need for greater data sharing and cyber-physical demonstrators. Finally, this work will serve as an important study to provide guidance for future investment strategy for the energy sector.

Keywords: Landscape; Roadmap; Energy; Whole energy systems; Energy storage; Renewable energy sources; Carbon capture and storage; Fuel cells and hydrogen; Alternative fuels; Nuclear energy;

1. Introduction
The UK is committed to reducing its greenhouse gas emissions by 2050 to a ‘Net Zero’ emission [1]. For this to happen, we need to transform the UK economy while ensuring secure, low-carbon energy supplies until 2050. This paper explores the UK’s energy Research and Innovation Infrastructure (RII) landscape, which is available for academia and business, and which could contribute vital knowledge for the transition to ‘Net Zero’. A roadmap exercise is then undertaken to identify research and innovation challenges, and facilities to address these challenges in energy systems. We, as members of a multi-disciplinary team of the Engineering and Physical Sciences Research Council (EPSRC) National Centre for Energy Systems Integration (CESI), were commissioned by UK Research and Innovation (UKRI) to consult with the energy community and carry out this study. CESI was established to investigate the potential benefits and risks of greater levels of energy system integration in pursuit of an 80% reduction in greenhouse gas emissions by 2050. This challenge has subsequently
become significantly more challenging due to the UK Government’s decision adopt, in 2019, the target of ‘Net Zero’ greenhouse gas emissions by 2050. In this paper we will demonstrate analysis of UK’s landscape which was extracted from two questionnaires conducted by UKRI and further supplemented with insight gained from one to one interviews, consultation workshops, and further surveys conducted by CESI [2]. We have assisted UKRI to draft reports detailing our findings and recommendations. In carrying out this work, we made a substantial contribution to the preparation of the energy sections of the UKRI Research Landscape and Research Infrastructure reports.

The UK has pursued a research and development strategy which supports the recent Industrial Strategy [3] and four major challenges which are artificial intelligence and big data, clean growth, the future of mobility, and meeting the needs of an ageing society. Investment is made across technology readiness levels (TRLs) from fundamental research through to demonstration, commercial development, and deployment. Transition from research to deployment is not easy, as evidenced by research on the “valley of death” [4-8]. Demonstration is seen as a vital stage in moving across this “valley of death”.

CESI is to undertake research into the potential for energy systems integration to offer effective opportunities for the energy sector to transition to a low carbon future. Having mentioned this, the fair transition of energy systems incorporates tackling several challenges including production and utilisation of hydrogen for decarbonised heat, retrofit of low energy efficient UK housing stock, deployment of digital energy and IoT infrastructure, and ensuring a just transition especially in relation to vulnerable groups to fuel poverty, to name a few. In order to address these challenges and provide an evidence and basis for making well-informed decisions by policy makers at the national level and local authorities, whole energy systems demonstrators are needed to investigate the possible advantages and drawbacks of possible scenarios for transition of energy systems among multitude of possible scenarios. In this way, it would be possible to design and evaluate scenarios for transition of energy systems at local, regional and national levels, and to achieve the ‘Net Zero’ carbon targets.

In recognition of the aforementioned value of demonstrators, the project incorporates several full-scale multi-vector energy system demonstrators. These demonstrators can provide data to the research team and enable research concepts to be applied either conceptually or practically. Demonstrators also enable validation and demonstration of novel future energy system models and scenarios that have been developed for simulation and techno-economic-environmental performance analysis of these integrated energy systems. These models and the dynamic interactions between them can only be developed and trusted through coupling them with advanced experimental emulation and real-world demonstration systems. The key features of these demonstrators are summarised in Table 1.
Table 1. The key features of CESI accessible demonstrators.

<table>
<thead>
<tr>
<th>Demonstrator</th>
<th>Key features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newcastle Helix</td>
<td>Urban, Mixed Use, New Build, Multi Vector, Data Rich</td>
</tr>
<tr>
<td>ETI/ESCat Smart Systems and Heat</td>
<td>Urban, Domestic, Retrofit, Heat and Power</td>
</tr>
<tr>
<td>Findhorn</td>
<td>Eco Village, Socio Technical</td>
</tr>
<tr>
<td>Haringey</td>
<td>Socio Technical Urban Living Laboratory</td>
</tr>
<tr>
<td>Thames Valley Vision</td>
<td>Industrial and Commercial Demand Response</td>
</tr>
<tr>
<td>Cockle Park Farm</td>
<td>Rural, Farming, Anaerobic Digester, Heat and Power</td>
</tr>
<tr>
<td>Customer Led Network Revolution (CLNR)</td>
<td>Storage, Smart Grids, Suburban, Rural, Medium and Low Voltage</td>
</tr>
</tbody>
</table>

The energy trilemma is at the heart of the evaluation of benefits and risks i.e. security, affordability and access and sustainability [9-11] Through interdisciplinary research and collaboration, CESI seeks to gain a deeper understanding of how to achieve a just transition to ‘Net Zero’. Therefore, when considering benefits and risks, CESI takes care to consider how they are distributed across society, industry, and governments and when they may occur.

1.1. Overview and project scope

The UKRI was commissioned by the UK Department of Business, Energy and Industrial Strategy (BEIS) to undertake a programme of study to develop a RII roadmap. UKRI is a quasi-autonomous non-governmental establishment that leads research and innovation funding in the UK, by bringing together seven research councils, Innovate UK, and Research England. This RII roadmap programme was aimed to enhance understanding of UK’s current capability and innovation infrastructure and provide a pathway for future planning. Additionally, this study was aimed to develop a roadmap to boost financial contribution in R&D (research and development) to 2.4% of GDP (gross domestic product), and within UKRI to develop its roadmap strategy [2]. CESI was commissioned by the UKRI to undertake the energy sector study of this programme.

The UKRI programme has been structured and made recommendations across the six sectors used by the ESFRI (European Strategy Forum on Research Infrastructures) to support the setup of exercise and ensure the UK remains a global leader. These six sectors are: Biological Sciences, Health and Food (BH&F), Energy, Environment (ENV), Physical Sciences and Engineering (PS&E), Social Sciences, Arts and Humanities (SSAH), Computational and E-INFrastructure (E-INF).

In this study, we only focused on the energy sector. Drawing on the findings from our study on this sector, we enrich the programme wide explanation of research infrastructures in order to include the following sub-sectors: Whole energy systems, Energy storage, Renewable energy
sources, Carbon capture and storage, Fuel cells and hydrogen, Alternative fuels, Nuclear energy.

In the rest of this paper, we will only investigate the energy sector along with the aforementioned seven energy sub-sectors. We will explore the existing energy RIIs and concerns around them. Next, we will present the analysis of the survey such as links between the energy sector and other sectors, distribution of energy RIIs across the UK, the age of energy RIIs, where most of the energy sector infrastructures are hosted, and the distribution of energy RIIs according to their legal structure. We will then investigate the roadmap of Research and Innovation Infrastructure in energy by 2030, by identifying challenges in each of the seven sub-sectors, and facilities to address these challenges within each sub-sector. Finally, we will discuss the e-infrastructure and data needs for energy sector.

2. Methodology

In this study, we aimed to create a long-term research and innovation infrastructure roadmap based on an understanding of existing UK infrastructure, future needs, and resulting investment priorities. We used a number of methodologies to carry out this study. In this work we have collected both qualitative and quantitative data, and individual data and group data. This section consists of two phases which are used for two distinct activities, namely, creating a landscape and developing a roadmap. The first phase aimed to create the current RII landscape, and discusses methods used to develop this landscape. The second phase aimed to develop the RII roadmap by identifying subsectors for Energy sector, their challenges, and potential RII facilities to address these challenges. Phase two discusses methodologies used to develop the RII roadmap.

2.1. First Phase

In the first phase of the study, the focus was on the RII existing landscape. In order to identify the current RIIs in the energy sector, four main tools have been used.

2.1.1. UKRI survey

Two surveys were carried out by UKRI from the RIIs in all the sectors. Out of all the 755 responses received, 26 RIIs were performing research predominantly in the area of energy and this formed the survey sample.

2.1.2. Interviews

Key individuals (more than 100 experts) in various sub-sectors of energy from government, academia, and industry across England, Scotland and Wales were identified by UKRI and CESI based on their expertise and experience in energy systems, and they were contacted. One-to-one interviews with these key individuals were conducted based on the following themes:

- What are current RII (both in the UK and abroad);
- Who are the stakeholders;
• What are risks/mitigating mechanisms.

2.1.3. Expert elicitation workshops

Several workshops were organised in London and Edinburgh with 116 attendees in total. The workshops were facilitated by “Knowinnovation” scientific facilitator team and were structured using a professional facilitator tool called “Well sorted”. Prior to the workshop, a set of questions were sent to various experts via Well Sorted tool, and participants were asked to submit their ideas. Then, Well Sorted clustered the individual ideas into thematically similar groups, which served as a starting point of the workshops. Workshops then collated the participant collective views regarding the themes which had emerged from individuals.

2.1.4. Review of the literature

The following documents were investigated as the main source of information in order to identify RII:

• RCUK Energy programme Strategy Fellowship reports [12]
• UKERC Landscape reports in energy
• HM Government report on nuclear research landscape [13]
• Energy System Catapult report on energy sector research facilities and demonstrators [14]
• EPSRC report on Scale and Scope of Academic energy research in the UK [15]

Figure 1 demonstrates the overall process of the phase 1 methodology to create the landscape of Energy RII in the UK.

Figure 1. Phase 1 methodology to create Energy RII landscape.
2.2. Second Phase

In the second phase of the project, in order to identify the need and roadmap for RII in the energy sector, two main methodologies have been used.

2.2.1. Interviews

Key individuals in various sub-sectors of energy from academia, industry, government, hubs, catapults and across England, Scotland and Wales were identified and contacted. These energy experts included individuals from UK Government (17), UK Universities (56), industry (9), Marine Supergen Hub (1), UKERC (1), Transport System Catapult (1), ETI (1), Energy Systems Catapult (2), Offshore Renewable Energy Catapult (1), Energy Research Accelerator (5), European Marine Energy Centre (1), Renewable Energy Association (1) and Nuclear Innovation and Research Office (1). One-to-one interviews with these key individuals were conducted based on the following subjects:

- What are future research challenges;
- What are future RII needs (including who might build/operate them);
- Who are stakeholders;
- What are risks/mitigating mechanisms.

2.2.2. Workshops

In line with the landscape exercise, we organised several workshops in London using a professional facilitator from “Knowinnovation”. A set of questions were sent to experts’ weeks before the events and their replies were processed and served as a starting point at the workshops.

Table 2 shows the number of participants in each event, and categorise them into academic, non-academic and government sectors. It shows that this study was informed by collating information from 242 experts in energy system, comprising of 126 one-to-one interview and 116 workshop participants.

<table>
<thead>
<tr>
<th>Table 2. Number of participants in each event.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one interview and online survey</td>
</tr>
<tr>
<td>Phase 1 consultation workshop 1 (London)</td>
</tr>
<tr>
<td>Phase 1 consultation workshop 2 (Edinburgh)</td>
</tr>
<tr>
<td>Phase 2 workshop 1 (London)</td>
</tr>
<tr>
<td>Phase 2 workshop 2 (London)</td>
</tr>
</tbody>
</table>
Finally, feedback from Engineering and Physical Sciences Research Council (EPSRC) during both Phases helped to improve and refine the interview and workshop approaches.

Figure 2 demonstrates the overall process of the phase 2 methodology to create the roadmap for Energy RII in the UK.

![Energy RII Roadmap Diagram]

Figure 2. Phase 2 methodology to create Energy RII Roadmap.

3. **Current Landscape of Research and Innovation Infrastructure in Energy: Phase 1**

 UK has a long history of providing funding through public/private means and charity to build the world leading research and innovation infrastructure. In this research we will consider only public funded infrastructures from organisations such as UKRI and its councils, other government departments and devolved administrations, and public sector organisations. We have considered large and costly infrastructures physically located in the UK or overseas which can provide regional or national capability, or the infrastructures that are digitally accessible. UKRI believes this is the first time that an exercise of this breadth and type has been attempted in the UK [2].

3.1. **Current landscape study based on review of the literature**

 Several publicly available documents and reports on analysis of current landscape of energy RII in the UK were studied in order to capture all the available energy RII. These documents, which inform this paper, encompass previous works/projects in order to obtain insights...
from them and build on top of the available knowledge. These documents and reports include RCUK Energy programme Strategy Fellowship reports, UKERC Landscape reports, HM Government report, Energy System Catapult report, and report on the Scale and Scope of Academic Energy research in the UK. Table 3 summarises the current landscape of energy RIIs in the UK that were explained in the reviewed previous documents/ reports. As can be seen, the RIIs are classified into several energy themes as follows: (i) Whole Energy Systems; (ii) Buildings; (iii) Power Systems; (iv) Energy system demonstrators; (v) Nuclear; (vi) Carbon Capture and Storage (CCS); (vii) Renewable Energy Sources; (viii) Alternative Fuels; (ix) Hydrogen; and (x) Energy technologies & markets.

Table 3. Current landscape of UK energy RIIs in reviewed available documents.

<table>
<thead>
<tr>
<th>Energy related area</th>
<th>Energy RII(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Energy Systems</td>
<td>• Centre for Renewable Energy Systems Technology (CREST)</td>
</tr>
<tr>
<td></td>
<td>• The Tyndall Centre for Climate Change Research</td>
</tr>
<tr>
<td>interdisciplin ary research</td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td>• Building Research Establishment (BRE)</td>
</tr>
<tr>
<td></td>
<td>• Salford Energy House</td>
</tr>
<tr>
<td>Power Systems</td>
<td>• Tony Davies High Voltage Laboratory (TDHVL)</td>
</tr>
<tr>
<td></td>
<td>• Power Network Demonstration Centre (PNDC)</td>
</tr>
<tr>
<td></td>
<td>• National Grid Power System Research Centre, including High Voltage and High Current Test Laboratory</td>
</tr>
<tr>
<td></td>
<td>• High Power laser Energy Research facility (HIPER)</td>
</tr>
<tr>
<td>Energy system demonstrators</td>
<td>• Integrated Transport Electricity and Gas Research Laboratory (InTEGReL)</td>
</tr>
<tr>
<td></td>
<td>• Keele Smart Energy Network Demonstrator (SEND)</td>
</tr>
<tr>
<td>Nuclear</td>
<td>• Culham Centre for Fusion Energy (CCFE), including:</td>
</tr>
<tr>
<td></td>
<td>Joint European Torus (JET), Mega Amp Spherical Tokamak (MAST)</td>
</tr>
<tr>
<td></td>
<td>• ORION</td>
</tr>
<tr>
<td></td>
<td>• National Nuclear User Facility (NNUF), including Microscope and Ion Accelerator for Materials Investigations facility (MIAMI)</td>
</tr>
<tr>
<td></td>
<td>• Dalton Cumbria Facility (DCF) of Manchester University</td>
</tr>
<tr>
<td></td>
<td>• Nuclear Advanced Manufacturing Research Centre (AMRC)</td>
</tr>
<tr>
<td></td>
<td>• National Nuclear Laboratory</td>
</tr>
<tr>
<td>CCS</td>
<td>• Peterhead Carbon Capture and Storage (CCS) Project</td>
</tr>
<tr>
<td>Renewable Energy Sources</td>
<td>Wind</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>• National Renewable Energy Centre (Narec)</td>
</tr>
<tr>
<td></td>
<td>• Energy Technology Centre (ETC)</td>
</tr>
<tr>
<td></td>
<td>• Hunterston offshore wind turbine test facility</td>
</tr>
<tr>
<td>Marine, wave and tidal</td>
<td>• European Marine Energy Centre (EMEC)</td>
</tr>
<tr>
<td></td>
<td>• Marine renewables test centre</td>
</tr>
<tr>
<td></td>
<td>• Peninsular Research Institute for Marine Renewable Energy (PRIMaRE)</td>
</tr>
<tr>
<td></td>
<td>• FloWave Ocean Energy Research Facility</td>
</tr>
<tr>
<td></td>
<td>• Offshore Renewable Energy Catapult, National Renewable Energy Centre</td>
</tr>
<tr>
<td></td>
<td>• Wave Hub Ltd.</td>
</tr>
</tbody>
</table>

3.2. Current landscape analysis based on UKRI Survey

In this section, we provide an overview of publicly funded energy RIIs in the UK. The current picture of landscape of the energy RIIs is collected based on the expert consultation workshops, UKRI and CESI surveys, interviews, and the current study based on literature review. These are presented in
Table 4. It is revealed that energy sector has a relatively small group of infrastructures comparing to other sectors, but due to the interdisciplinary and multidisciplinary nature of the energy sector a large number of infrastructures in other sectors would address underlying science and challenges of energy sector [16]. The list of existing energy infrastructures can be found in the Appendix A.

The coverage of areas where energy RII strongly participated in the survey are whole energy system, CCS and alternative fuels, energy storage, and energy system demonstrator. Energy RII with poor coverage include power systems and wind and solar renewable energy sources [16].
Table 4. Landscape of the Energy RIIs in the UK.

<table>
<thead>
<tr>
<th>Area of the energy infrastructure (in the UK)</th>
<th>Responded to UKRI survey</th>
<th>Identified by CESI¹</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole energy system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Interdisciplinary</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>• Gas turbine</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>• Building</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>• Energy models</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>• Oil and gas</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Power systems</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Energy system demonstrator</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Nuclear</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Carbon capture and storage</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Energy storage</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Renewable energy sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Wind</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>• Marine</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>• Solar</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>• Geothermal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative fuels</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General infrastructures</td>
<td>6</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>32</td>
<td>58</td>
</tr>
</tbody>
</table>

In the rest of this section, we will present the analysis of the UKRI survey. Figure 3 depicts the links between energy sector and other sectors. 26 of the infrastructures which responded to the survey recognised energy as their primary sector. These energy RIIs have the greatest linkage with Environmental and the PS&E sectors, and less significant linkage with BH&E, SSAH and e-infrastructure. In Figure 3 the peripheral nodes depict the other sectors, and their size represents the proportion of their linkage with energy sector [16].

Additionally, 51% of the remaining infrastructures who identified other sectors as their primary sector, recognised linkage between their sector and energy sector. These results prove the strong link between energy and the other infrastructure sectors.

¹ Identified by CESI team through workshops, interviews and key reviews and not currently captured by the questionnaires.
Figure 3. Interdisciplinary working between infrastructures that identified Energy as their primary sector and other infrastructures.

The infrastructures that declared energy as their primary sectors have a strong link to other sectors. This study reveals that 73% of such energy RIIs can be strongly linked to environment sector, such as the ECCI (Edinburgh Centre for Carbon Innovation), and Ergo (East Riding of Yorkshire Council). Also, about 71% of energy RIIs are linked with PS&E sector or has considered PS&E as their sub-domain, such as SPECIFIC (The Sustainable Product Engineering Centre for Innovative Functional Industrial Coatings) and NNL (National Nuclear Laboratory). Finally, there exists energy RIIs that cover both environment sector and PS&E sector, which include PACT (Pilot-scale Advanced Technology) and PRL (Pyrochemical Reprocessing Laboratory). Figure 4 shows the distribution of linkage between energy RIIs and other sectors. These linkages are mostly evident between energy sector and PS&E, environment, and computational and e-infrastructure sectors.
Figure 5 shows the distribution of energy RIIs across the UK. This graph is a contour map depicting the Midlands as the area of greatest density of energy RIIs. However, due to overall small sample size and corresponding large contours a fairer analysis is that facilities are quite scattered throughout the UK [16]. Red dots indicate individual infrastructures or clusters at one location identified through the UKRI questionnaire, whereas black dots indicate individual infrastructures or clusters at one location identified through other means. Furthermore, red areas indicate highest overall densities and blue areas indicate lowest overall densities with smoothing applied across contours.
Figure 6 presents an overview of the age of energy RIIs. This figure shows a vast majority of the energy RIIs are relatively new, with 85% starting operations within the last 15 years. This young age of energy RIIs could be because of the increased investment in energy over the last 15 years in response to energy challenges. For instance, since 2004 UKRI energy programme spend has risen from £30 million yearly to £180 million yearly. The Energy Technology Institute (ETI) was shaped in 2008 which had a budget of up to £100 million per year for ten years and was equally funded by public and private sectors. Simultaneously there was a rise in energy Research and Development (R&D) supported by BEIS, and the UK promised to double energy Research and Development to £400 million each year [17].
Figure 6. Infrastructures grouped according to their years of operations and their expected operational lifespan.

Figure 7 illustrates whether these RIs are single entities, grouped/distributed entities or virtual. This study reveals that about 77% of energy RIs are single-site physical entities. Interestingly, these numbers are again higher than most of the other sectors. The survey shows that the most of energy RIs are accommodated within other organisations which are dependent on long term funding, such as universities. Generally, the smaller and more highly focussed facilities are hosted in universities. These centres can offer underlying scientific capability. An example of such energy RIs is the FloWave Marine Test Facility in Edinburgh University. Other facilities, which would provide services to a particular large market or address a unique challenge, can act as a single energy RIs, e.g. National Nuclear Laboratory (NNL). Single site RIs deal with highly specific challenges or help to address a particular market which is big enough to permit research in only one energy area. However, in some cases, it is not economically efficient to have a dedicated energy RII. In these cases, large centres are created which are distributed across all sectors. Additionally, when demand and expertise are distributed, distributed infrastructure can help avoid relocation and duplication of facilities. Example of distributed RIs is the National Nuclear User Facility (NNUF), funded by EPSRC, with the aim to develop a multi-site facility and enable industry and academia to access internationally leading experimental equipment.

Figure 7. The distribution of RIs according to whether they are single entities, grouped/distributed entities or virtual.
Figure 8 illustrates the distribution of energy RII s according to their legal structure. The study shows 19% of the energy RII s are national or international legal entities, which is slightly higher portion of national and international legal entities comparing to other sectors. Energy RII s that contribute to the UK’s international responsibilities include facilities within UKAEA such as Joint European Torus (JET) that is the biggest magnetic fusion experiment in the world and the biggest EU facility in the UK [16]. 12% of energy RII s are accommodated in another organisation with short term funding, while 69% of energy RII s are accommodated in another organisation with long term facility.

![Figure 8. The distribution of RII s according to their legal structure.](image)

The energy RII s primarily contribute to the sectors such as energy supply chain and utilities. The other top sectors of economy that energy RII s contribute to, is depicted in Figure 9, are: public policy, transportation, manufacturing, instrumentation, and construction. Therefore, this figure indicates the importance of energy RII s in terms of economic contribution, and its critical role to reduce carbon emission and meet the government carbon target.

![Figure 9. Top eight sectors of the economy that energy RII s work with or contribute to (excluding research and education).](image)

This survey also identifies a number of barriers to effective operation of energy RII s and the mitigation strategy. The barrier or concerns to maximise the value of infrastructures are: certainty of funding and the period of available funding, Brexit and its uncertainty, and lack of personnel/experts and key skills. The strategies to ease these concerns are...
to broaden the funding area, collaborative work, and providing staff training and more recruitment [16].

It is believed the UK energy system is expected to undergo significant transition. While it is uncertain what the future landscape for energy system might be in detail, and which energy resources will dominate, it is evident that the future energy system will be more intelligent and connected and require more co-ordination between different energy resources. Given the fact that the energy system is transitioning into smarter and more connected system, UK is enhancing its capabilities in smart metering, connected devices, data, technology, modelling, and simulation which are required to comprehend the impact of these changes and develop enabling technologies to realise these changes. UK universities are hosting these capabilities, which are developing new technologies and creating new energy system models. Currently, institutions such as Energy Systems Catapult are facilitating collaboration between UK academics, industries, and government to accelerate the UK energy system transformation.

4. Roadmap of Research and Innovation Infrastructure in Energy by 2030: Phase 2

In this phase a number of subsectors for the energy sector along with their potential RII facilities are identified in this study. These subsectors are as follows:

- Whole energy systems
- Energy storage
- Renewable energy sources
- Carbon capture and storage
- Fuel cells and hydrogen
- Alternative fuels
- Nuclear energy

In this study we have identified challenges, and facilities to address the challenges within each sub-sector through consultation with the experts in this field as explained earlier. The potential required RIIs and the Scientific, Research or Innovation (SRI) challenges for every RII in each subsector are presented. Through our surveys and interviews we consulted with experts to filter each item based on medium and high strategic importance.

4.1. Challenges and capability requirements of subsectors

Subsector 1: Whole energy systems (including demand and networks)

The experts identified a number of challenges in whole energy systems and possible capabilities to address these challenges. Table 5 depicts the science, research/innovation challenges of whole energy systems subsector and potential RIIs.
Table 5. Presents the science, research/innovation challenges of whole energy systems subsector and potential RIIs.

<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>To model whole energy system, in order to comprehend the cyber and physical consequences of decarbonizing heat, power, and transport</td>
<td>A Centre of Excellence for Energy Modelling, performing as a platform for nationally significant models</td>
</tr>
<tr>
<td>To optimize the control, investment, architecture, and cross vector interaction of energy systems</td>
<td>Labs and facilities that join the physical and cyber components of a multi-vector energy system</td>
</tr>
<tr>
<td>Digital Twins of multi-vector energy system</td>
<td>Living lab demonstrators coupled with pipeline of innovation, data capture and analysis, market development, and considering the socio-techno-economic impact</td>
</tr>
<tr>
<td>Heat decarbonizing</td>
<td>Simulation for cyber-physical energy systems, together with the high-performance computing, cyber-physical models, and sensors</td>
</tr>
</tbody>
</table>

Heat decarbonizing

Subsector 2: Energy storage

The experts identified a number of difficulties in the energy storage sub-sector and proposed solutions to resolve the raised issues. Table 6 depicts the science, research/innovation challenges of energy storage subsector and potential RIIs.

Table 6. Presents the science, research/innovation challenges of energy storage subsector and Potential RIIs.

<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>To develop economical energy storage for thermal (heat/cooling), electrical energy, and demand at a considerable size</td>
<td>Test beds to enable different technologies of energy storage to be tested and expanded across various applications such as grid-scale, generation-integrated, domestic, neighborhood area, distribution networks</td>
</tr>
</tbody>
</table>
Flexible storage of conditions in living lab | Large living labs for different archetypes including sub-urban, urban, industrial, and mixed
---|---
To integrate energy storage alongside wind energy generation | Testing platform for wind turbine, in which technologies used in energy storage can be experimented to show their potentials to store excess electricity thermally, chemically, and kinetically in batteries
Emerging / new materials or technologies | Advanced material testing platform, characterization, and synthesis

Subsector 3: Renewable energy sources

The experts identified a number of difficulties in the renewable energy sources sub-sector and proposed solutions to resolve these issues. Table 7 depicts the science, research/innovation challenges of Renewable energy sources subsector and potential RIIs.

Table 7. Potential RIIs and science, research/innovation challenges of Renewable energy sources subsector.

<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental study and social science investigation for printed Photovoltaics (PVs), assisting the scale up and financial interests</td>
<td>A National Centre for economical printed PV assisting the UK distributed research community and connecting manufacturing and adoption</td>
</tr>
<tr>
<td>Studying large-scale tidal stream/wind/wave energy extraction and its interaction with the environment</td>
<td>Large-scale laboratory for wind-wave-current combined basins and measurement systems (fully instrumented at-sea demonstration sites)</td>
</tr>
<tr>
<td>Advancement for UK geothermal capabilities. Unique UK Geoenergy Observatories capabilities should substantially improve underpinning subsurface geothermal science, along with further energy areas. Extra capability in this area is required because of its national importance, particularly once the</td>
<td>Facilities (medium to large) to investigate primary research on geothermal energy co-production, potentially accompanied by gas and oil production</td>
</tr>
</tbody>
</table>
Tackling operational issues essential to inertia reduction of the energy system as a result of great penetration of renewables

Test bed with asynchronous inertia shafts, like the ones in wind turbines, aimed at testing methods to include inertia to the electricity system

Subsector 4: Carbon capture and storage

In order to investigate the SRI challenge of the CCS, experts proposed a number of solutions, and discussed difficulties and challenges in CCS industry. Table 8 depicts the science, research/innovation challenges of Carbon capture and storage subsector and potential RIIs.

Table 8. Potential RIIs and science, research/innovation challenges of Carbon capture and storage subsector.

<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>The way CCS infrastructure merge with the overall energy system</td>
<td>Test bed facility to determine how CCUS withstand changes in demand with the use of component testing in the CCS chain, a CO2 storage trial test bed, a combustion/hydrogen production experimental scale facility, and a CO2 transport facility</td>
</tr>
<tr>
<td>Decarbonization method for heavy industry with CCUS (Carbon Capture, Utilisation and Storage)</td>
<td>Synchronized facilities linking together to show next generation capture and utilisation technologies, Optimising amine scrubbing, at a scale of equal to 1-10 MWe. This could be considered as an important link from small pilot plants to full-scale demonstrators. In minor scale, these linked facilities should embed arising next generation capture technologies that shall progress via pilot-plants operating at a scale of ca. 50-500 kWe</td>
</tr>
<tr>
<td>Determine less carbon generation with CCUS</td>
<td>Pilot scale capabilities to bridge the gap between fundamental study and analysis with commercialization, and link these together (TRL3-6)</td>
</tr>
<tr>
<td>Investigate CO2 within the storage capability, and CO2 reaction to the host rock and the underground biology</td>
<td>A demonstration embedding CCS within energy system. A "borehole Lab" is required, with an array of boreholes, instrumentation, and research capability</td>
</tr>
</tbody>
</table>
Subsector 5: Fuel cells and hydrogen

The experts identified a number of difficulties in the fuel cell and hydrogen sub-sector and proposed solutions to resolve the raised issues. Table 9 depicts the science, research/innovation challenges of Fuel cells and hydrogen subsector and potential RIIs.

Table 9. Potential RIIs and science, research/innovation challenges of Fuel cells and hydrogen subsector.

<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilisation of Hydrogen and safety devices</td>
<td>A Centre of excellence for Hydrogen utilisation funded by manufacturers with networks to advance and share the lessons learned</td>
</tr>
<tr>
<td>Mass generation of low carbon, cheap, resilient hydrogen</td>
<td>A demonstrator for low carbon hydrogen production to show hydrogen can be produced and supplied at low cost. This could be the source to the commercial market.</td>
</tr>
<tr>
<td>Hydrogen utilisation in the gas network, either as 100% hydrogen or mixture</td>
<td>Research and development and demonstration to repurpose the gas grid (TRL 5-8), fuel cell research (TRL 6-8), gas storage (TRL 3-6), combustion (TRL 6-8)</td>
</tr>
<tr>
<td>Exploring and responding to difficulties in underground storage of hydrogen</td>
<td>Capabilities or laboratories with an array of boreholes, and also hydrogen storage, pipework and measurement equipment</td>
</tr>
<tr>
<td>Performance enhancement and decreasing the price of fuel cells</td>
<td>R&D capabilities which can investigate research and development of hydrogen economy and has the potential to develop fuel cells technology</td>
</tr>
</tbody>
</table>

Subsector 6: Alternative fuels

The experts identified a number of difficulties in the alternative fuels sub-sector and proposed solutions to resolve these issues. Table 10 depicts the science, research/innovation challenges of Alternative fuels subsector and potential RIIs.

Table 10. Potential RIIs and science, research/innovation challenges of Alternative fuels subsector.
<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every element of the biofuels value chain</td>
<td>Interdisciplinary laboratory for alternative fuels considering chemistry, mechanical engineering, and agriculture</td>
</tr>
<tr>
<td>Improved linkage amongst fuel chemistry and its characterisation properties (e.g., together with pollutant emissions)</td>
<td>Academic capabilities (virtual) connected via a central capability</td>
</tr>
<tr>
<td>Zero emissions vehicles (in addition to cars, other vehicles such as large vehicles, and non-automotive sectors (e.g., aviation or marine, and diesel generators,))</td>
<td>One main center to explore and strategize alternative fuels options. A research hub (similar to the Faraday Institution) enabling research and delivery for alternatives options</td>
</tr>
<tr>
<td>Mapping of organic waste availability and evidenced based Life Cycle Analysis work to investigate the environmental impact of current systems against the possible savings of utilizing Anaerobic Digestion (AD)/biorefineries in urban/agricultural situations</td>
<td>‘Virtual centre for AD’ with a supportive and collaborative research programme together with industry and academia</td>
</tr>
<tr>
<td>Combustion and conversion</td>
<td>Essential trial equipment, which is instrumented, in order to deliver a controlled environment which is required for improving the knowledge of biofuel combustion behaviour and the comprehending its impact on the internal combustion engine</td>
</tr>
</tbody>
</table>

Subsector 7: Nuclear energy

The experts identified a number of difficulties in the nuclear energy sub-sector and proposed solutions to resolve these issues. Table 11 depicts the science, research/innovation challenges of Nuclear energy subsector and potential RII}s.
Table 11. Potential RIIs and science, research/innovation challenges of Nuclear energy subsector.

<table>
<thead>
<tr>
<th>Science, research and/or innovation challenge</th>
<th>Potential capability required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish nuclear engineering capabilities that is required for supporting upcoming new build programme. Especially in system engineering</td>
<td>An engineering centre of excellence for nuclear energy is needed, to enable nuclear energy engineering from multiple disciplines to share scientific capabilities. Demonstration sites are required to support the Catapults agenda/programme of work</td>
</tr>
<tr>
<td>Nuclear legacy management (high, intermediate and low level of waste, nuclear logistics, and decommissioning technology)</td>
<td>Capabilities for managing and examining active materials, better engineering and expand. Capabilities for designing and developing management technologies, treatment, and waste minimisation for active and non-active environments</td>
</tr>
<tr>
<td>Fission: Prospective fuels needs of prospective nuclear reactors (AMRs, GenIII+, Gen IV, SMRs)</td>
<td>Capabilities for developing and examining prospective fuels, inclusive of accident tolerant fuels. Preserving and expanding UK advanced fuel competency required for current and prospective reactors, both defence and civil</td>
</tr>
<tr>
<td>Fusion: Plasma control (heat management, superconducting magnets, and machine geometry)</td>
<td>Huge Fusion Reactor(s) is needed to help and promote study in plasma control and fusion and superconducting magnet technology. Test bed and lab for a spherical tokamak suitable for generating electricity</td>
</tr>
</tbody>
</table>
Facilitate following services in nuclear reactors: robotic maintenance, health monitoring, and high heat extraction.

Thorough and broad conceptual design centres to provide following investigation and study for nuclear energy: high heat flux, material study, robotic maintenance, and component testing.

Improved thermal transfer from reactor to electricity generation systems.

A thermal hydraulic research and test facility

Advanced reactor understanding and development.

Demonstrators and labs which support the design capability understanding in the UK. These provide the informed assessment and development of prospective reactor designs, and also operation and regulation of these facilities.

Several nuclear plants in the UK are about to be decommissioned, which will cause the following serious challenges: clean-up of previous nuclear plant sites safe, extended storage and disposal of spent nuclear fuel and decommissioned nuclear plants wastes

A demonstrator and lab to assess the containment technology, geo-barriers and host rock properties/interactions with the stored waste.

A capability for environmental remediation

5. Links to e-infrastructure and data needs for energy sector by 2030

E-infrastructure could offer a number of services to energy systems by providing data which are valuable resource used to inform models, inform policy interventions, enhance the forecasting precision, improve the cost, and assist businesses to grow. The need to ensure that services are provided successfully, demands a much richer Information and Communication Technology (ICT) monitoring and control network than the current system [18]. E-infrastructure contains a variety of data formats and data sources to meet different needs, such as systems performance and control data required to preserve grid stability, weather data to predict peaks and troughs in electricity production, market data to guarantee optimum efficiency for suppliers and consumers. Smart energy systems should be digitally connected to allow the information, models, and results to be exchanged within the systems, and outside the energy systems such as national critical infrastructure. Inappropriate or less sufficient exchange of data and models will result in whole or part of energy system not to be monitored, modelled, and finally controlled.

E-infrastructure is responsible to simulate the entire energy system and ensure the security of the system is preserved. It can also provide early detection of faults or errors, and real-time monitoring of distant services and capabilities (such as wind farms) which is useful for performance examination. Such e-infrastructure addresses a number of challenges in energy sector, including recording data, carrying out complicated modelling and simulation of a number of subsectors/subsystems.
The result of the survey run by UKRI shows that three quarters of energy RIIIs believes that within five to ten years e-infrastructure and data will become more important. Additionally, the survey demonstrates that two thirds of energy RIIIs report a ‘significant e-infrastructure/data requirement or component’.

E-infrastructure is facing upcoming challenges for future energy system such as the incorporation of diverse and new data types and data sources. These may bring difficulties in terms of data storage, data communication [19], data interoperability, cyber-interdependencies [20], missing data treatment [21], and coordination of security policy, that could be mitigated by studying in the bridges and connectors amongst energy sector and computational and e-infrastructure. Additionally, e-infrastructure of energy system suffers from cyber security challenges caused by interconnectivity between sensors and controllers. The majority of devices installed, and communication protocols used in the energy grid are designed with limited cyber-security considerations, which would increase the risk of economic loss, asset damage or widespread blackouts [22, 23]. Furthermore, the data captured and stored in e-infrastructure are considered as valuable assets and should be protected as an asset of the company and the property of the individual customer.

Finally, e-infrastructure can play a significant role in achieving whole energy system optimisation, control, prediction and management [24]. E-infrastructure can use sensor-enabled digital replica of the energy system to enable digital twin for entire energy system [25]. It can also enable development of innovative business models or adaptation of such new models [26, 27]. Therefore, the integration of e-infrastructure and energy RIIIs can improve the capability of the multi-sector and multi-vector energy system development.

6. Discussion

The emerging themes discussed in this paper are part of industrial strategy and priority sectors for government policy. Collaboration between researchers in academia and stakeholders such as suppliers can lead to development of new innovations and business opportunities [28]. The two-way communication between infrastructure providers and users can help identifying the potential areas of investigation. For example, investment in creation of important infrastructures like Catapult networks and UK Battery Industrialisation centre are the results of such investigations.

Energy is a highly regulated sector, can massively contribute to the economy, and has a fundamental role in carbon emissions reduction in the UK economy. Energy RIIIs are important for a range of Technology Readiness Levels and stakeholders, including utility companies and the energy supply chain. Also, the other economy sector that energy RIIIs contribute to are identified as public policy, transportation, manufacturing, instrumentation, and construction.

Finally, it has been realised that although a majority of infrastructures that focus on R&D are funded by public funding, most of the infrastructures that focus on development and deployment are funded by both public and industry funding. Industry will investigate and build infrastructures where these facilities are cost and use effective
for them. An example is the InTEGRel (Integrated Transport Electricity and Gas Research Laboratory) that the Northern Gas Networks is leading on and it is in partnership with Newcastle University and Northern Powergrid. This public-private investment style is necessary when industry is dealing with applied problems that researchers from academia can help to address. Additionally, such infrastructures can help academia to collaborate on real-world challenges and are unique opportunities to move forward in science and innovation.

7. Summary

This study was planned to identify the current landscape and future key RIIs for the energy sector in the UK, in order to inform policy makers to meet the UK Government 2050 carbon targets. However, the techniques and methods used in this work can be expanded and applied to other countries with access to their internal demonstrators and experts. To achieve our goal and meet our milestones we completed sets of key detailed stages. Our analysis was developed through a number of activities that enabled us to identify future needs and opportunities, including (i) reviewing current roadmaps and strategy works within sectors and cross cutting areas, (ii) surveys to existing RIIs: survey 1 collected basic information to enable creation of a map of UK capability and inform judgements on what is in scope. Survey 2 followed up with RIIs in scope to explore ways of working in more detail and future needs and opportunities, (iii) User survey: this gave a user perspective on the current landscape and explore future needs and opportunities, (iv) organising and running a number of workshops/meetings/one-to-one interviews. The diverse stages of this work were reinforced by regular meetings, ongoing consultation, and seeking feedback on draft findings for consultation from the pool of experts.

Our questionnaire approach and analysis have identified 58 energy RIIs which are scattered throughout the UK. These infrastructures work across more than one research sector, for example, energy RIIs have the greatest linkage with Environmental and the PS&E sectors. Our data shows the UK’s long history in developing energy RIIs with substantial new investment in these capabilities, since 85% of energy RIIs started operation over the last 15 years. We also identified that most of energy RIIs are housed within other organisations which are dependent on long term funding, such as universities. Finally, it was found that energy RIIs have slightly higher portion of national and international legal entities, and also the highest portion of single-site physical entities, compared to other sectors.

In the next phase of this study, in order to draw the roadmap for energy system, we identified 7 subsectors which are: whole energy systems, energy storage, renewable energy sources, carbon capture and storage, fuel cells and hydrogen, alternative fuels, nuclear energy. We identified challenges, and potential RII facilities to address these challenges within each sub-sector.

In conclusion, key messages of this study are as following: the first key conclusion is the necessity for further largescale enterprises like the Faraday Institution and NREL (national research laboratories such as the National Renewable Energy Laboratory) in the USA. The second key conclusion is that the challenges in energy sector are multidisciplinary
and interdisciplinary. To address these challenges, we need large demonstrators of multi-vector energy systems, similar to the InTEGReL, which embed multi-disciplinary research and innovation, and can raise quality and volume of research, and can straightly learned the needs of several collaborators and participants from government departments and business. The third key conclusion is the need for research into plummeting the environmental impacts of technologies used in energy sector, such as replacement of rare and costly materials with inexpensive and more abundant ones, mining of materials for low carbon energy technologies, enhanced efficiency of manufacturing processes, and end of life administration or management of technologies used in energy sector. The Fourth key conclusion is the need for enhanced platforms to share data and cyber-physical demonstrators that could be realised by developing an open data platform, improving cyber-physical professioni and means and mechanisms, along with big data knowledge. It was believed that these demonstrators could aid the energy division to defeat challenges related to product development, management and operation, as well as challenges related to reliability and resilience of the energy networks. The fifth conclusion is that energy R&I are affected by the speed and extent of transformation to a low carbon energy system. Therefore, innovative collaborative projects should increase the competence and capacity of, and connections between, extensive and wide-ranging facilities. Furthermore, it is expected the UK users who need access to infrastructures will rise across all TRLs and therefore we anticipate a systemic change progress across the energy sector.

References

2. The UK’s research and innovation infrastructure: Landscape Analysis. 2020, UK Research and Innovation (UKRI): UK.
5. Hirzel, S.; Hettesheimer, T.; Viebahn, P.; & Fischedick, M. Bridging the valley of death: a multi-staged multi-criteria decision support system for evaluating proposals for large-scale energy demonstration projects as public funding opportunities. 2018
16. Ukri Infrastructure Roadmap, Initial Analysis of Infrastructure Questionnaire Responses And Description Of The Landscape. 2019, UK Research and Innovation (UKRI): UK.
27. The UK’s research and innovation infrastructure: opportunities to grow our capability. 2019, UK Research and Innovation (UKRI): UK.

Appendix A

Existing Energy Infrastructure

The energy RIIs are classified into the following energy related areas:

- Whole Energy Systems - interdisciplinary research
- Centre for Renewable Energy Systems Technology (CREST)

The main activity of CREST, as one of the leading international groups working in the field of renewable energy, is to carry out research and education in renewable energy.

- The Tyndall Centre for Climate Change Research

The energy programme of The Tyndall Centre for Climate Change Research includes cultural, political and institutional factors in addition to technical, economic and scientific analyses, with an emphasis on international decarbonisation over the next decades.

- Buildings
- Building Research Establishment (BRE)
BRE is an independent research consultancy with the focus on exploring building techniques and resources, developing buildings through research and testing methods, and creating a more efficient and current built environment.

- **Salford Energy House**
 The main aim is to encourage collaboration between academics, researchers and industry on energy efficiency within housing. It can help in the testing and demonstrating of a broad range of materials, systems and products.

- **Power Systems**
 - **Tony Davies High Voltage Laboratory (TDHVL)**
 TDHVL is a centre for research in dielectric materials and insulation systems and high voltage and related phenomena.

- **Power Network Demonstration Centre (PNDC)**
 The PNDC is a combined venture, bringing together academia, government funding agencies and industry, to encourage research and development into business as usual status.

- **National Grid Power System Research Centre, including High Voltage and High Current Test Laboratory**
 The centre has six experimental laboratories; three associated with high voltage engineering, one for dielectric materials, one for protection and control, and one for measurements and instrumentation. As part of the centre, the High Voltage and High Current Test Laboratory enables the opportunity to carry out high voltage testing of equipment used at all voltages of the power system.

- **HIGH Power laser Energy Research facility (HIPER)**
 HIPER is planned to drive the transition from scientific proof of principle to a demonstration power plant, capable of delivering electricity to the grid.

- **Energy system demonstrators**
 - **Integrated Transport Electricity and Gas Research Laboratory (InTEGReL)**
 InTEGReL is a partnership between Northern Gas Networks (NGN), Northern Powergrid (NPG) and the Newcastle University-led EPSRC National Centre for Energy Systems Integration (CESI). It will allow energy researchers and engineers to work alongside industrial practitioners for the first time to explore the transformative benefits of coupled gas, electricity and heat systems and to carry out full-scale cross-vector demonstrations of novel approaches to integrated energy systems.

- **Keele Smart Energy Network Demonstrator (SEND)**
 SEND is a living laboratory ‘at scale’ for research and development and testing of new energy efficient technologies in a real world environment. It encourages collaboration between industry and academia for development of energy technologies in several fields including security of energy supply, carbon reduction, network demand side management and energy generation performance monitoring.

- **Nuclear**
 - **Culham Centre for Fusion Energy (CCFE), including: Joint European Torus (JET), Mega Amp Spherical Tokamak (MAST)**
 CCFE is interested in many issues that are common to both fission and fusion activities. The CCFE is host to the UK domestic fusion programme, the Mega Amp Spherical Tokamak (MAST) and the Joint
European Torus (JET). JET, which is located at the CCFE and primarily funded through the EU Framework Programme, is the main EU fusion experiment. MAST is UK research machine located at the CCFE.

- ORION
 ORION, as part of the Atomic Weapons Establishment (AWE), is a laser facility to study high energy density physics and is suitable for ICF studies.

- National Nuclear User Facility (NNUF), including Microscope and Ion Accelerator for Materials Investigations facility (MIAMI)
 The NNUF is a distributed facility and is intended to provide the necessary supporting equipment for the preparation, transport and study of highly active materials. MIAMI is a custom-designed facility, which uses ion beams to simulate the effects of radiation damage in-situ and allows for nanoscale examination.

- Dalton Cumbria Facility (DCF) of Manchester University
 The DCF is a core component of the NNUF, and is designed to complement and significantly expand the nuclear research and education capability of the UK’s nuclear R&D sector.

- Nuclear Advanced Manufacturing Research Centre (AMRC)
 AMRC supports industry with manufacturing issues and aims to help businesses become suppliers of choice to the global civil nuclear industry.

- National Nuclear Laboratory
 NNL is the largest nuclear laboratory in the UK, which was set up to develop and applying techniques to decommission nuclear facilities, including wastes management and decommissioning projects, environmental and effluent management, measurement and analysis and waste immobilisation technology.

- CCS

- Peterhead Carbon Capture and Storage (CCS) Project
 It is the world’s first gas-fired power station to host a full-chain carbon capture and storage (CCS) project on a commercial scale. The plant will power approximately half a million homes with clean electricity. It will capture approximately one million tonnes of carbon dioxide (CO2) a year from the power station’s flue gas, and transport and permanently store it in a depleted gas reservoir under the North Sea.

- Renewable Energy Sources
- Wind
- National Renewable Energy Centre (Narec)
 Narec is an independent centre for the development, testing and commercialisation of next generation technologies for the global wind energy industry.

- Energy Technology Centre (ETC)
 The ETC is a specialist in the full system technology testing, as well as turbine component testing. They are able to assess how innovations respond to wind, thermal systems and the marine environment.

- Hunterston offshore wind turbine test facility
 The facilities, once complete, will be able to test up to three wind turbine prototypes of offshore wind turbines.

- Marine, wave and tidal
- European Marine Energy Centre (EMEC)
The centre is intended to supply innovators with a means to test technologies with a focus on producing electricity through the influence of wave and tidal stream environments.

- Marine renewables test centre
 The Centre, once complete, will be used for the development, design and testing of marine renewable construction materials and prototype foundations.
- Peninsular Research Institute for Marine Renewable Energy (PRIMaRE)
 PRIMaRE is a network of world-class research institutions with facilities being capable of scale testing of devices and additionally the study of seafloor device interactions.
- FloWave Ocean Energy Research Facility
 The FloWave facility is a cutting-edge academic research facility for wave and tidal current interactions, it is capable of testing devices and arrays in multiple current and wave regimes that effectively replicate ocean conditions found around the UK.
- Offshore Renewable Energy Catapult (ORE Catapult), National Renewable Energy Centre
 The ORE Catapult is a research centre with a focus on evolving grid integration of renewable energy systems and coordinating the growth and distribution of offshore wind, wave and tidal energy generation technology.
- Wave Hub Ltd.
 The Wave Hub facility is a marine renewable energy test facility, which has grid connected infrastructure and the capability to host offshore wind turbine foundations. The aim of the Hub is to aid in the advancement of wave technologies and innovation and research in this field.
- Solar
- NaREC Photovoltaic Technology Centre (PVTC)
 PVTC is a test facility well-equipped with solar cell process line and characterisation laboratory and is dedicated to provide testing and development services to the energy sector.
- Centre for Solar Energy Research (CSER)
 CSER has proven expertise and a world class reputation in researching novel photovoltaic materials and devices.
- Low Carbon Research Institute (LCRI)
 The multidisciplinary LCRI aims to support the energy sector, UK and globally, to develop low carbon generation, storage, distribution and end use technologies, and to offer policy advice to help deliver a low carbon future.
- Alternative Fuels
- European Bioenergy Research Institute (EBRI)
 EBRI acts as a focus for work on biomass conversion and the utilisation of products for renewable power, heat, transport fuels, hydrogen and chemicals. EBRI offers feedstock, power and equipment tests and boasts biomass processing and analysis and heterogeneous catalysis capabilities. It is able to offer a full cycle of testing, from analytical scale research through to semi-industrial demonstrator level testing.
- Hydrogen
- **Renewable Hydrogen Research and Development Centre**
 A centre on electrolytic hydrogen production, compression and storage, which benefits from photovoltaic solar arrays, PEM fuel cells and Hydrogen vehicle refuelling.
- **Energy technologies & markets**
- **The Energy Centre Thornton Science Park**
 The centre provides collaboration between academia and industry to develop and demonstrate new intelligent energy technologies for the energy market.