
 

Open Loop Control for AC Drives 

D. Giaouris, J.W. Finch 

School of Electrical, Electronic & Computer Engineering,  
University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK  

emails: Damian.Giaouris@ncl.ac.uk, j.w.finch@ncl.ac.uk  

ABSTRACT 

Over recent years many control schemes have been suggested to improve the behaviour of high 
performance induction motor drives.  Many such schemes require relatively complex electronics and 
feed-back transducers.  They are restricted in their application due to their complexity and cost.  There 
are other methods which are relative simple to implement, which are therefore very attractive for typical 
industrial applications.  The method that is described in [1] is one such.  There the authors suggest an 
open loop compensation scheme, which utilises the voltage drop on the stator resistance to make the 
model stable.   The critical issue for such methods is how well they behave relative to more complex 
closed-loop control.  This paper describes an investigation of the method using Simulink as the main 
means to verify its operation.  The stability check that appears in [1] was also studied and a corrected 
form is shown to have been obtained. 

INDUCTION MOTOR MODELLING 

According to [2] the equation for the stator voltage vector expressed in a General Reference Frame 
(GRF) is: 
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where sgu  is the stator voltage vector in the GRF, sgi  is the stator current vector in the GRF, sgψ  is the 

stator flux linkage vector in the GRF, sR  is the stator resistance and gω  is the angular speed of the 
reference frame.  If this general frame is now locked to the stator flux, it rotates with the supply frequency 
and if sρ  is the angle of the stator flux to the Stator Reference Frame (SRF) then   
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 Fig. 1  Space Vectors Fig. 2  Stator flux orientation 



 

Since the general reference frame is locked to the stator flux then the imaginary component of sgψ  is 

zero:  sxssg ψψψ ==  (3) 

Hence eqn. 1 can be written as:  sxms
sx
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By splitting eqn. 4 to its orthogonal components:  
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In the steady state eqn. 5 can be written as:  
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The open loop compensating scheme represented in [1] utilises these two eqns.  The values of msω  and 

sxψ  can be set by the user.  In [1] two different methods were suggested to calculate the angles ρs and 
θs, (θs is the angle of the stator voltage vector in the SRF).  Only the first approach is studied here, the 
second method is very similar.  The integral of the desired speed is used to give the angle ρs and the 

angle θs is calculated from: 
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STABILITY ANALYSIS 

The previous stability analysis [1] had an error that made result verification impossible.  According to the 
paper the state space model description was: 
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where Rr is the rotor resistance, Lr is the rotor self inductance, Ls is the stator self inductance, Lm is the 
mutual inductance between the stator, rotor coils and σ is the resultant leakage factor and ωr is the rotor 
angular velocity: rr dt θω =∫  

if ρs=0 then 






+==

==

sssQsQsy

ssDsDsx

ms
Riuu

Riuu
**~

~
 

ψω
 (9) 

sR
~

 is the value of stator resistance used in the compensator.  It can be assumed that the control strategy 
can be fitted into a linear state feedback control system where the input signal is: 
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And hence: 
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To check the stability of the system the eigenvalues of Ac where plotted for various speeds and sR
~

 
resistances.  The matrix from eqn. 11 gives Figs. 3 & 4 which are not the same as in [1]: 
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 Fig. 3  Root locus for stator currents Fig. 4  Root locus for stator fluxes 

 
 The error is in the matrix A, in the denominator of the factors that contain the term σ2

mL  where 

sr

m

LL
L 2

1−=σ  (for more information see [3] or [4]).  The correct factor was found to be ( )srm LLL −2 .  

So the correct state matrix is:  
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Following the same steps as before the matrix Ac was calculated and its eigen-values are:  
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 Fig. 5  Root locus for stator fluxes Fig. 6  Root locus for stator currents 

 
A very interesting characteristic of the system can be deduced from Figs. 5 & 6.  This is that the system 
will be unstable for values of the resistance sR

~
 bigger than sR .   

Another error is the assumption in [1] that 0=sρ this gives the correct gain matrix K apparently by luck.  

The first indication of this is that if 0=sρ  then the machine would not turn.  If 0≠sρ  and the state 
space model of the control scheme is derived, the K matrix will be the same, so the stability analysis is 

not influenced.  On the other hand the input matrix refu  should be 
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statement can easily be verified from the Simulink model that appears in Fig. 7. 

SIMULATION RESULTS 

Simulation model 

The Simulink model that was used to study the above method is given in Fig. 7. 
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 Fig. 7 Simulink model for the Open loop control scheme 



 

The sub blocks defining the compensation method are shown in Figs. 8 & 9: 
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 Fig. 8  Sub-block: calculates usD and usQ from usx and usy 
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 Fig. 9  Sub-block: calculates isx and isy from isD and isQ 

Tests 

In [1] two tests for the above system are described.  In the first the motor frequency is ramped from 0 to 
37Hz or 235 rad/s in 2 s (the paper states 25Hz but the waveforms of speed shown do not correspond), 
with a load of 80% of the rated torque.  In the second test the motor frequency is ramped from 0 to 5Hz or 
31.42 rad/s in 1 s.  After four seconds a load of 80% of the rated torque is applied.  The value for the 
desired stator flux unfortunately is not given.  From the graphs that appear in [1] an estimated value of 1.6 
Wb has been used.  Also the inertia has been found by trial and error since it is not given either.  The 
parameters for the delta connected squirrel cage induction motor used are: power 7.5 kW, power factor 
0.88, inertia 0.221 kg m2, pole-pair number 1, rated voltage 415 V, rated current 13.5 A, rated torque 25 
Nm, rated slip 0.0191, rated frequency 50 Hz.  The per phase equivalent parameters are: stator 
resistance 2.19 Ω, rotor resistance 1.04 Ω, leakage stator and rotor inductance 17.59 mH and stator rotor 
mutual inductance 0.55 mH.   



 

The system responses for ss RR 8.0~ =  are shown in Figs. 10-15:  
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 Fig. 10  Torque response for test 1 Fig. 11  Speed response for test 1 
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 Fig. 12  Torque response for test 2 Fig. 13  Speed response for test 2 

 

0

1

2

3

0 2 4 6 8

Time [s]

Fl
ux

 [w
b]

Accelaration
Period

Constant Speed 
Demand

0

0.5

1

1.5

2

2.5

0 2 4 6 8
Time [s]

Fl
ux

 [w
b]

No Load

Load =20Nm

 
 Fig. 14  Stator flux linkage response for test 1 Fig. 15 Stator flux linkage response for test 2 

 



 

DISCUSSION OF RESULTS 

It has been shown that the response of the simulated system is very similar to the main experimental 
results [1].  Differences are minor and can be explained.  For example ripple exists on the experimental 
results, due to the power electronic modulation.  In the simulations it is assumed that the power 
electronics are idealised and hence no ripple exists.  Furthermore errors were present in the earlier 
stability analysis of the system [1]; these have been found and corrected.  Their location and the influence 
that they have in the state matrices that model the system are also shown. The correct state space model 
was finally given and the stability analysis was found to agree with both the experimental and simulation 
results.  Variations on the methods described here are already being widely used with success in 
industrial drives. Research is continuing to further improve the behaviour of these economical drive 
schemes. 
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