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A B S T R A C T

Nowadays, the requirement to ameliorate efficiency in power conversion systems along with the demand for
increased power rating gives rise to the implementation of interleaving operation. Interleaving in conjunction
with digital state feedback control provide the ability to create sophisticated control schemes which allow for
high efficiency under a wide range of operating conditions and restrictions. Along these lines, the interleaved
boost converter finds widespread application in a variety of cases such as battery charging, renewable energy
sources and distributed power systems. A very salient aspect concerning the performance of the converter is
the occurrence of limit cycle instabilities that can have an adverse effect on the operation of the converter
resulting in efficiency and lifetime reduction. These instabilities are a trait of the piecewise linear nature of
the system dynamics, in which case, a bifurcation analysis is required to investigate their influence on the
system. However, in the case of interleaving along with digital control the standard implementation of the
bifurcation analysis for determining the Monodromy matrix is impeded by the dependency of the system of
past sampled states. As a consequence, the conventional approaches found in literature are inadequate when
it comes to predicting and avoiding these kind of instabilities. This paper addresses the specific issues and
presents a novel approach on defining the Monodromy Matrix and deciding upon the stability of the limit
cycle. The proposed approach relieves the dependence of the system on past samples by augmenting the first
return map with expressions that describe the evolution of the control laws. The interleaved boost converter
is used as a case study. Finally, numerical, analytical and experimental results validate our work.

1. Introduction

In recent years interleaved converters have been in the spotlight of
research and investigation due to their advantages over other simple
topologies. Several interleaved converter topologies have been pro-
posed and are implemented in a wide range of applications. These
include electric vehicles and battery charging (Jung, Lempidis, Holsch,
& Steffen, 2015a; Jung, Lempidis, Hölsch, & Steffen, 2015b; Wang
& Khaligh, 2015), the exploitation of renewable energy sources like
photovoltaic-cells and fuel-cells (Mouli, Schijffelen, Bauer, & Zeman,
2017; Pulvirenti et al., 2013; Shojaeian, Heydari, & Hasanzadeh, 2017).
A common characteristic among these applications is the important
role of a high efficiency which is the main reason why interleaving
constitutes an appealing technique. Interleaving in conjunction with
multilevel topologies provides the ability to increase efficiency and
the power rating of the system due the introduction of extra phases.
The load is distributed among the phases which allows the relief of
stress on the switching components, power losses on the system are
mitigated and current and voltage ripples are diminished as well. In this
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regard, the efficiency is substantially elevated (Choi, Jang, Ciobotaru,
& Agelidis, 2016; Michal, 2016; Tseng & Huang, 2014). In this work
the interleaved boost converter was chosen as a case study since it
constitutes a ubiquitous converter among the different topologies.

State of the art circuits employ digital control schemes due to
their advantages such as low power, immunity to analog component
variations and the potential for more sophisticated control schemes (Er-
ickson & Maksimovic, 2001). Several digital control schemes have been
proposed for compensating the interleaved boost converter including
online self-tuning control (Elsied et al., 2016), fault-tolerant control
for renewable energy systems (Guilbert, Gaillard, N’Diaye and Djerdir,
2016; Guilbert, N’Diaye, Gaillard and Djerdir, 2016), adaptive con-
trol (Salhi, Ahmed-Ali, Fadil, Magarotto, & Giri, 2013; Zhang, Xu, &
Liu, 2014) and more advanced control schemes like model predictive
control (Karamanakos, Geyer, & Manias, 2013; König, Gregorčič, &
Jakubek, 2013).

A crucial aspect of the boost converter topologies are their innate
nonlinear dynamics. A control design that does not take them into
account can drive the converter to undesirable operational regimes
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as it is illustrated in Gkizas et al. (2016, 2018). However, there has
been research to some extent on tackling the nonlinear behaviour
of the interleaved boost converter with the employment of methods
like passivity-base control (Cisneros et al., 2015), nonlinear adaptive
control (Fadil, Giri, Guerrero, Haloua, & Abouloifa, 2011), nonlinear
sliding mode control (Giral, Martinez-Salamero, Leyva, & Maixe, 2000;
Saadi et al., 2016) and constrained stabilization (Gkizas et al., 2016,
2018; Yfoulis et al., 2014, 2015).

As it can be deduced the interleaved boost converter constitutes a
system that instigates several challenges that need to be dealt since it
pertains to a wide range of applications, evident by the preceding state-
ments. Furthermore, a common characteristic of the aforementioned
approaches to the investigation, and consequently the control, of the
interleaved boost converter is that they mostly consider the bilinear
dynamics without taking into account the underlaying switching action
due to the utilization of averaging (Erickson & Maksimovic, 2001).
Averaging is a common practice since the piecewise linear dynamical
description of the system is simplified by excluding the switching
dynamics and, thus, rendering it amenable to control theory. However,
the switching action can give rise to bifurcation phenomena so that
fast-scale, slow-scale and saddle–node instabilities may emerge. At this
point it should be mentioned, in the case of the interleaved boost
converter, that certain saddle–node bifurcations can be foreseen by the
average model, due to the inherent bilinear dynamics (Gkizas et al.,
2016), however the remainder need to be investigated by studying
the stability of the non-smooth limit cycle of the piecewise linear
system. The significance of conducting such an analysis is that these
kind of instabilities can greatly affect the operation of the system by
increasing voltage and current ripples, attributed to fast-scale instabili-
ties (Banerjee & Verghese, 2001; Giaouris, Banerjee, Zahawi, & Pickert,
2008), and superimpose a low frequency high amplitude harmonic, a
trait of slow-scale instabilities (Aroudi, Benadero, Toribio, & Olivar,
1999; Zhusubaliyev, Mosekilde, & Yanochkina, 2011), which will cause
a drop in efficiency and also cause problems concerning controller
saturation. Evidently, a bifurcation analysis is rendered as a necessity.
Along these lines, there have been studies on the limit cycle stability
of the interleaved boost converter (Giaouris et al., 2014; Wu, Pickert,
& Giaouris, 2014; Wu, Pickert, Giaouris, & Ji, 2017), however, the
lack of research whilst under the framework of digital compensation
is noticeable.

The means of investigating the limit cycle stability of piecewise
smooth dynamical systems are based on accurate approaches which can
entail discrete-time mappings (di Bernardo & Vasca, 2000). The stabil-
ity analysis of periodic solution of differential equation with discontin-
ues right-hand sides was first proposed in Aizerman and Gantmakher
(1958). Filippov (1988) provides the saltation matrix that facilitates
the investigation of stability of these orbits (Aroudi, Iu, & Hiskens,
2015; Banerjee & Verghese, 2001). Other proficient approaches on
the investigation of stability have been reported in literature Bau-
shev, Zhusubaliev, Kolokolov, and Terekhin (1992), Zhusubaliyev,
Soukhoterin, Rudakov, Kolokolov and Mosekilde (2001) and Zhusub-
aliyev, Soukhoterin, and Mosekilde (2003). The common ground shared
amongst them is the underlaying idea with which the stability is
studied. The foundation of this idea is the introduction of a perturbation
and the monitoring of its evolution in the span of one clock period.

Albeit the fact that the aforementioned ideas have been successfully
implemented in many cases they, unfortunately, fall short when it
comes to interleaving under digital control. The reason is that the pro-
cesses of applying these methods in this particular case are impeded due
to the dependence of the limit cycle on past sampled states. In simple
terms, certain important aspects during the process of the bifurcation
analysis cannot be cast explicitly due to this dependence. This paper
provides the solution to this impediment and the requisite method for
conducting the bifurcation analysis. As it will be shown the first return
map of the system is expressed in such a way that it is relieved from
the dependence on the past sampled state vector. As a consequence,

Fig. 1. Two-legged interleaved DC–DC boost converter with state feedback controller.

another very important contribution of this analysis, is the insight that
comes along with the proposed method. Evidently, it is shown that
the method is applicable in the case where delays are introduced, due
to physical restrictions, by experimentally implementing the digital
control law. To this end, the experimentation carried out in this work
successfully corroborates the above assertion.

The paper is organized as follows: The description of the system,
along with the mathematical modelling, takes place in Section 2. The
bifurcation behaviour of the system under static state-feedback control
is presented in Section 3 and the bifurcation analysis is conducted in
Section 4. Moreover, in Section 5 a dynamic state-feedback controller
and its implications on the limit cycle stability are considered. Sec-
tion 6 unravels and deals with implication on the limit cycle stability
stemming from the physical implementation of the control laws. The
experimental results are presented in Section 7. This work concludes in
Section 8.

2. System description

The system under consideration is a two-phase interleaved boost
converter compensated by digital static state feedback control. State
feedback control is chosen because it constitutes a control scheme
that offers many advantages over other conventional control methods,
e.g. PI, PID or Cascade control. Apart from the established facts that
it relives them system of the introduction of additional poles and
zeros, which would otherwise increase complexity and overshoot at
transients respectively, it is also amenable to optimal and robust control
frameworks (Geyer, Papafotiou, & Morari, 2008). Furthermore, the
boost converter topologies exhibit an non-minimum phase behaviour
that complicates their control even further. State feedback overcomes
these obstacles. The two-legged interleaved boost converter along with
the component values are given in Fig. 1 and Table 1 respectively.

The implementation of interleaving dictates a phase difference of
2𝜋∕𝑁 for every PWM modulator relative to each leg, with 𝑁 being the
number of legs. Moreover, the state-feedback controllers, for driving
each switch, are constructed by taking advantage of the symmetry of
the system and utilizing only two states for the realization of each
individual controller. Namely, the state feedback control law for each
switch is realized by making use of the capacitor voltage and the
corresponding current that the switch is manipulating, as described by
(1) and (2). This method has been extensively analysed by the author
in Gkizas et al. (2016, 2018). Based on that analysis the static state
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Table 1
Interleaved boost converter parameter values.
Parameter Value

R 40 Ω
𝑉𝑖𝑛 5 V
L 1 mH
C 20 μF
r 0.1 Ω
N 2

feedback gains that will provide the system with a damping factor
𝜁 = 0.7 and damped natural frequency 𝜔𝑑 = 2000 𝑟∕𝑠 are 𝑘1 = −0.0424
and 𝑘2 = 0.1595 .

𝑢1[𝑛𝑇 ] = −𝑘1(𝑥1[𝑛𝑇 ] − 𝑉𝑟𝑒𝑓 ) − 𝑘2(𝑥2[𝑛𝑇 ] − 𝐼𝑟𝑒𝑓 ) + 𝑑𝑠𝑠 (1)

𝑢2
[

𝑛𝑇 + 𝑇
2

]

= − 𝑘1(𝑥1
[

𝑛𝑇 + 𝑇
2

]

− 𝑉𝑟𝑒𝑓 )

− 𝑘2(𝑥3
[

𝑛𝑇 + 𝑇
2

]

− 𝐼𝑟𝑒𝑓 ) + 𝑑𝑠𝑠
(2)

2.1. Mathematical modelling

The dynamics that govern the two-legged converter can be de-
scribed by the piecewise linear system of differential equation in (3)
where the corresponding matrices are given in (4). In the aforemen-
tioned equations the state vector is represented by
𝐱(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)]𝑇 , where 𝑡 ∈ R, 𝐱(𝑡) ∈ R𝑛, 𝐀1,𝐀2,𝐀3,𝐀4 ∈
R𝑛×𝑛 and 𝐁 ∈ R𝑛×1, with 𝑛 = 3. State 𝑥1(𝑡) represents the capacitor
voltage and states 𝑥2(𝑡) and 𝑥3(𝑡) the currents of inductors 𝐿1 and 𝐿2
respectively. The states of the switches denoted as ON and OFF in (3)
correspond to a switch conducting or being open respectively.

𝐱̇(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐀1 𝐱(𝑡) + 𝐁𝑉𝑖𝑛 𝑆1 = 𝑂𝑁 𝑆2 = 𝑂𝑁
𝐀2 𝐱(𝑡) + 𝐁𝑉𝑖𝑛 𝑆1 = 𝑂𝐹𝐹 𝑆2 = 𝑂𝑁
𝐀3 𝐱(𝑡) + 𝐁𝑉𝑖𝑛 𝑆1 = 𝑂𝑁 𝑆2 = 𝑂𝐹𝐹
𝐀4 𝐱(𝑡) + 𝐁𝑉𝑖𝑛 𝑆1 = 𝑂𝐹𝐹 𝑆2 = 𝑂𝐹𝐹

(3)

𝐀1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
𝑅𝐶

0 0

0 −𝑟
𝐿

0

0 0 −𝑟
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐀4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
𝑅𝐶

1
𝐶

1
𝐶

−1
𝐿

−𝑟
𝐿

0

−1
𝐿

0 −𝑟
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐀3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
𝑅𝐶

0 1
𝐶

0 −𝑟
𝐿

0

−1
𝐿

0 −𝑟
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐀2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
𝑅𝐶

1
𝐶

0

−1
𝐿

−𝑟
𝐿

0

0 0 −𝑟
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁 =
[

0 1∕𝐿 1∕𝐿
]𝑇

(4)

3. Bifurcation behaviour of the system

The set of gains chosen after a pole placement technique may meet
the performance criteria at the equilibrium point, however due to the
bilinear nature of the system, they also give rise to other equilibrium
points that are comprised of another stable and saddle fixed point.
This is typical behaviour of a boost converter and depending on the
position of the fixed point in state space the intensity of the non-
linear phenomena may be different (Giaouris, Yfoulis, Voutetakis, &
Papadopoulou, 2013). In order to capture a situation that provides a
plethora of interesting dynamical phenomena, that will facilitate the

Fig. 2. Bifurcation diagram for 𝑘 ∈ [ 0.93 1.02].

Fig. 3. Period-11 orbits. The solid black dots and the hollow black dots represent the
stable and unstable periodic orbits respectively.

validation of proposed method in this work, a fixed point that lays far
away from the origin is taken under consideration.

The bifurcation parameter chosen to be varied at the aforemen-
tioned fixed point is gain 𝑘1 which corresponds the static state feedback
control law in (1). This is denoted by 𝑘1 = −0.0424 ⋅ 𝑘, where 𝑘 ∈
R+. The bifurcation diagram given in Fig. 2 depicts the bifurcation
behaviour of the system around the fixed point under consideration. For
𝑘 = 0.934 a smooth Neimark–Sacker bifurcation takes place that gives
rise to a torus in state space. At approximately 𝑘 = 0.938 a stable and
an unstable period-11 is created as depicted in Fig. 3a. The period-11
orbits vanish at approximately 𝑘 = 0.952, Fig. 3c, due to the collision
of the stable and unstable fixed points. The process that is portrayed in
Fig. 3 is repeated for 𝑘 ∈ [ 0.963 0.972].

The occurrence and analysis of the intricate phenomena portrayed
in Figs. 2 and 3 will be the subject of the subsequent section.

4. Bifurcation analysis

The aim of this section is to conduct the bifurcation analysis and
provide the methods to identify the instabilities that occur with respect
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Fig. 4. PWM type 1 operation of the converter. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Changes and duration of operation in topologies for the two different cases where
𝑑 ≥ 0.5 and 𝑑 < 0.5 in a switching cycle 𝑇 . Notations 𝑆1 , 𝑆2 and 𝑆1 , 𝑆2 represent the
OFF and ON state of the switches respectively.
𝑑 ≥ 0.5

Sequence 𝑆1 𝑆2 𝑆1 𝑆2 𝑆1 𝑆2 𝑆1 𝑆2
Duration (𝑑 − 0.5)𝑇 (1 − 𝑑)𝑇 (𝑑 − 0.5)𝑇 (1 − 𝑑)𝑇

𝑑 < 0.5

Sequence 𝑆1 𝑆2 𝑆1 𝑆2 𝑆1 𝑆2 𝑆1 𝑆2
Duration 𝑑𝑇 (0.5 − 𝑑)𝑇 𝑑𝑇 (0.5 − 𝑑)𝑇

to the variation of the bifurcation parameter, i.e. parameter 𝑘. The first
step that needs to be taken is the identification of the fixed points for
both the period-1 and period-11 orbits. Then appropriate first return
maps will be derived that will describe the evolution of the state vector
in a limit cycle. Eventually their stability will be studied by deriving the
Jacobians of first return maps and carrying out an eigen-decomposition.

An other important aspect of the operation of the converter is that
the sequence of topological changes depends on the values of duty
cycles being below or above 0.5. To illustrate this concept we refer to
Fig. 4. In both Figs. 4a and 4b the red sawtooth trace, that represents
the carrier signal of the second phase, has a phase shift of 𝑇 ∕2 seconds
with respect to the black trace, corresponding to the carrier signal of
the first phase. The control law in both cases is formed every 𝑛𝑇 and
𝑛𝑇 +𝑇 ∕2 for the first and second phase respectively. Moreover, in both
cases the control signal is kept constant for the span of 𝑇 seconds. This
is the basic principle behind the digital implementation of interleaving.
One can discern that in Fig. 4a the sequence of topological changes, or
alternatively the sequence of states that the switches assume, in every
cycle are the same. This concept of sequence invariance applies to the
case of Fig. 4b. Nonetheless, the sequences are different in both of these
cases, hence, instigating the need to distinguish them.

4.1. Period-1 fixed points

Fixed points refer to the value of the state vector under steady state
operation. Their calculation is important since the information that will
be provided on the value of the duty cycle and state vector will be
utilized in the formation of the Jacobian of the first return maps Gelig
and Churilov (1998) and Zhusubaliyev, Soukhoterin and Mosekilde
(2001). This subsection considers the period-1 orbit, in which case if
one takes into account the symmetry of the system it can be deduced
that the duty cycles provided by the controllers have the same values
under steady state operation, i.e. 𝑑1 = 𝑑2 = 𝑑. The sequence of changing
topologies then depends only on the value of the duty cycle 𝑑 and is
summarized in Table 2. To calculate the fixed points as a function of
𝑑, i.e. 𝑥0(𝑑), the state transitions are utilized as shown in (5) and (6)1

1 The subscripts of the state transition matrices and convolution integrals
are in direct correspondence with the matrices in (4).

for the case of 𝑑 ≥ 0.5.

𝑥 ((𝑑 − 0.5) 𝑇 ) = Φ1(0, (𝑑 − 0.5)𝑇 )𝑥(0) + 𝐈1(0, (𝑑 − 0.5)𝑇 ) (5)

𝑥
(𝑇
2

)

= Φ3

(

(𝑑 − 0.5)𝑇 , 𝑇
2

)

𝑥((𝑑 − 0.5)𝑇 ) + 𝐈3
(

(𝑑 − 0.5)𝑇 , 𝑇
2

)

(6)

Where the state transition matrices and convolution integrals are given
below

Φ1(0, (𝑑 − 0.5)𝑇 ) = 𝑒𝐀1𝑡|
|

|𝑡=(𝑑−0.5)𝑇

𝐈1(0, (𝑑 − 0.5)𝑇 ) = ∫

𝑡

0
𝑒𝐀1(𝑡−𝜏)𝐁𝑉𝑖𝑛𝑑𝜏

|

|

|

|

|𝑡=(𝑑−0.5)𝑇

Φ3

(

(𝑑 − 0.5)𝑇 , 𝑇
2

)

= 𝑒𝐀3𝑡|
|

|𝑡=(1−𝑑)𝑇

𝐈3
(

(𝑑 − 0.5)𝑇 , 𝑇
2

)

= ∫

𝑡

0
𝑒𝐀3(𝑡−𝜏)𝐁𝑉𝑖𝑛𝑑𝜏

|

|

|

|

|𝑡=(1−𝑑)𝑇

At this point, although in the middle of the cycle, 𝑥0(𝑑) can be defined
by making the observation, which stems from the fact that there is
symmetry both between the phases as well as in the current distribution
among them, that there is relationship between 𝑥(0) and 𝑥

(

𝑇
2

)

that is
defined in (7).

𝑥
(𝑇
2

)

=
⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

𝑥(0) (7)

Making use of (7), (5), (6) and applying periodicity, which means
solving for 𝑥(0), the steady state vector as a function of 𝑑 can defined
in (8).2

𝑥0,1(𝑑) =
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

−Φ3Φ1

⎞

⎟

⎟

⎠

−1
(

Φ3𝐈1 + 𝐈3
)

(8)

For the case of 𝑑 < 0.5 a similar procedure is to be followed which
will produce (9).

𝑥0,2(𝑑) =
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

−Φ4Φ2

⎞

⎟

⎟

⎠

−1
(

Φ4𝐈2 + 𝐈4
)

(9)

Eqs. (8) and (9) are then utilized along with control law to provide
Eq. (10), in which 𝑖 = 1, 2, for the two different cases of the duty cycle.
These equations are solved numerically to provide the duty cycles.

𝑓 (𝑑) = −𝑑 −
[

𝑘1 𝑘2
]

(

𝐂𝑖𝑥0,𝑖(𝑑) −
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠 (10)

𝐂1 =
[

1 0 0
0 1 0

]

, 𝐂2 =
[

1 0 0
0 0 1

]

Matrices 𝐂1, 𝐂2 ∈ R2×3 are utilized to specify which states among
the state vector 𝑥0,𝑖(𝑑) are responsible for the determination of the
switching condition.

4.2. Period-11 fixed points

The process of calculating the fixed points that correspond to the
period-11 orbits is more challenging, however, by once again utilizing
the symmetry of the system allows us to greatly reduce the amount
calculations. Thus, the map from the beginning to the middle of the
eleven period cycle’s traversal is given in (11), where Φ11

𝑃 11 and 𝐈11𝑃 11
correspond to the expressions given in (12) and (13) respectively for
𝑁 = 11. These expression are functions of the duty cycles 𝑑𝑗 for

2 The independent variables of the state transition matrices and convolution
integrals are omitted due to space limitations.
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Fig. 5. Saturation function for 𝑎 = 5.103.

𝑗 = 1, 2,… , 11 and describe the evolution of the system from time 𝑡 = 0
to 𝑡 = 𝑁𝑇 ∕2.

𝐱
(

5𝑇 + 𝑇
2

)

= Φ11
𝑃11𝐱(0) + 𝐈11𝑃 11 (11)

Φ𝑁
𝑃11

(

0, 𝑁 𝑇
2

)

=
1
∏

𝑗=𝑁
Φ𝑗𝑚𝑜𝑑2+2

(

(1 − 𝑑𝑗 )𝑇
)

Φ1
(

(𝑑𝑗 − 0.5)𝑇
)

(12)

𝐈𝑁𝑃11
(

0, 𝑁 𝑇
2

)

=
𝑁−1
∑

𝑖=1

𝑖+1
∏

𝑗=𝑁
Φ𝑗𝑚𝑜𝑑2+2

(

(1 − 𝑑𝑗 )𝑇
)

Φ1
(

(𝑑𝑗 − 0.5)𝑇
)

×

(

Φ𝑖𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑖)𝑇
)

𝐈1
(

(𝑑𝑖 − 0.5)𝑇
)

+ 𝐈𝑖𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑖)𝑇
) )

+

Φ𝑁𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑁 )𝑇
)

𝐈1
(

(𝑑𝑁 − 0.5)𝑇
)

+ 𝐈𝑁𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑁 )𝑇
)

(13)

The rest of the evolution up to 𝑡 = 11𝑇 is symmetric to (11) as far
as the inductor currents are concerned with the voltage being identical.
Thus the relationship between the state vector for the aforementioned
time instances is

𝑥 (5𝑇 + 𝑇 ∕2) = 𝑀𝑚𝑥(11𝑇 ) (14)

Substitution of (14) in (11) and enforcing periodicity, i.e. 𝑥(11𝑇 ) =
𝑥(0) in steady state operation, provides

𝐌𝑚𝐱(0) = Φ11
𝑃11𝐱(0) + 𝐈11𝑃11 (15)

This is an over defined system of nonlinear equation with fourteen
unknowns, namely three unknowns corresponding to the states at 𝑡 = 0
represented by 𝐱(0) and the eleven duty cycles contained in Φ11

𝑃 11 and
𝐈11𝑃11. In order to provide the additional conditions to explicate the
system the control laws are utilized in (16) which yields expressions
that are directly related to the duty cycles. In Eq. (16a) 𝑙 = 1, 2,… , 10
and 𝑥 ((𝑙 − 1)𝑇 ∕2) can be found by making use of (13) and (12) for
𝑁 = 𝑙 − 1. It should be noted that Φ0

𝑃 11 = 𝐈3 and 𝐈0𝑃11 = 𝟎𝑇 .

𝜎𝑙 = −𝑑𝑙+1 + 𝑔
(

−
[

𝑘1 𝑘2
]

(

𝐂(𝑙+1)𝑚𝑜𝑑2+1𝐱
(

(𝑙 − 1)𝑇
2

)

−
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

)

(16a)

𝜎11 = −𝑑1 + 𝑔
(

−
[

𝑘1 𝑘2
]

(

𝐂1𝐱 (5𝑇 ) −
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

)

(16b)

Moreover, the function 𝑔(𝑥) given in (17) is utilized in (16) in
order to curtail the possible values of the duty cycles between 0 and
1 which will in turn facilitate numerical calculations. Fig. 5 illustrates
this concept.

𝑔 (𝑥) = 𝑥 −
(

𝑥
1 + 𝑒𝛼𝑥

+ 𝑥 − 1
1 + 𝑒−𝛼(𝑥−1)

)

(17)

Eqs. (15) in conjunction with (16a) and (16b) constitute an explicit
system of nonlinear algebraic equation, with the unknowns being the
states 𝐱(0) at the beginning of the eleven period cycle and the eleven

duty cycles 𝑑𝑗 for 𝑗 = 1, 2,… , 11, which is solve by means of numerical
methods.

4.3. Jacobian of the period-1 map

After the provision of the methods that are able to provide the
fixed points of the system for both the period-1 and period-11 orbits
in the previous Sections 4.1 and 4.2 respectively, their stability will be
investigated by deriving the Jacobian matrices of the Poincaré maps for
each case. In this subsection we will concern ourselves with the period-
1 orbit. The analysis will be divided in two parts, namely one will be
dealing with the duty cycle being smaller that 0.5, Section 4.3.1, and
the other, Section 4.3.2, when it exceeds it. In the latter case, which
represents the main contribution of this work, the map is extended to
accommodate difference equations that describe the evolution of the
control laws. The reason behind this is that the control laws depend
upon past states, meaning that they are sampled and formed outside the
time span of interest which is the period 𝑇 of the cycle, and impede the
perturbed representation of the first return map, i.e. the Monodromy
matrix.

Furthermore, in Section 4.4, the proposed method is further vali-
dated by applying it to the period-11 orbit, since it occurs for all its
duty cycles being above the threshold of 0.5, and allows to obtain
information on its stability.

4.3.1. Case of 𝑑 < 0.5
In the case where the duty cycle is below 0.5 the control law, which

reflects the duty cycles, is formed twice in a period 𝑇 . Namely once at
time 𝑡 = 0 corresponding to the first switch and at time 𝑡 = 𝑇 ∕2 for the
second. The duty cycles in the aforementioned two cases are 𝑑1 and 𝑑2
respectively. This concept is depicted in Fig. 4a where at 𝑡 = 0 duty
cycle 𝑑1 is formed which gives rise a change in the state of the first
switch at time 𝑑1𝑇 . Moreover, at time 𝑡 = 𝑇 ∕2 the second duty cycle
𝑑2 is formed which causes the second switch to change state at time
𝑇 ∕2 + 𝑑2𝑇 .

Given the initial condition 𝑥𝑛 the local mappings of the state vector
from time 𝑡 = 0 to 𝑡 = 𝑇 ∕2 and from 𝑡 = 𝑇 ∕2 to 𝑡 = 𝑇 are given in (18)
and (19) respectively.

𝐏1(𝑥𝑛, 𝑑1) = Φ4((0.5 − 𝑑1)𝑇 )Φ3(𝑑1𝑇 )𝑥𝑛+

Φ4((0.5 − 𝑑1)𝑇 )𝐈3(𝑑1𝑇 ) + 𝐈4((0.5 − 𝑑1)𝑇 )
(18)

𝐏2(𝑥(𝑇 ∕2), 𝑑2) = Φ4((0.5 − 𝑑2)𝑇 )Φ2(𝑑2𝑇 )𝑥(𝑇 ∕2)+

Φ4((0.5 − 𝑑2)𝑇 )𝐈2(𝑑2𝑇 ) + 𝐈4((0.5 − 𝑑2)𝑇 )
(19)

The composition of the above two maps 𝐏(𝑥𝑛, 𝑑1, 𝑑2) = 𝐏2(𝑥(𝑇 ∕2), 𝑑2)
◦𝐏1(𝑥(0), 𝑑1) can describe the transition of the state vector in the time
span 𝑇 of the orbital cycle (Aroudi, Debbat, & Martinez-Salamero,
2007). The result of the composition is shown in (20), (21) and (22).

𝐏(𝑥𝑛, 𝑑1, 𝑑2) = Φ(𝑑1, 𝑑2)𝑥𝑛 +Ψ(𝑑1, 𝑑2) (20)

Φ(𝑑1, 𝑑2) = Φ4((0.5 − 𝑑2)𝑇 )Φ2(𝑑2𝑇 )Φ4((0.5 − 𝑑1)𝑇 )Φ3(𝑑1𝑇 ) (21)

Ψ(𝑑1, 𝑑2) = Φ4((0.5 − 𝑑2)𝑇 )Φ2(𝑑2𝑇 )Φ4((0.5 − 𝑑1)𝑇 )𝐈3(𝑑1𝑇 )
+Φ4((0.5 − 𝑑2)𝑇 )Φ2(𝑑2𝑇 )𝐈4((0.5 − 𝑑1)𝑇 )+

Φ4((0.5 − 𝑑2)𝑇 )𝐈2(𝑑2𝑇 ) + 𝐈4((0.5 − 𝑑2)𝑇 )

(22)

The stability of 𝐏(𝑥𝑛,𝐝), where 𝐝 = [ 𝑑1 𝑑2 ]𝑇 , is decided upon
by taking its Jacobian with respect to 𝐱𝑛, i.e. 𝐃𝐏(𝑥𝑛,𝐝). This matrix
describes the evolution of a perturbation from the beginning of the
cycle to its end and it is given in (23).

𝐃𝐏(𝑥𝑛,𝐝) =
𝜕𝐏(𝐱𝑛,𝐝)

𝜕𝐱𝑛
+

𝜕𝐏(𝐱𝑛,𝐝)
𝜕𝐝

𝜕𝐝
𝜕𝐱𝑛

(23)
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Fig. 6. Operation of the control signals in the case of 𝑑 ≥ 0.5. The black and
red triangular traces represent the carrier signals for the first and second switch
respectively. The blue and green traces correspond to the control laws of the first and
second switch while their dashed versions are under the effect of a perturbation. The
instances that they are formed, i.e. when the state vector is sampled, are represented
with cyan dots. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

As one can discern the expression for 𝐃𝐏(𝑥𝑛,𝐝) also includes the deriva-
tive of 𝐝 with respect 𝐱𝑛. The reason is that 𝐝 is a function of 𝐱𝑛 which
directly relates to the control laws. Namely, the two control laws in this
case are given in (24).

𝐬(𝐱𝑛,𝐝) =

⎡

⎢

⎢

⎢

⎢

⎣

−
[

𝑘1 𝑘2
]

(

𝐂1𝐱𝑛 −
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

−
[

𝑘1 𝑘2
]

(

𝐂1𝐏1(𝐱𝑛, 𝑑1) −
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

⎤

⎥

⎥

⎥

⎥

⎦

(24)

However, the aforementioned differentiation cannot be done explic-
itly because 𝐬(𝐱𝑛,𝐝) has a nonlinear dependence on 𝐝. What come to
our rescue is the implicit function and the switching manifolds. The
switching manifolds are 𝜎(𝐱𝑛,𝐝) = 𝐝 − 𝐬(𝐱𝑛,𝐝) = 0 and the implicit
function theorem allows us to recast (23) as shown in (25).

𝐃𝐏(𝑥𝑛,𝐝) =
𝜕𝐏(𝐱𝑛,𝐝)

𝜕𝐱𝑛
−

𝜕𝐏(𝐱𝑛,𝐝)
𝜕𝐝

(

𝜕𝜎(𝐱𝑛,𝐝)
𝜕𝐝

)−1 𝜕𝜎(𝐱𝑛,𝐝)
𝜕𝐱𝑛

(25)

The above Jacobian matrix is evaluated at the fixed points derived
in the previous section and its eigenvalues provide information on the
orbital stability.

4.3.2. Case of 𝑑 ≥ 0.5
In the case where the duty cycle 𝑑 has a larger value than 0.5 one

of the control laws is formed outside the period of the cycle under
consideration, i.e. 𝑇 . For example, referring to Fig. 4b in the span of
𝑡 ∈ [0 , 𝑇 ], it can be seen that the switching condition for the second
switch is formed at 𝑡 = −𝑇 ∕2, suggesting an independence of the control
law from the state vector 𝑥(𝑡) for 𝑡 ∈ [0 , 𝑇 ]. This is the exact point
where the conventional approach of 4.3.1 fails since the switching
manifolds are contingent to 𝐱𝑛, which should lay inside the span of the
cycle. The reader is referred to Fig. 6 for a concise explanation. As it can
be seen, when a perturbation comes at 𝑡 = 0 it only affects the control
signal that corresponds to the first controller. This is connoted in the
figure by 𝛿𝑑2,𝑛

(

𝛿𝐱𝑛
)

where 𝛿𝐱𝑛 is the perturbation. The effects of the
perturbation on the second controller, depicted as 𝛿𝑑1,𝑛+1

(

𝐏(𝛿𝐱𝑛, 𝑑1,𝑛)
)

in the figure, will become apparent at 𝑡 = 𝑇 ∕2 which will, however,
have no impact on this cycle but the next.

The conventional approach of the Poincaré map, as was imple-
mented in 4.3.1, makes use of switching manifolds that depend on
the state vector 𝐱𝑛 and not on its previous instances. This problematic
situation is ameliorated by incorporating the control laws into the
discrete map as difference equations that are able to precisely describe
their evolution in time. This formulation alleviates their dependence
on the state vector outside the cycle, thus, enabling us to derive the

appropriate Monodromy Matrix and deciding upon the stability of the
orbit. The extended first return map that accommodates the difference
equation concerning the duty cycles is given in (26)3 which constitutes
a nonlinear system of difference equations.

𝐱𝑛+1 =Φ2
𝑃1𝐱𝑛 + 𝐈2𝑃1

𝐝1,𝑛+1 = −
[

𝑘1 𝑘2
]

(

𝐂2
(

Φ1
𝑃1𝐱𝑛 + 𝐈1𝑃1

)

−
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

𝐝2,𝑛+1 = −
[

𝑘1 𝑘2
]

(

𝐂1
(

Φ2
𝑃1𝐱𝑛 + 𝐈2𝑃1

)

−
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

(26)

System (26) contains all the information that describe the effects of
the states on the control laws and, concomitantly, on the duty cycles. In
comparison to the conventional procedure undertaken in Section 4.3.1
this effect had to be unveiled by considering expression that involved
switching manifolds and their derivatives with respect to both the states
and duty cycles, cf. Eq. (25). Involved calculations like those can be
dispensed with in this case since a linearization of (26) around the
point of interest will provide information on the stability of the limit
cycle. The linearized map, 𝐃𝐏(𝐱𝑛,𝐝𝑛), is given below and its entries are
denoted in (27).

𝐃𝐏(𝐱𝑛,𝐝𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐱𝑛+1
𝜕𝐱𝑛

𝜕𝐱𝑛+1
𝜕𝐝1,𝑛

𝜕𝐱𝑛+1
𝜕𝐝2,𝑛

𝜕𝐝1,𝑛+1
𝜕𝐱𝑛

𝜕𝐝1,𝑛+1
𝜕𝐝1,𝑛

𝜕𝐝1,𝑛+1
𝜕𝐝2,𝑛

𝜕𝐝2,𝑛+1
𝜕𝐱𝑛

𝜕𝐝2,𝑛+1
𝜕𝐝1,𝑛

𝜕𝐝2,𝑛+1
𝜕𝐝2,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜕𝐱𝑛+1
𝜕𝐱𝑛

=Φ2 ((1 − 𝑑)𝑇 )Φ1 ((𝑑 − 0.5)𝑇 )Φ3 ((1 − 𝑑)𝑇 )Φ1 ((𝑑 − 0.5)𝑇 )

𝜕𝐱𝑛+1
𝜕𝐝1,𝑛

=Φ2 ((1 − 𝑑)𝑇 )Φ1 ((𝑑 − 0.5)𝑇 )Φ3 ((1 − 𝑑)𝑇 )
(

𝐀1 − 𝐀3
)

𝐱

× ((𝑑 − 0.5)𝑇 )
𝜕𝐱𝑛+1
𝜕𝐝2,𝑛

=Φ2 ((1 − 𝑑)𝑇 )
(

𝐀1 − 𝐀2
)

𝐱 (𝑑𝑇 )

𝜕𝐝1,𝑛+1
𝜕𝐱𝑛

= − 𝐤𝐂2Φ3 ((1 − 𝑑)𝑇 )Φ1 ((𝑑 − 0.5)𝑇 )

𝜕𝐝1,𝑛+1
𝜕𝐝1,𝑛

= − 𝐤𝐂2Φ3 ((1 − 𝑑)𝑇 )
(

𝐀1 − 𝐀3
)

𝐱 ((𝑑 − 0.5)𝑇 )

𝜕𝐝1,𝑛+1
𝜕𝐝2,𝑛

=0

𝜕𝐝2,𝑛+1
𝜕𝐱𝑛

= − 𝐤𝐂1
𝜕𝐱𝑛+1
𝜕𝐱𝑛

𝜕𝐝2,𝑛+1
𝜕𝐝1,𝑛

= − 𝐤𝐂1
𝜕𝐱𝑛+1
𝜕𝐝1,𝑛

𝜕𝐝2,𝑛+1
𝜕𝐝2,𝑛

= − 𝐤𝐂1
𝜕𝐱𝑛+1
𝜕𝐝2,𝑛

(27)

The above expression for the linearized first return map is calculated
at the point of interest which can be derived by following the procedure
in Section 4.1. The results of this operation are presented in Table 3 in
which the first two rows foresee the Neimark–Sacker bifurcation. The
bifurcation criterion is associated with the scalar value 𝑘 which when it
attains the value 0.9333 two complex eigenvalues escape the unit cycle.
This is shown in Fig. 2. In addition, the last two rows identify the point
where the system undergoes a saddle–node bifurcation for 𝑘 = 0.7765.
The latter is a common trait of the boost converter as shown in Giaouris
et al. (2013).

3 The subscript 𝐏1 connotes the fact that only a period-1 orbit is considered
and is in direct correspondence with (12) and (13) for 𝑁 = 2.
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Table 3
Monodromy matrix eigenvalues.
𝑘 𝑑 𝑥(0) Eigenvalues ‖ ⋅ ‖2

0.933 0.9922
⎡

⎢

⎢

⎣

53.9704
8.4628
8.5666

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
0.9901
0.7266

−0.6578 ± 𝑖0.7520

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
0.9901
0.7266
0.9992

⎤

⎥

⎥

⎥

⎥

⎦

0.9333 0.9922
⎡

⎢

⎢

⎣

53.9717
8.4713
8.5750

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
0.9901
0.7266

−0.6591 ± 𝑖0.7526

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
0.9901
0.7266
1.0005

⎤

⎥

⎥

⎥

⎥

⎦

0.7765 0.8450
⎡

⎢

⎢

⎣

30.9816
2.3707
2.4896

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
1.0012
0.7857

0.1291 ± 𝑖0.1965

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
1.0012
0.7857
0.2351

⎤

⎥

⎥

⎥

⎥

⎦

0.7765 0.8553
⎡

⎢

⎢

⎣

32.9608
2.7146
2.8327

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
0.9989
0.7755

0.0916 ± 𝑖0.2529

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
0.9989
0.7755
0.2690

⎤

⎥

⎥

⎥

⎥

⎦

4.4. Jacobian of the p-11 map

The process of calculating the Jacobian of the period-11 map is
more laborious in comparison to the preceding subsections, however, it
will further validate the proposed method in 4.3.2 and further alleviate
cogency by undertaking it.

As it has been suggested in Section 4.2 by Eq. (15) the symmetry
of the system can work in our favour when it comes to calculating
the steady-state state vector by diminishing the extend that (12) would
have taken otherwise. However, in this case where we need to derive
the Jacobian of the period-11 map the transition of the state vector
in the whole span of the eleven periods has to be taken under con-
sideration. Fortunately, a systematic way can be deduced that will
provide the desired results on the stability of the sizeable orbit. Having
said that, the map that describes the evolution of the state vector
is shown in (28). In this case, vector 𝐝 is comprised of 22 entries,
i.e. 𝐝 = [𝑑1, 𝑑2,… , 𝑑22]𝑇 , however due to symmetry 𝑑𝑖 = 𝑑𝑖+11 for
𝑖 = 1, 2 ,… , 11. Furthermore, the most salient aspects is the denotation
of the switching manifolds and the augmentation of the map with the
difference equation that describes the evolution of the duty cycle, in
this case 𝑑1, that has a dependence on samples of the state vector
before the beginning of the cycle. The latter has been illustrated in
Section 4.3.2 for the case of the period-1 map and needs to also be
employed in this case since the period-11 orbit takes place for values
of the duty cycles being above 0.5. Thus, the system (28) will be
augmented with (29)4 and will be denoted as 𝐏𝑎

(

𝐝, 𝐱𝑛
)

. The entries
of the vector that is comprised by the switching manifolds, i.e. 𝜎(𝐝, 𝐱𝑛),
can be constructed by (16a) for 𝑙 = 1, 2, … , 21.

𝐏
(

𝐝, 𝐱𝑛
)

= Φ22
𝑃 11𝐱𝑛 + 𝐈22𝑃11 (28)

𝑑1,𝑛+1 = 𝑔
(

−
[

𝑘1 𝑘2
]

(

𝐂1
(

Φ21
𝑃 11𝐱𝑛 + 𝐈21𝑃11

)

−
[

𝑉𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

])

+ 𝑑𝑠𝑠

)

(29)

The Jacobian 𝐃𝐏𝑎
(

𝐝, 𝐱𝑛
)

will be constructed in accordance with
(25). However, due to the nature of the augmented map the new state
vector is 𝐱̃𝑛 = [𝐱𝑛 , 𝑑1]𝑇 . Hence, the Jacobian of 𝐏𝑎

(

𝐝, 𝐱𝑛
)

with respect
to 𝐱̃𝑛 is given in (31) with its relevant entries being expressed in (35)
to (38) where Ξ𝑁,𝑀 is defined in (30).

Ξ𝑁,𝑀 =
𝑀
∏

𝑗=𝑁
Φ𝑗𝑚𝑜𝑑2+2

(

(1 − 𝑑𝑗 )𝑇
)

Φ1
(

(𝑑𝑗 − 0.5)𝑇
)

(30)

4 At this point it should be noted that the use of (17) is essential since
some of the duty cycles are saturated. Further elaboration on this will be given
subsequently.

𝜕𝐃𝐏𝑎
(

𝐝, 𝐱𝑛
)

𝜕𝐱̃𝑛
=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝐏
(

𝐝, 𝐱𝑛
)

𝜕𝐱𝑛

𝜕𝐏
(

𝐝, 𝐱𝑛
)

𝜕𝑑1
𝜕𝑑1,𝑛+1
𝜕𝐱𝑛

𝜕𝑑1,𝑛+1
𝜕𝑑1

⎤

⎥

⎥

⎥

⎥

⎦

(31)

The next term to be calculated is the Jacobian of the augmented
map with respect to the duty cycles 𝑑𝑘, 𝑘 = 2, 3, … , 22 which belongs
in R4×21. Its column entries are given in (32) and they are calculated
with the assistance of (39) and (40).5

𝜕𝐃𝐏𝑎
(

𝐝, 𝐱𝑛
)

𝜕𝑑𝑘
=

⎡

⎢

⎢

⎢

⎣

𝜕𝐏
(

𝐝, 𝐱𝑛
)

𝜕𝑑𝑘
𝜕𝑑1,𝑛+1
𝜕𝑑𝑘

⎤

⎥

⎥

⎥

⎦

(32)

What remains to conclude the assembly of 𝐏𝑎
(

𝐝, 𝐱𝑛
)

is the deriva-
tion of the Jacobians of the switching manifolds 𝜎(𝐝, 𝐱𝑛) with respect
to 𝐱̃𝑛 and 𝑑𝑘, 𝑘 = 2, 3, … , 22. To this end, and in order to facilitate
a succinct formulation, what will be dealt with first is the switch-
ing functions of the switching manifolds, i.e. 𝐬(𝐱𝑛,𝐝) which are in
congruence with the control laws. If 𝐝 is let to be the aggregate of
the duty cycles that correspond to the switching functions, i.e. 𝐝 =
[𝑑2, 𝑑3,… , 𝑑22]𝑇 , then the pertinent Jacobians are 𝜕𝐬(𝐱𝑛,𝐝)∕𝜕𝐝 ∈ R21×21

and 𝜕𝐬(𝐱𝑛,𝐝)∕𝜕𝐱̃𝑛 ∈ R21×4. Each scalar entry of 𝜕𝐬(𝐱𝑛,𝐝)∕𝜕𝐝 is given
in (41) for 1 ≤ 𝑙 ≤ 21, 2 ≤ 𝑘 ≤ 22. Moreover, 𝜕𝐬(𝐱𝑛,𝐝)∕𝜕𝐱̃𝑛 can be
decomposed as shown in (33).

𝜕𝐬(𝐱𝑛,𝐝)
𝜕𝐱̃𝑛

=
[

𝜕𝐬(𝐱𝑛,𝐝)
𝜕𝐱𝑛

𝜕𝐬(𝐱𝑛,𝐝)
𝜕𝑑1

]

(33)

The first and second term on the right of (33) can be constructed
by utilizing (41) and (42) respectively. In both cases 1 ≤ 𝑙 ≤ 21 and in
the second 𝑘 = 1.

At this point all the parts that comprise 𝐃𝐏𝑎
(

𝐝, 𝐱𝑛
)

have been
obtained which allows it to be expressed as in (34).

𝐃𝐏𝑎
(

𝐝, 𝐱𝑛
)

=
𝜕𝐏𝑎

(

𝐝, 𝐱𝑛
)

𝜕𝐱̃𝑛
−

𝜕𝐏𝑎
(

𝐝, 𝐱𝑛
)

𝜕𝐝

(

−𝐈21 +
𝜕𝐬(𝐱𝑛,𝐝)

𝜕𝐱̃𝑛

)−1 𝜕𝐬(𝐱𝑛,𝐝)
𝜕𝐱̃𝑛

(34)

In reference to Fig. 3a, Table 4 presents the eigenvalues of (34) for
the unstable and stable periodic orbits. At this point for 𝑘 approximately
equal to 0.938 a saddle-node bifurcation takes place since two eigen-
values have broken away from the point 1 + 𝑗0 on the unit cycle. One
eigenvalue traverses inwards and the other outwards of the unit cycle
along the real axis.

𝜕𝐏
(

𝐝, 𝐱𝑛
)

𝜕𝐱𝑛
= Φ22

𝑃11 (35)

𝜕𝐏
(

𝐝, 𝐱𝑛
)

𝜕𝑑1
= Ξ22,2Φ3

(

(1 − 𝑑1)𝑇
) (

𝐀4 − 𝐀3
)

𝐱
(

(𝑑1 − 0.5)𝑇
)

(36)

𝜕𝑑1,𝑛+1
𝜕𝐱𝑛

= −
[

𝑘1 𝑘2
]

𝐂1Ξ
21,1𝑔′(𝑑1) (37)

𝜕𝑑1,𝑛+1
𝜕𝑑1

= −
[

𝑘1 𝑘2
]

𝐂1Ξ
21,2Φ3

(

(1 − 𝑑1)𝑇
) (

𝐀4 − 𝐀3
)

𝐱

×
(

(𝑑1 − 0.5)𝑇
)

𝑔′(𝑑1) (38)

𝜕𝐏
(

𝐝, 𝐱𝑛
)

𝜕𝑑𝑘
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ξ22,𝑘+1Φ𝑘𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑘)𝑇
) (

𝐀4 − 𝐀𝑘𝑚𝑜𝑑2+2
)

𝐱
×
(

(𝑑𝑘 − 0.5)𝑇 + (𝑘 − 1)𝑇 ∕2
)

, 2 ≤ 𝑘 ≤ 21

Φ𝑘𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑘)𝑇
) (

𝐀4 − 𝐀𝑘𝑚𝑜𝑑2+2
)

𝐱
(

(𝑑𝑘 − 0.5)𝑇

+(𝑘 − 1)𝑇 ∕2) , 𝑘 = 22

(39)

5 𝑔′(𝑥) connotes the derivative of 𝑔(𝑥) with respect to 𝑥.
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Table 4
Monodromy matrix eigenvalues for the period-11 orbit and 𝑘 = 0.938.
𝑘 𝑑 𝑥(0) Eigenvalues ‖ ⋅ ‖2

0.938

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9448
1.0000
0.9688
0.8842
0.8428
0.8963
0.9813
0.9982
0.9250
0.8489
0.8584

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

55.6670
8.4203
8.5675

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

1.2169
0.8906

0
0.0984

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

1.2169
0.8906

0
0.0984

⎤

⎥

⎥

⎥

⎥

⎦

0.938

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9408
1.0000
0.9725
0.8871
0.8416
0.8923
0.9792
1.0000
0.9291
0.8506
0.8556

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

55.6445
8.4174
8.5710

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0.8893
0.3862

0
0.0676

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0.8893
0.3862

0
0.0676

⎤

⎥

⎥

⎥

⎥

⎦

𝜕𝑑1,𝑛+1
𝜕𝑑𝑘

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
[

𝑘1 𝑘2
]

𝐂1Ξ
21,𝑘+1Φ𝑘𝑚𝑜𝑑2+2

(

(1 − 𝑑𝑘)𝑇
) (

𝐀4 − 𝐀𝑘𝑚𝑜𝑑2+2
)

𝐱
×
(

(𝑑𝑘 − 0.5)𝑇 + (𝑘 − 1)𝑇 ∕2
)

𝑔′(𝑑1) , 2 ≤ 𝑘 ≤ 20

−
[

𝑘1 𝑘2
]

𝐂1Φ𝑘𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑘)𝑇
) (

𝐀4 − 𝐀𝑘𝑚𝑜𝑑2+2
)

𝐱
×
(

(𝑑𝑘 − 0.5)𝑇 + (𝑘 − 1)𝑇 ∕2
)

𝑔′(𝑑1) , 𝑘 = 21
0 , 𝑘 = 22

(40)

𝜕𝑠𝑙(𝐝, 𝐱𝐧)
𝜕𝑑𝑘

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−
[

𝑘1 𝑘2
]

𝐂(𝑙+1)𝑚𝑜𝑑2+1Ξ
𝑙−1,𝑘+1Φ𝑘𝑚𝑜𝑑2+2

(

(1 − 𝑑𝑘)𝑇
)

×
(

𝐀4 − 𝐀𝑘𝑚𝑜𝑑2+2
)

𝐱
(

(𝑑𝑘 − 0.5)𝑇 + (𝑘 − 1)𝑇 ∕2
)

𝑔′(𝑑𝑙+1) , 𝑘 + 1 < 𝑙

−
[

𝑘1 𝑘2
]

𝐂(𝑙+1)𝑚𝑜𝑑2+1Φ𝑘𝑚𝑜𝑑2+2
(

(1 − 𝑑𝑘)𝑇
)

×
(

𝐀4 − 𝐀𝑘𝑚𝑜𝑑2+2
)

𝐱
(

(𝑑𝑘 − 0.5)𝑇 + (𝑘 − 1)𝑇 ∕2
)

𝑔′(𝑑𝑙+1) , 𝑘 + 1 = 𝑙

0 , 𝑘 + 1 > 𝑙

(41)

𝜕𝑠𝑙(𝐝, 𝐱𝐧)
𝜕𝐱𝑛

=

{

−
[

𝑘1 𝑘2
]

𝐂(𝑙+1)𝑚𝑜𝑑2+1Ξ
𝑙−1,1𝑔′(𝑑𝑙+1) , 𝑙 > 1

−
[

𝑘1 𝑘2
]

𝐂(𝑙+1)𝑚𝑜𝑑2+1𝑔′(𝑑𝑙+1) , 𝑙 = 1
(42)

5. Dynamic state feedback

Dynamic state feedback is ubiquitous technique employed in com-
pensating power conversion systems as it can be deduced from a
plethora of studies since it contributes several advantages. Amongst
them the most noteworthy are the ability to diminish steady state
error and ameliorate disturbances. In addition, when it comes to our
case of the interleaved boost converter the multiple equilibria that
would be present in the case of static control laws do not come into
existence (Gkizas et al., 2016, 2018). This can be accounted to the
operation of the integrator which curtails the system to only one
equilibrium point. However, limit cycle instabilities are still present.
This section will be concerned with the limit cycle stability analysis of
the converter under dynamic state feedback and will extrapolate the
ideas and results of Section 4.3.

The converter, along with the control system that comprises the
dynamic state feedback control law, is depicted in Fig. 7 in which

Fig. 7. Two-legged interleaved DC–DC boost converter with dynamic state feedback
controller.

Fig. 8. Dynamic state-feedback controller with on sample delay.

the current source, 𝐼𝑙𝑜𝑎𝑑 , will serve as the bifurcation parameter. The
control gain vector 𝐤 = [ 0.1496 2 − 808 ], which was acquired based
on the analysis conducted in Gkizas et al. (2018), aims to provide
the system with a large damping factor and natural frequency, namely
𝜁 = 0.7 and 𝜔𝑛 = 7000 r∕s respectively as far as the dominant poles
are concerned, at the operating point of 10V whilst the current sink is
sourcing 1 A.

The analysis commences by forming a first return map that describes
the evolution of the states in a single cycle. In the case where both the
duty cycles of the converter are above the 0.5 threshold this is achieved
with the map in (44). As it can be seen two additional states are
introduced in the system to describe the operation of the integrators,
which are portrayed in the control system at the bottom part of Fig. 7.
Moreover, in order to incorporate the current sink in the first return
map the input matrix 𝐁, given in (4), is modified as shown in (43) and
the input to the system is [𝑉𝑖𝑛 , 𝐼𝑙𝑜𝑎𝑑 ].

𝐁 =
[

−1∕𝐶 0 0
0 1∕𝐿 1∕𝐿

]𝑇

(43)
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Table 5
Monodromy matrix eigenvalues under dynamic state feedback.
𝐼𝑙𝑜𝑎𝑑 𝑑 𝑥(0) Eigenvalues ‖ ⋅ ‖2

0.0 0.5266
⎡

⎢

⎢

⎣

10
0.2119
0.3362

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.1115 ± 𝑖0.2046
0.0000
0.4679

0.7650 ± 𝑖0.1603
0.9888

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.2330
0.0000
0.4679
0.7816
0.9888

⎤

⎥

⎥

⎥

⎥

⎥

⎦

0.5 0.5308
⎡

⎢

⎢

⎣

10
0.7467
0.8697

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.1013 ± 𝑖0.3854
0.0000
0.8380

0.7563 ± 𝑖0.4382
0.9887

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.3985
0

0.8380
0.8740
0.9887

⎤

⎥

⎥

⎥

⎥

⎥

⎦

0.8443 0.5336
⎡

⎢

⎢

⎣

10
1.1204
1.2424

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.0799 ± 𝑖0.4824
0

0.8643
0.8532 ± 𝑖0.5214

0.9887

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.4890
0

0.8643
0.9999
0.9887

⎤

⎥

⎥

⎥

⎥

⎥

⎦

0.845 0.5336
⎡

⎢

⎢

⎣

10
1.1211
1.2432

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.0798 ± 𝑖0.4826
0

0.8644
0.8534 ± 𝑖0.5215

0.9887

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.4892
0

0.8644
1.0002
0.9887

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Table 6
Monodromy matrix eigenvalues under dynamic state feedback with one sample delay.
𝐼𝑙𝑜𝑎𝑑 𝑑 𝑥(0) Eigenvalues ‖ ⋅ ‖2

0 0.5266
⎡

⎢

⎢

⎣

10
0.2119
0.3362

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0200
0.6111 ± 𝑖0.8208
0.5293 ± 𝑖0.9280
0.7930 ± 𝑖0.1413

0.9888

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0200
1.0233
1.0683
0.8055
0.9888

⎤

⎥

⎥

⎥

⎥

⎥

⎦

0.5 0.5308
⎡

⎢

⎢

⎣

10
0.7467
0.8697

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1266 ± 𝑖0.2925
0.5779 ± 𝑖0.9153
0.8241 ± 𝑖0.5909

0.9887
0.8307

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.3187
1.0825
1.0140
0.9887
0.8307

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐱𝑛+1 =Φ2
𝑃1𝐱𝑛 + 𝐈2𝑃1

𝐝1,𝑛+1 = −
[

𝑘1 𝑘2
]

𝐶
(

Φ1
𝑃1𝐱𝑛 + 𝐈1𝑃 1

)

− 𝑘𝑖𝑇
(

𝐱5,𝑛 −
[

1 0 0
] (

Φ1
𝑃1𝐱𝑛 + 𝐈1𝑃1

)

+ 𝑉𝑟𝑒𝑓
)

𝐝2,𝑛+1 = −
[

𝑘1 𝑘2
]

𝐶
(

Φ2
𝑃1𝐱𝑛 + 𝐈2𝑃 1

)

− 𝑘𝑖𝑇
(

𝐱4,𝑛 −
[

1 0 0
] (

Φ2
𝑃1𝐱𝑛 + 𝐈2𝑃1

)

+ 𝑉𝑟𝑒𝑓
)

𝐱4,𝑛+1 =𝐱4,𝑛 −
[

1 0 0
] (

Φ2
𝑃 1𝐱𝑛 + 𝐈2𝑃1

)

+ 𝑉𝑟𝑒𝑓
𝐱5,𝑛+1 =𝐱5,𝑛 −

[

1 0 0
] (

Φ1
𝑃 1𝐱𝑛 + 𝐈1𝑃1

)

+ 𝑉𝑟𝑒𝑓

(44)

In order to investigate the stability of the orbit a similar procedure6

as in Section 4.3.2 takes place where the system (44) is linearized
around the point of interest. The linearization in this case takes place
with respect to the seven states described by (44). The process results
in the acquisition of the Monodromy Matrix which can be utilized to
precisely decide upon the stability of the limit cycle.

To this end, Table 5 summarizes some salient points of operation
with respect to the Monodromy Matrix. As it can be seen while the
bifurcation parameter, i.e. 𝐼𝑙𝑜𝑎𝑑 , assumes larger values a pair of complex
conjugate eigenvalues exit the unit circle for 𝐼𝑙𝑜𝑎𝑑 = 0.845 giving rise
to a Neimark–Sacker bifurcation. At this point, it is important to notice
that although the system was designed to be stable around the point of
interest, as described in the second paragraph of this section, the limit
cycle stability is not guaranteed thus rendering the preceding analysis
a necessity.

6 The result of the linearization procedure is omitted due to the extend of
terms involved in the process.

The case mentioned above was concerned with 𝑑1, 𝑑2 ≥ 0.5 since the
desired reference point is 10 V. On the other hand, when 𝑑1, 𝑑2 < 0.5,
the inference of the map is straightforward if one refers to Section 4.3.1.
The first return map can be constructed by utilizing Eq. (20) along
with (45)7 which describes the dynamics of the integrators. With the
addition of the control laws in (46) the Jacobian can be readily derived.

𝑥4,𝑛+1 = 𝑥4,𝑛 −
[

1 0 0
]

𝐏(𝐱𝑛, 𝑑1, 𝑑2) + 𝑉𝑟𝑒𝑓
𝑥5,𝑛+1 = 𝑥5,𝑛 −

[

1 0 0
]

𝐏1(𝐱𝑛, 𝑑1) + 𝑉𝑟𝑒𝑓
(45)

𝐬(𝐱𝑛,𝐝) =
[

−
[

𝑘1 𝑘2
]

𝐂1𝐱𝑛 − 𝑘𝑖𝑇𝑥4,𝑛
−
[

𝑘1 𝑘2
]

𝐂2𝐏1(𝐱𝑛, 𝑑1) − 𝑘𝑖𝑇𝑥5,𝑛

]

(46)

Until this point it has been rigorously and cogently proven that there
is plethora of instabilities in the system under consideration. Both static
and dynamic state feedback control laws, although designed to provide
the system with stability under the framework of the average model,
can give rise to unpalatable phenomena that deteriorate the operation
of the converter. What further remains is to investigate the implications
that might stem from experimentally implementing the control laws.
The purpose of investigating an experimental situation is to decide
upon whether the limit cycle instabilities intensify or diminish. The
next section will be dedicated to this endeavour.

6. Implementation considerations

The bifurcation analysis thus far, namely in Sections 4.3.2 and 5,
provided a method that is able to overcome the problems instigated
by interleaving in conjunction with digital control concerning the de-
scription of the first return map. That was achieved by augmenting the
first return map with the necessary difference equations that describe
the evolution of salient quantities such as the duty cycles and discrete
integrators. Having said that, the formulation and underlaying ideas of
the aforementioned first return maps can provide useful insight on how
to incorporate some additional characteristics of the control system
that stem from the physical implementation of the control laws. The
most important aspect is the one sample delay that comes from the
implementation of the digital control. Specifically, in the vast majority
of experimental implementations under the digital control framework
the states are sampled and the duty cycle is formed by making use of
the control law expression in a computational unit. However, the duty
cycle calculated is enforced in the next sampling period hence giving
rise to one period delay. Fig. 8 pictorially renders the aforementioned
concept of a delay. Although innocuous-looking the delay gives rise
inauspicious implications.

Subsequently, what will be presented is a method which incorpo-
rates the delays in the first return map and allows for the derivation of
the Monodromy matrix congruent with the delayed control laws.

6.1. First return map with one sample delay

The embodiment of the delays in the first return map can be
conducted in a straightforward manner by extending the system with
the addition of two states in order to describe them. Furthermore, if
one acts prudently, the over-extension of the first return maps can be
dispensed with which will simplify the formulation and, concomitantly,
alleviated numerical computations. This can be done as follows: The
state that would describe the one sample delay of 𝐝2,𝑛+1 can be circum-
vented, as shown in (47), by preventing the evolution of the states for
span of the period. On the other hand, this is not possible as far as 𝐝1,𝑛+1
is concerned since the evolution of the states in this expression takes
place for half a cycle and mapping them to 𝑡 = −𝑇 ∕2 would instigate a

7 𝐏(𝐱𝑛, 𝑑1, 𝑑2) and 𝐏1(𝐱𝑛, 𝑑1) correspond to those in Section 4.3.1.
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Fig. 9. Operation of the converter for 𝑉 𝑟𝑒𝑓 = 10𝑉 and 𝐼𝑙𝑜𝑎𝑑 = 0. The voltage across
the output capacitor is shown in the top plot and the currents through the inductors in
the bottom one. The proper interleaving operation can be inferred by both the precise
phase shift amongst the currents, their equal amplitude and the ripple of the output
voltage.

Fig. 10. Operation of the converter for an increasing reference value of 𝐼𝑙𝑜𝑎𝑑 .

dependence on past values of the duty cycles. Thus, the incorporation
of the extra state that describes the delay is rendered a necessity.

In particular, the expression for 𝐱𝑛+1 is comprised by making use of
(12) and (13) with the exception that, for 𝑁 = 1, the duty cycle 𝑑1 is
replaced with 𝑑1 that connotes the delayed duty cycle.

𝐱𝑛+1 =Φ2
𝑃 1𝐱𝑛 + 𝐈2𝑃1

𝐝1,𝑛+1 = −
[

𝑘1 𝑘2
]

𝐂2
(

Φ1
𝑃 1𝐱𝑛 + 𝐈1𝑃1

)

− 𝑘𝑖𝑇
(

𝐱4,𝑛 −
[

1 0 0
] (

Φ1
𝑃 1𝐱𝑛 + 𝐈1𝑃1

)

+ 𝑉𝑟𝑒𝑓
)

𝐝1,𝑛+1 =𝑑1,𝑛
𝐝2,𝑛+1 = −

[

𝑘1 𝑘2
]

𝐂1𝐱𝑛 − 𝑘𝑖𝑇
(

𝐱5,𝑛 −
[

1 0 0
]

𝐱𝑛 + 𝑉𝑟𝑒𝑓
)

𝐱4,𝑛+1 =𝐱4,𝑛 −
[

1 0 0
] (

Φ1
𝑃 1𝐱𝑛 + 𝐈1𝑃1

)

+ 𝑉𝑟𝑒𝑓
𝐱5,𝑛+1 =𝐱5,𝑛 −

[

1 0 0
]

𝐱𝑛 + 𝑉𝑟𝑒𝑓

(47)

The above case makes use of formulations and state transition pertinent
to the situation where the duty cycles are above the 0.5 threshold.
Nonetheless, for the other case where the duty cycles are below the
threshold of 0.5 it is not a complicated task for the reader to arrive a
similar map to that of (47) since the necessary tools are in disposal.

6.2. Bifurcation analysis

In order to derive the Monodromy Matrix the system (47) is lin-
earized around the point of interest with respect to the eight state
variables. The resulting expression is then evaluated around the point of
interest. Table 6 was constructed to coincide with the first two entries
of Table 5 in order to illustrate the impact of the delay. The eigenvalues
demonstrate a Neimark–Sacker bifurcation even in the unloaded case,
i.e. for 𝐼𝑙𝑜𝑎𝑑 = 0. Consequently, as the current source sinks more current
the limit cycle remains unstable.

As it was insinuated before, and corroborated by Table 6, the effects
of the sample delay on the limit cycle stability are severe. Hence, a
designer that engages into the construction of a converter, based on the
above analysis, should be aware of the ramifications that come along.
To further validate the concreteness of this assertion the next section is
concerned with experimentation.

7. Experimental verification

In order to corroborate the above theoretical analysis leading to
Section 6 on the consequences of digital control under interleaving
operation as far limit cycle stability is concerned an experimental
converter, which is pictorially outlined in Fig. 11,8 has been utilized.
Moreover, in the majority of cases, due to physical restrictions prin-
cipally stemming from micro-controller units (MCUs), the one sample
delay is concomitant. Having said that the subsequent experimental
results will complement Section 6.

The parameters of the converter used in the experimentation are
listed in Table 1. The waveforms presented in Fig. 9 where attained in
closed loop, with the state feedback gains of Section 5, and illustrate the
proper operation of the converter and interleaving. However, when the
electronic load is actuated to sink current the limit cycle, as it expected,
bifurcates.

Fig. 10 demonstrates the operation of the converter for different
values of the reference signal to the electronic load. While the reference
signal 𝐼𝑙𝑜𝑎𝑑 assumes increasing values the operation of the converter
is exacerbated by the occurrence of a slow-scale instability. The slow-
scale limit cycle instability emerges for the first time for 𝐼𝑙𝑜𝑎𝑑 = 0.1
as shown in Fig. 10a. From this point on as 𝐼𝑙𝑜𝑎𝑑 increases its effects
become even more severe since the amplitude of the superimposed
sinusoid is heightened. Figs. 10b and 10c can attest to the previous
assertion.

8 Refer to the caption of Fig. 11 for a compendious description of the layout.
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Fig. 11. Experimental layout of the 2-leg interleaved boost converter. Blue arrows diverging away from the components represent measurement signals to, and when the direction
is reversed control signals from, the micro-controller which is an 𝐴𝑇𝑥𝑚𝑒𝑔𝑎256𝐴3𝐵𝑈 MCU. The constant current source has been realized by an electronic load at the output of
the converter. The shunt 𝑟𝑠 = 50 mΩ resistors between the source and the inductors provide the input voltage to the current sensors. The rest of the pertinent components are
adumbrated on the top left corner. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

As it can be deduced the experimental results attained are in congru-
ence with the analysis undertaken in Sections 6.1 and 6.2. Namely, the
converter undergoes a slow-scale instability for very small values of the
reference current in the electronic load and if increased the converter
operates with voltages rising to forbidding amplitudes. The situation
experimentally illustrated here further attributes to the necessity of
investigated the limit cycle stability of power conversion systems.

8. Conclusions

This paper has dealt with the limit cycle stability analysis of inter-
leaved DC–DC boost converter. The stability was investigated under
static and dynamic state feedback control schemes. The reasons why
these control schemes were taken into account whilst conducted the
investigation is that they have been utilized by many researchers in the
field due to the amenability to be cast into robust design frameworks.
Although they constitute the pinnacles of state of the art control in
power conversion systems their design is based on the averaged model.
This gives rise to the problematic situation that the average model
cannot provide full insight on the limit cycle stability of the converter.

Although the limit cycle stability of converter under digital control
have been studied before little has been done for the case of interleav-
ing. The transition might seem as an easy task the methods and analysis
proposed here suggest otherwise. Several problematic situations arise
when interleaving and digital control are in conjunction. This study
was able to give solutions to these problems in a compendious manner
by elaborating on the first return maps and the Poincaré method.
Furthermore, experimentation was conducted to further validate the
dynamic state feedback control scheme. It was shown that the delays
that stem from digitally implementing the control laws exacerbate the
stability of the limit cycle. Thus, it can be deduced that when the
task of designing a control law for a converter is undertaken the limit
cycle stability analysis should complement the procedure. Methods for
avoiding these phenomena can be found in Aroudi et al. (2015). In
addition, this is of outmost importance when someone is dealing with
high power applications since the switching frequency is substantially
lower and inherently gives rise to intense nonlinear phenomena.

Another contribution of this paper is that the ideas and notions that
where involved in incorporating the digital control law, and especially
the discrete integrator, can be further utilized to model other digital
control schemes. The motivation behind this assertion is that in most
cases in literature analog control schemes are utilized. They are incor-
porated in the systems differential equations and then discretized to
arrive to the first return maps. The case where digital control laws are

employed a priori has not been meticulously addressed as opposed to
this study.
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