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Abstract— Signal identification is a common problem in 

electric drives applications. This paper proposes the use of 
wavelet transforms to extract and identify specific frequency 
components. Initially current measurements from a constant 
voltage/Hertz application are filtered using various wavelets and 
the results compared with conventional filtering methods. Based 
on that analysis a pseudo-adaptive denoising method is proposed 
based on wavelets which adjust the level of decomposition 
depending on the rotor speed. Finally wavelets are used in a high 
frequency injection speed estimation scheme and shown to be 
superior to conventional methods such cases, where the useful 
information may be at higher frequency and have imprecise 
frequency components. Experimental and simulated results 
verify these statements. 
 

Index Terms— High frequency injection, sensorless schemes, 
denoising, wavelets 

I. INTRODUCTION 
pplication of the Wavelet Transform (WT) is becoming 
popular in electric drives applications in cases where 

signals possess non-stationary frequency properties [1, 2]. The 
use of wavelets has been through many stages and was 
initially viewed with skepticism. Wavelet implementation was 
the main point of controversy since they require high 
processing power and use (mainly) FIR filters. Since wavelets 
use FIR filters they can be replaced by a carefully designed 
filter bank [3]. Lately, the power of wavelets was revealed 
mainly because they represent a uniform and easy way of 
extracting time varying frequency components [4–6]. This 
information can be used for effective denoising or 
compressing which is accomplished in a totally different way 
to conventional filtering or compressing methods [7]. The 
main concept of these methods is that spurious signals (like 
noise) that corrupt the useful information have small 
coefficients and hence by ignoring them, during the inverse 
wavelet transform, it is possible to remove them while 
inflicting minimum distortion on the signal [8]. Another 
property of the wavelets which has been used in electric drives 
is their ability to detect anomalies in current measurements 
that are present due to various faults that appear in the 

machine [9].  
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In this paper two applications of wavelets on electric drives 
are presented. Initially wavelets are used to denoise 
experimentally taken current measurements from an inverter 
fed drive which works under a constant voltage/Hertz control 
strategy. Various wavelets and levels of decomposition have 
been used and compared with conventional filtering methods. 
Through that detailed comparison it is shown that, for on-line 
applications, conventional filtering methods based on FIR 
filters should be preferred.  There are two main problems that 
are associated with this wavelet usage: increased complexity 
and the inherent delay present due to the use of multiple 
sample times.  Based on this observation the authors propose a 
novel pseudo-adaptive denoising method that is based on 
wavelets which adjust the level of decomposition depending 
on the synchronous speed of the induction machine. The new 
adaptive method reduces the integral of the squared error 
more than 200 times. This novel application of wavelet 
denoising makes it more attractive for on-line applications but 
still it may not be preferred to conventional filtering methods 
in such simple applications.  

Conventional filtering methods do not denoise the signal 
but simply remove specific frequency components. Denoising 
is achieved by assuming that the noise has only high 
frequency components. This assumption may be wrong 
because a) noisy signals usually cover the entire frequency 
spectrum and b) there are applications where there are useful 
components with uncertain high frequency characteristics. 
This pattern may appear in sensorless speed detection methods 
where the machine is injected with high frequency signals 
[10-12]. In the second part of this paper it is demonstrated 
experimentally and numerically that wavelets are superior to 
conventional methods in such applications. Wavelets denoise 
and do not smooth the signal without taking into account the 
frequency area of the spurious signals. Even if the useful 
components are roughly known a priori wavelets are shown to 
be superior to conventional band pass filters. If there is 
accurate a priori information about the location of the useful 
signal then a carefully designed filter bank can produce 
similar results, but this is not a common case in real drives 
applications.   

II. WAVELETS, HIGH FREQUENCY INJECTION  
A transform can be considered as another way to view a 

signal (or a vector) [3]; it breaks a signal, , into numerous 
fundamental components.  Processing of those components 
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may help to reveal or remove specific characteristics of the 
signal.  This breaking into parts is accomplished by finding 
the correlation of the signal under investigation and the 
fundamental components   The correlation of 
continuous time signals is expressed by an integral: 

...1,0, =ixi

∫
+∞

∞−

⋅= dtxfci . 

 This is similar to the inner product of two vectors if it is 
assumed that the values of the two signals are "stored" in a 
vector with infinite entries.  From vector theory when the 
inner product of two vectors is zero then the vectors are 
orthogonal.  By extending the same concept to signals, if the 
correlation of two signals is zero then they are orthogonal: 

  (1) gfdtgf ⊥⇒=⋅∫
+∞

∞−

0

For the Fourier transform the fundamental components are 
complex exponentials, that extend from tje ω− −∞  to +∞  
which can be proved to be mutually perpendicular 
(orthogonal) to each other.  These infinite complex 
exponentials form a basis for all signals to be decomposed and 
studied.  The Fourier transform can be written as: 

  (2) ( ) ∫
+∞

∞−

−= dtefF tjωω

The correlation with one of these exponentials will produce 
a value which is the frequency component of the signal.  
Using all the exponentials and their correlations with the 
signal f, the frequency spectrum can be derived.  If, for 
example, the signal under consideration is a pure sine wave 
then the frequency spectrum will be a Dirac pulse at the 
frequency of the sine wave. 

For real time applications it is impossible to study signals 
that extend from  −∞  to .  Also there are applications 
(such as fault detection and high frequency injection) where 
when specific components need to be detected.  Hence the 
signal has to be truncated; i.e. only a small portion of the 
signal can be studied at each time.  This effectively means that 
the fundamental component is multiplied by a window 
function  (often a rectangular window) which is 
continuously shifted to cover the signal under study; this is 
termed the windowed Fourier transform: 

+∞

( )tw

  (3) ( ) ( ) ( )∫
+∞

∞−

−−= dtetwtfWF tjωττω,

The effect of using windows is to smear and leak the 
frequency components of the signal.  For example in the 
previous case with the sine wave the frequency spectrum will 
not be a pure Dirac pulse but it will be the convolution of the 
Dirac pulse with the  function (Fourier transform of the 
rectangular window).  Hence if there are two frequency 
components that are close then they may be shadowed by the 
main lobe of the  function and hence to falsely imply 
only one frequency component is present.  To reduce the 

width of the main lobe the length of the time window must be 
extended but it is then possible that the two sine waves may 
not exist simultaneously.  Hence the frequency spectrum will 
give an inaccurate representation of the signal.  The time 
information is not lost in the frequency spectrum but it is 
hidden under a series of subharmonics. 

( )⋅sinc

( )⋅sinc

Most applications need to be able to identify when an event 
takes place (time resolution) and its frequency (frequency 
resolution).  The previous analysis shows that it is not possible 
to have perfect frequency and time simultaneously.  This 
requires the transformation to include windows whose size 
can vary; which is not possible with the windowed Fourier 
transform.  To evade this problem the wavelet transform 
makes the window have a logarithmic coverage of the 
frequency spectrum by imposing a frequency width of the 
window of constant/ =∆ ff .  This is achieved by using a 
version of the windowed Fourier transform repetitively for 
various lengths of the window.  Furthermore the fundamental 
components of the decomposition are not now truncated and 
shifted exponentials but other asymmetric and irregular small 
waves, i.e. wavelets.  The transformation includes not only the 
shifts on the wavelet but also their scale: 

 ( ) ( ) ( ) ( )∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

=+=
−

dt
a

bttxadtbattxbac ψψ 2
1

,  (4) 

The asymmetric functionψ is called the mother wavelet and 
it is shifted, scaled and compared (correlation) with the 
original signal.  Hence the wavelets achieve a logarithmic 
coverage of the time-frequency plane, have arbitrary good 
frequency resolution for low frequency components and 
arbitrary good time resolution for high frequency components. 

A consequence of this continuous scaling and shifting is 
that the wavelet transform involves “two times” infinite 
number of coefficients and hence is unappealing for on-line 
applications, i.e. it does not constitute a true orthogonal 
transformation.  Mallat [7] proposed a fast wavelet transform 
using only a finite number of scales and shifts through 
successive high and low pass filtering.  Each scale is 
represented by a dyadic filter bank.  The outputs of the high 
pass filter are termed details and the outputs of the low pass 
filter are termed approximations.  The approximations from 
the current scale are then filtered again by further set of 2 
filters.  This successive filtering of the approximations at each 
scale produces the fast wavelet transform, which is an 
orthogonal transformation.  The synthesis or the inverse 
wavelet transform is similarly accomplished.  If necessary the 
approximations and details can be processed before the 
synthesis bank, for example to remove noise. 

Since the wavelet transform is linear then the details and 
approximations of two different signals (a current 
measurement and the sensor noise) can be added together to 
produce the details and approximations that the sum of the 
two signals would produce (sensor output).  It can also be 
assumed that noise signals will have coefficients with small 
absolute values.  Hence before the synthesis bank a threshold 
can be applied to the coefficients and they can be disregarded 
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if they are below a specific value.  This is an irreversible 
operation and will also influence the useful signal, but since 
that has more coefficients with high values the final result will 
be a slightly distorted, almost noised free, signal. 

III. WAVELETS AND SIMPLE CURRENT DENOISING ON 
CONSTANT V/F SCHEME 

A. Experiment arrangement 
The filtering was tested using an experimental current 

waveform, Fig. 1, measured on a modern induction motor 
based electrical drive.  This uses a 4-pole 7.5 kW 400 V, delta 
connected machine driven by a commercial inverter coupled 
to a DC load machine.  This waveform came from the drive 
using a simple Volts/Hz control under acceleration from 0 to 
10 Hz in 0.2 s at no load.   

The best level of decomposition and wavelet was first 
established with performance comparisons with a normal FIR 
filter, using a sampling frequency of 10 kHz.  Five different 
levels of analysis were tested and the wavelets that were used 
are from the Daubechies family, DB2-DB43.   

This test signal is a practical signal already contaminated by 
noise, so the ideal or noise-less signal is not available directly.  
A more effective comparison can be made if a version of the 
ideal were available, so the practical signal of Fig. 1 was 
filtered by an analogue low pass 6th order Butterworth filter 
with a cut off frequency of 60 Hz.  A cut-off frequency as low 
as this would be impractical in an actual drive expected to run 
over a range of frequency.   
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Fig. 1 Experimental current used to test wavelet denoising schemes 

 
The multiresolution and the Integral of Time Squared Error 
(ITSE) were then calculated, Fig. 2, by using this “ideal” de-
noised signal.  Since simple FIR filters are used for the signal 
denoising in the WT scheme and since different sampling 
rates are used (due to the decimation) a certain delay is 
imposed which is equal to ( ) OrderFilter 2 filtersofnumber ×  (also 
called the data alignment, which is very important for real 
time applications).  This delay is the explanation for the form 
of Fig. 2.  Normally it would be expected that the higher the 
decomposition number the better the denoising, but then the 
imposed delay will have a bigger effect.  Fig. 3 shows the 
relation between the level of the decomposition, the wavelet 
and the delay.  If the decomposition employs many levels then 
a significant delay will be imposed on the signal and, in an 

extreme case, this may even cause instability.  Fig. 2 shows 
that level 4 gave considerably better results than level 2.  
Hence a level 4 wavelet DB2 was chosen for comparison with 
a normal FIR filter.  A low pass FIR filter was tested for this 
comparison.  The specification of this filter is shown in table 
I. 
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Fig 2 ITSE for different wavelets and level of decomposition 
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Fig. 3 Delay imposed by different wavelets and level of decomposition 
 

TABLE I:  
FIR FILTER USED FOR V/F SCHEME 

Passband 
frequency 

Passband 
ripple 

Sampling 
frequency 

Filter order 

100 Hz 0.624 dB 10 kHz. 40 
Stopband 
frequency 

Stopband 
ripple 

  

500 Hz 33.3 dB   
 

B. Test results 
This “ideal” de-noised reference signal and the version 

from the wavelet denoising scheme described above, are 
shown in Fig. 4.  The denoising of the FWT is almost identical 
to that of the analogue filter.  The only significant difference 
is a small delay that is imposed on the FWT from the 
successive asymmetric FIR filters, clearly the analogue filter 
being of relatively high order does also introduce a significant 
delay, this causes the two signals to be closely similar.   
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The FIR scheme response is shown in Fig. 5, again with the 
“ideal” signal for comparison.  The results of Figs. 4 & 5 
show the wavelet denoising scheme give similar results to a 
carefully chosen normal FIR filter on a fixed spectrum signal.  
Fig. 5 shows that the FIR scheme produced an output faster 
than the analogue filter. This is expected since the delay of 
that digital filter is very small, i.e. is smaller than that of the 
analogue filter.   
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Fig 4 Denoised stator signals using an “ideal” and a wavelet filtering process 
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Fig 5 Denoised stator signals using “ideal” and FIR filter. 

 
 

Figures 4 & 5 show that the two schemes have similar 
denoising behavior, but the wavelet scheme imposes a delay 
depending on the levels of decomposition.  Also it is more 
complicated.  The FIR scheme uses a simple symmetrical 
filter which could be implemented either with simple and 
cheap hardware or with some addition to the overall drives 
software.  The FWT scheme needs more complicated and 
asymmetric FIR filters, with a complexity increase of at least 
10 times.  Hence the FIR scheme appears superior in such a 
case.  Therefore for many simple denoising processes in 
electric drives classical filtering methods are best used since a 
FWT scheme does not offer advantage.  This is because the 
expected frequency components of the current (at 10 Hz here) 
are known in advance.  Hence a filter can be specifically 
designed for that case.   

C. Adaptive denoising 
As experimentally verified in the previous section, if 

wavelets are used to denoise current signals in a typical drive 
scheme the results are not encouraging since simple FIR 
schemes produced comparable results.  This is due to the 
inherent delay that is caused by the alignment between the 
analysis and synthesis banks.  At present there is no coherent 
methodology of how many levels of decomposition should be 
used and which wavelet is more appropriate.  In IM drives the 
problem is complicated as the denoising process may be 
required on the stator currents.  These do not have the simple 
relationship that the voltage must follow: small amplitude at 
low frequency and large amplitude at high frequency (the 
voltage to frequency ratio has to remain constant).  In the low 
frequency region the delay is not very important since it can 
cause a small phase shift, but in this region the level noise that 
is present can greatly influence the overall behavior by 
affecting the peak values produced.  In the high frequency 
region the peak change is minor but the phase shift could even 
be more than a full cycle and hence produce instability. Thus a 
new scheme is needed.  This scheme adapts the level of the 
decomposition depending on the desired frequency of the 
signal.  For example, if the frequency of the noisy signal is 
from 0 to 15 Hz then the 5th level will be used, if the 
frequency is from 15 to 30 Hz then the 4th, from 30 to 40 Hz 
the 3rd, from 40 to 50 Hz the 2nd, and finally from 50 and 
above the first level.  One problem arising with this pseudo-
adaptive method is the “optimal” choice of these break points.  
This is similar to the problem of gain scheduling in nonlinear 
control systems.  Only “knowledge based methods” (Fuzzy 
Logic, Neuro-Fuzzy) can be used, or trial and error 
techniques.  Here the changing points were found by trial and 
error methods.  This method is called Adaptive Multilevel 
Wavelet Analysis (AMWA). 

To test the AMWA denoising scheme a simple ramp 
acceleration of a V/f scheme was used, there is no low 
frequency voltage boost and the load torque is also zero.  The 
motor parameters are shown in Table II.  The acceleration was 
set to 20 rad/s and the V/f ratio is equal to 415/50= 8.3 V/Hz.  
The wavelet was the DB2 and the sampling period was set to 
1 ms.  The sensor distortion used was a simple white noise 
signal with zero mean and variance of 1, Fig. 6.  The AMWA 
breaking points were chosen to be at 10 Hz, 20 Hz, 30 Hz, 40 
Hz, and 50 Hz.  The resulted denoising current is shown in 
Fig. 7 and the ITSE is shown in Fig. 8.  To compare with 
classical wavelet denoising the 5th level decomposition was 
used alone and its ITSE is shown in Fig. 9.  This comparison 
shows that the new AMWA denoising scheme shows very 
considerable improvements in behavior relative to the 
classical wavelet scheme. 
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Fig. 6  Noisy stator current signal 

 

-15

-10

-5

0

5

10

15

0 0.5 1

time, s

cu
rr

en
t, 

A

1.5

Time (s)

C
ur

re
nt

 (A
)

 
Fig. 7 Denoised stator current with adaptive scheme 
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Fig. 8  ITSE of adaptive denoised scheme 
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Fig. 9  ITSE for normal wavelet denoised scheme 

TABLE II:   
RATED VALUES FOR DELTA-CONNECTED SQUIRREL CAGE INDUCTION MACHINE 

Quantity  Value 

Power 7.5 kW 
Pole Pair Number, P 1 
Rated Frequency 50 Hz 
Rated Voltage 415 Volts 
Rated Torque 25 Nm 
Rated Speed 2860 rpm  
Rated Current 13.5 A 
Stator Resistance, Rs 2.19 Ω 
Rotor Resistance, Rr 1.04 Ω 
Stator Leakage Inductance, ls 17.59 mH 
Rotor Leakage Inductance, lr 17.59 mH 
Mutual Inductance, Lm 0.55 H 
Estimated Inertia, J 0.221 kg m2

 

IV. WAVELETS AND HIGH FREQUENCY SIGNAL INJECTION 

A. Simulation analysis 
The previous section showed that a FWT scheme may not 

offer advantage in the simple fixed frequency filtering.  The 
situation is different if the frequency information of the signal 
is time varying and its frequency is unknown.  Simple FIR 
filters cannot be used when there is useful information in the 
current signal in different areas of the frequency spectrum.  
Hence the FWT is well suited to an application where the 
bandwidths are uncertain, or if useful components exist at 
widely spread frequencies.  Such an application in an 
electrical drive would include where signal injection schemes 
are used for sensorless control for speed identification.  This is 
an active research area [11, 12].  In such a scheme a typical 
frequency spectrum may be as depicted in Fig. 10. 

 
Fig 10 Illustrative frequency spectrum with signal injection 

If the high frequency component is time varying but is 
remote in frequency from the useful low frequency 
components then low pass FIR filters are feasible.  If the 
location of both coefficients was known then a filter bank 
with two FIR filters could be used, one low pass and one band 
pass.  But this is not applicable here so this is a suitable 
application for wavelets.  As an example, assume one 
component at 50Hz resulting from the machine speed and 
another component ranging over [1.5kHz, 2.5kHz], which 
may result from the modulation of the carrier signal with the 
rotor speed (a test signal at 2kHz is used), sampling frequency 
100kHz (this is required since the useful signal now is 200 



 6

times higher in frequency than before).  To mimic a typical 
case a white noise signal is added giving a SNR of 10.  This 
produced a random signal, with Gaussian distribution, zero 
mean value and a variance of 0.1.  The two useful frequency 
components come from two sine waves of amplitude 10.  To 
evaluate the denoising process the Mean Squared Error (MSE) 
of the original noise free and the two denoised signals is used:  

( ) ( )( )∑
=

−=
N

n
nxnx

N
MSE

1

where ( )nx  is the no

2~1
 

ised free signal and ( )nx~  is the signal 
un

s.  The MSE of the noised and the noised 
fr

hows the histograms of the noise signal with the same 
scales.  

der consideration. 
The duration of the simulation was chosen to be 0.5 s 

giving 50000 sample
ee signal is: ~0.1. 
Also for the FWT the principle of “superposition” holds, 

i.e. the values of CD1, CD2 and CA2 from the decomposition 
of two signals are the values given if the two signals are 
decomposed separately and then added.  Hence the two sine 
waves (the useful signals) and the noise signals can be studied 
separately.  The decomposition of the two sine waves gave 
three new signals whose histograms are shown in Fig. 11.  
Fig. 12 s
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Fig 11 Histograms of two sine waves: approximations and details 
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Fig 12 Histograms of the noise signal: approximations and details 

Hence if all the values of CD1, CD2 and CD3 that are less 
than +/-1 are removed (hard thresholding) it can be assumed 
that all the noise components will be removed as well.  These 
values of +/-1 are empirically found, if Stein's Unbiased Risk 
method is used then the threshold is +/-4.0332.  Other, less 
conservative, techniques, such as Heuristic Stein's Unbiased 
Risk, produced similar thresholds.  This gives a signal whose 
MSE with the original is: 0.0277, i.e. 5 times better than the 
no

this illustrates the power of 
denoising based on the WT.  

ee
er freque y

isy signal. 
More levels or more advanced wavelet techniques (wavelet 

packets) can achieve better results.  The important point is that 
this denoising did not require knowledge of its frequency 
components.  It is simply assumed that the useful information 
has large coefficients and 

B. Experimental results 
To further illustrate the power of wavelets when useful signals 
have unknown high frequency components; a wavelet based 
denoising process have been used in a high frequency 
injection speed estimation application [11]. A Permanent 
Machine (PM) was injected with a high frequency signal of 
1.5 kHz when the machine was rotating at a constant low 
speed of 4.5Hz. By disengaging the angle estimating scheme 
the stator current expressed at a stationary reference frame is 
expected to have thr  high frequency components, one at the 
carri nc c ω  and two side bands at ac ωω 2+  
and ac ωω 2+− , aω  is the rotor speed. The parameters of the 
PM are shown in Table III and the sampling time was set to 
25 kHz. In this specific estimation the location of the useful 
information is roughly known but there are other cases where 
this is not possible. For example the estimated angle can be 
grossly wrong and this would move the useful information far 
way from the carrier. Nevertheless, a wavelet denoising 
scheme was compared with a normal band-pass filter which 
can currently be used in these applications. The specifications 
of that filter are shown in Table IV; the threshold of the 
wavelet denoising scheme was found by using trial and error 
methods. Fig. 13 shows the current measurement and Fig. 14 
shows the frequency spectra of the original signal, of the 
filtered signal using a band-pass filter and of the signal that 
was derived by the wavelet denoising scheme by using a sym8 
wavelet, 7 levels of decomposition and hard threshold 
denoising method at [15 15 12 0 6 6]. To calculate the FFT a 
Hann window was used. Figure 13 shows that the wavelet 
method produced a better signal and hence when the angle 
estimated scheme is engaged the speed sensorless scheme will 
have better results. It can be the case that even for this specific 
application if the useful information is a priori known exactly 
it is possible to use better designed FIR filters. This is not 
always the case and even then the wavelet produced signals 
that were less contaminated with noise. 
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Fig 13 Phase current measurement, scaling: 15.57mA/V 
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Fig 14 Frequency spectra 

 

TABLE III:  
PERMANENT MACHINE PARAMETERS 

Quantity Value 

Power 1.1 kW 
Pole Pair Number 4 

Rated Voltage 400 V 
Rated Speed 3000 rpm 

Rated Current 2 A 
Stator Resistance 6.25 Ω 
Main Inductance 176 mH 

 
 

TABLE IV:  
FIR FILTER FOR HIGH FREQUENCY INJECTION SCHEME 

Passband freq. 1 Passband freq. 2 Passband ripple 

1400 Hz 1600 Hz 0.624 dB 

Stopband freq. 1 Stopband freq. 2 Stopband ripple 

531 Hz 2556 Hz 40 dB 

Sampling freq. Order  

10 kHz. 45  

V. CONCLUSION 
The advantages and disadvantages of using wavelets in 

various electric drive applications have been experimentally 
and numerically demonstrated. For simple current denoising 
simple FIR filters are superior, while for cases where the 
useful information has unknown frequency characteristics 
wavelets should be preferred. More specifically a detailed 
comparison between various wavelets and levels of 
decomposition gave the combination wavelet/level with the 
smallest ITSE. This comparison found that simple FIR filters 
produced similar results but are less complex. A pseudo-
adaptive denoising scheme was proposed which made the on-
line application of wavelet more attractive but for simple 
applications conventional schemes still should be used. In 
more difficult cases, such as a speed identification method 
which is based on signal injection, it was found that the 
wavelets produced better results than conventional methods. If 
frequency components are known in advance then simple 
filter banks should be used instead of wavelets because of 
their reduced complexity.  
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