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Abstract--The paper studies the stability of parallel DC/DC 
converters using the concept of monodromy matrix (the state 
transition matrix for one complete cycle), whose eigenvalues 
are the Floquet multipliers. This matrix is composed of the 
state transition matrices for the smooth intervals and those 
across the switching events (called saltation matrices). We 
show that instabilities in this system can be caused by smooth 
as well as nonsmooth period doubling bifurcations, the latter 
occurring when the fundamental solution matrix undergoes a 
discontinuous jump as a periodic solution touches a non-
smooth hyper-surface of discontinuity. Based on the 
expression for the saltation matrices (the state transition 
matrices across switching events) we propose new controllers 
that can stabilize the period-1 operation by keeping the 
eigenvalues inside the unit circle. 

I. INTRODUCTION 

Parallel operation of DC/DC converters is widely used in 
many applications [1], [2].  The scheme has many advantages 
compared to single dc-dc converters in terms of reliability, fault 
tolerance, and allowing high load currents to be delivered without 
employing devices of high power rating. Usually, it is desired to 
distribute the load equally among the converters [2]. One widely 
used method for balancing the currents is the master–slave current 
sharing technique employed in this paper. However, these closed-
loop converters are inherently nonlinear and nonsmooth time 
varying systems, and one can expect nonlinear phenomena in such 
systems.  

The analysis of these phenomena is of great importance since 
small changes in the system’s parameters (for example the supply 
voltage) can destabilize the system [4], [5].  However, to analyze 
the stability of these switching systems, one has to deal first with 
their discontinuity. The most common method of studying the 
stability of periodic systems is the Poincaré map. The system’s 
stability is indicated by the eigenvalues of the map computed at 
the fixed point. However, in most power electronics circuits (like 
the system under study) it is not possible to derive this map 
analytically.  

In our earlier publications [4], [5], we have shown that the 
concept of monodromy matrix can be fruitfully applied to 
calculate the stability of a single dc-dc converter. The monodromy 
matrix is the state transition matrix over a complete clock cycle, 
which is a product of the state transition matrices for the ON and 
OFF periods, and those across switching events (called saltation 
matrices). We have also shown that the saltation matrix is 
primarily responsible for the stability of the system. In this paper 
we extend the use of the monodromy matrix to study the 

instabilities in parallel connected converters and we show that the 
fundamental solution matrix can jump if a periodic solution 
touches a nonsmooth hyper-surface of discontinuity. Using the 
expression of the saltation matrix, we propose novel controllers 
that can avoid instabilities.   

II. SYSTEM DISCRIPTION AND OPERATION 

Fig. 1 shows a simplified block diagram that describes the 
master–slave current sharing schemes for two converters 
connected in parallel and feeding the same load. One of the 
converters (the master) has a simple feedback loop (proportional 
gain) to regulate the output voltage. The control signal of this 
converter is equal to: 

))(()(V
1con1 refoutpoffset VtVKVt −−=   (1) 

where Voffset is the dc offset voltage needed to give a steady state 
duty cycle, Kp1 is the propositional gain, and Vref is the reference 
voltage.   

 

Figure 1. Block diagram of two paralleled converters with master-slave 
current sharing. 

The other converter is the slave, which sets its current to be 
equal to that of the master via an active loop involving a 
comparison of the currents of the two converters. We can write 
the control signal of this converter as: 

)())(()(V
122con2 LLirefoutpoffset imiKVtVKVt −−−−=  (2) 

Where Kp2 is the propositional gain of converter 2, Ki is the 
current feedback gain, and m is a current factor.  

The switches S1 and S2 are controlled by comparators which 
compare the control signals Vcon1 and Vcon2 with a suitable periodic 



saw-tooth waveform Vramp and a commutation occurs when these 
two signals become equal i.e.,  switch S is open if   Vcon <Vramp, 
and closed otherwise. The ramp signal can be written as  
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tVVVt LUL    (3) 

where, VU and VL are the upper and lower limits of the ramp signal 
respectively. When the converter is operated in continuous 
conduction mode, there are four switch states [2]. The state 
equations that represent these switch states during a switching 
cycle are: 

 E11 BxAx +=   S1 ON and S2 ON 

             E22 BxAx +=              S1 ON and S2 OFF (4) 

E33 BxAx +=   S1 OFF and S2 ON 

    E44 BxAx +=      S1 OFF and S2 OFF 

Where x is the state vector defined as T
LLout iiv ][

21
=x = 

Txxx ][ 321 , E is the input voltage and A, B are the system 
matrices. 

In the case of the buck converter, the system matrices A1, A2, 
A3 and A4 are equal to As, given by 
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The circuit parameters are fixed at the following values:   Vref = 
24 V, Kp1 =Kp2= 3.5, Ki=5, Voffset= 5 V, L1= 0.02 H, rL1=0.05 Ω, 
L2 = 0.04 H, rL2=0.2 Ω, C = 47µF, R=10 Ω, T=400 µs, VL = 2 V, 
VU = 8 V. 

It is worth mentioning here that since rL2 is greater than rL1, 
we expect the duty cycle of converter 2 (d2) to be always greater 
than the duty cycle of converter 1 (d1). Hence we will omit the 
second equation in (4) from our analysis [2]. 

III. BIFURCATION BEHAVIOUR 

Like many switched dynamical systems, parallel connected 
converters can exhibit a variety of bifurcations. Most standard 
bifurcations (such as period doubling bifurcation) are caused by 
the change of stability status without change in topological 
sequence. Additionally, in switching systems, another type of 
bifurcation is observed, known as a border collision caused by the 
change of topological sequence within a clock period [1], [3]. In 
this system, with variation in the supply voltage it is possible to 
have a smooth period doubling bifurcation as shown in Fig. 2. The 
system loses stability to a new limit cycle with a period twice the 
period of the ramp signal. This bifurcation is very common in 
dc/dc converters and is often considered as a standard type of 
bifurcation in nonlinear systems [3]. 

Another type of bifurcation is observed in the system by 
variation of the parameter m (the sharing current ratio). This 
phenomenon is a border collision period doubling bifurcation as 
shown in Fig. 3. This non-smooth bifurcation occurs when the 
periodic solution of the system touches the non-smooth hyper-
surface (the top or bottom of the ramp signal) [6], [7].  
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Figure 2. Bifurcation diagram with input voltage as bifurcation parameter 
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Figure 3. Bifurcation diagram with current ratio as bifurcation parameter 

IV. STABILITY ANALYSIS OF THE SYSTEM 

In this section, the stability of the standard period doubling 
bifurcation and the border collision bifurcation are analysed by 
deriving the monodromy matrix of the system in each case. 

A. Standard bifurcation analysis:  
The period-1 limit cycle of the parallel connected buck converter 
given in Fig. 4 shows that the trajectory crosses the switching 
manifold three times at d1T, d2T and T. The monodromy matrix of 
the system (M) for one complete cycle is obtained as: 
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where S3, S2 and S1 are the saltation matrices at T, d2T and d1T 
respectively, calculated using the following formula [4], [6]: 
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where h is the switching condition, n is the normal to h, Σt  is the 
switching time, −f and +f  are the two vector fields before and 
after the switching. 

Firstly, at Σt  = d1T, the switching condition is defined 
by 0))(())(( 1111 =−−−= ramprefpoffset VVTdxKVTdXh  and the 

normal n is given by [ ]TpK 00
1

− . The two smooth vector fields 
are ETdx 1s BxAf +=− ))(( 1  and ETdx 3s BxAf +=+ ))(( 1 . 
Since −+ ≠ ff , the system has a discontinuous vector field at the 
switching surface. 
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Figure 4. Period one orbit of the system for m = 1 

Secondly, at time Σt = d2T, the indicator function h(X(d2T)) 
is given by the equation 

,0))()(())(( 2223212
=−−−−− ramprefpoffset VTdxmTdxKiVTdxKV

n = [ ]Tiip KKmK −−
2

 and the two smooth vector fields are 
given by ETdx 3s BxAf +=− ))(( 2  and ETdx 4s BxAf +=+ ))(( 2 .  

Finally, at Σt = T the manifold is discontinuous (with respect 
to time) and the time derivative will be infinite. Therefore the 
saltation matrix at this point will be the identity matrix [4], [5]. 

 The stability of the system can be determined by finding the 
eigenvalues of the fundamental solution matrix M. To calculate M 
and hence to check the stability of the system, we need to find the 
values of state vectors at the beginning of the cycle )0(X , at the 
switching )( 1TdX , )( 2TdX  and also the duty cycles d1, d2.  This 
can be calculated by numerically solving a nonlinear equation [4], 
[5]. The computed loci of the eigenvalues with varying input 
voltage are shown in Fig. 5. The system loses stability through a 
smooth period doubling bifurcation at input voltage of around 
56.7 V. This result is in very good agreement with the simulation 
results presented in Fig. 2. 
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Figure 5. Loci of the eigenvalues of the monodromy matrix for different 

input voltages 

B. Border collision analysis:  
As shown in Fig. 3, a border collision period doubling 

bifurcation occurs when the sharing current ratio is increased 
beyond a certain value. In addition, as m increases, the system 
goes from a situation where one control signal hits the ramp; to 
another where it just misses the ramp (see Fig. 6). This results in a 
change in topological sequence. In normal operation, the 
operation of the system for one switching cycle takes the 
following sequence: both switches ON, switch 2 ON and switch 1 
OFF, finally, both switches OFF. After the border collision 
occurs, the sequences of the operation are altered to: switch 1 ON 
and switch 2 OFF, both switches ON, switch 2 ON and switch 1 
OFF, finally, both switches OFF. This change of the system 
operation causes the monodromy matrix to alter as well. The new 
monodromy matrix can be written as:  
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Figure 6. The control signals at m =3.25 
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where S3, S2 and S1 are the saltation matrices at d3T, d2T and d1T, 
respectively, d3T is the time when switch 1 turns ON and switch 
2 turns OFF. At this time, the indicator function h(X(d3T)) is 
defined by the equation: 

,0))()(())(( 3233312
=−−−−− ramprefpoffset VTdxmTdxKiVTdxKV

n = [ ]Tiip KKmK −−
2

, ETdx 2s BxAf +=− ))(( 3  and 
ETdx 1s BxAf +=+ ))(( 3 .  

The saltation matrix S3 can be calculated from equation (6). The 
monodromy matrix of the system can be calculated after obtaining 
the duty ratios semi-analytically. The eigenvalues of M for 
different values of the current ratio m are shown in Fig. 7. As the 
current ratio is increased, the eigenvalues jump abruptly from 
complex conjugate values to negative real values and one of them 
lands outside of the unit cycle. This causes a nonsmooth period 
doubling bifurcation.  
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Figure 7. Loci of the eigenvalues of the monodromy matrix for different 

current ratios 

V. CONTROL OF THE PERIOD DOUBLING BIFURCATION 

We note that stability of the system is governed by the 
eigenvalues of the state transition matrix over a clock cycle, and 
this matrix is in turn influenced by the state transition matrices 
across the switching events. We seek to develop control 
techniques based on the expression of the saltation matrix (6), so 
that the eigenvalues of the monodromy matrix remain within the 
unit circle. 

1) Control based on the change of the upper limit of the ramp:  
The system can be stabilized and the eigenvalues of the 

monodromy matrix can be pushed inside the unit circle by 
changing the upper value of the ramp (VU) to (a x VU) with the 
value of aψchosen to determine the desired location. The effect of 
this change is to alter the time derivative of h hence influencing 
the saltation matrices (since S1 and S2 are functions of the time 



derivative of h). To optimally design the controller we can 
numerically solve the following nonlinear transcendental equation 

064.0))0,(( =−Teig M    (8) 

to locate the eigenvalues at a circle of any chosen radius (in this 
case 0.64) indicating a stable period one limit cycle. 
Corresponding values of a for different values of input voltage 
may then be calculated as shown in Fig. 8. The response of the 
system while the input voltage changes suddenly from 55 to 60V 
(at time 0.1 Sec) is shown in Fig. 9. It is clear that the system, 
after a very small transient, will settle down quickly to the stable 
period 1 limit cycle. Note that the system is unstable at an input 
voltage of 60V without the proposed control. 
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Figure 8. Optimum values of a for first controller 
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Figure 9. Response of first controller under a sudden input voltage change 
 
2) Control based on additional control signal proportional to the 
output voltage: 

Another control method is based on changes of the normal to 
the switching manifold that appears in (6). In this method we 
slightly change the slope of hψto: 

0))()(())(( 111111 =−+−−= ramprefpoffset VTdxaVTdxKVTdXh . 

This gives a normal vector [ ]Tp aK 00)1(
1

+− , which will have an 
influence on the saltation matrix S1 (since S1 is function of the 
normal vector n). 

It is obvious that the monodromy matrix of the system will 
be function of a, and thus it is possible to stabilise the period one 
limit cycle by altering the value of a. Again we can locate the 
eigenvalues at a circle of any chosen radius. The relation between 
the change of the input voltages and the required values of a for a 
radius of 0.64 are shown in Fig. 10.  

The response of the system when the input voltage changes 
suddenly from 55 to 60V is shown in Fig. 11. In this case also, the 
system settles to the stable period 1 limit cycle after a brief 
transient. 

Comparison of the two controllers reveals that both 
controllers extend the period one limit cycle, however, the first 
controller based on the change of the upper limit of the ramp 
signal has a smaller steady state error.  
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Figure 10 Optimum values of a for second controller 
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Figure 11. Response of second controller as the input voltage is changed 

VI. CONCLUSION 

In the parallel connected buck converter under master–slave 
current sharing scheme, the normal period-1 operating mode can 
lose stability through smooth as well as nonsmooth period 
doubling bifurcations. We have demonstrated the stability analysis 
of the system using the complete–cycle solution matrix (the 
monodromy matrix) showing that this matrix can change abruptly 
if a periodic solution touches a non-smooth hyper-surface. Based 
on the expression of the saltation matrices, we have proposed and 
demonstrated two controllers to control the period doubling 
bifurcation. The first one is based on modifying the upper limit of 
the controller ramp signal and the second one is based on using an 
additional control signal proportional to the output voltage. Both 
controllers provide good results without any complicated 
bifurcation control law 
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