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Abstract—This paper presents an alternative technique for the
adaptive control of power electronic converter circuits. Specific
attention is given to the adaptive control of a dc–dc converter.
The proposed technique is based on a simple adaptive filter
method and uses a one-tap finite impulse response (FIR) predic-
tion error filter (PEF). The method is computationally efficient
and based around a dichotomous coordinate descent (DCD) al-
gorithm. The DCD-recursive least squares (RLS) algorithm has
been employed as the adaptive PEF to reduce the computational
complexity of existing RLS algorithms for efficient hardware im-
plementation. Results show that the DCD-RLS is able to improve
the dynamic performance and convergence rate of the adap-
tive gains (filter taps) within the controller. In turn, this yields
a significant improvement in the overall dynamic performance
of the closed-loop control system, particularly in the event of
abrupt parameter changes. The proposed controller uses an adap-
tive proportional–derivative+integral (PD+I) structure which,
alongside the DCD algorithm, offers an effective substitute to
a conventional proportional–integral–derivative (PID) controller.
The nonadaptive integral controller (+I), introduced in the feed-
back loop, increases the excitation of the filter tap weight and
ensures good regulation. The approach results in a fast adaptive
controller with self-loop compensation. This is required to mini-
mize the prediction error signal and, in turn, minimize the voltage
error signal in the loop by automatically calculating the optimal
pole locations. The prediction error signal is further minimized
through a second-stage FIR filter (adaptation gain stage). This
ensures that the adaptive gains converge to their optimal value.
This paper presents detailed simulation analysis and experimental
validation on a prototype synchronous dc–dc buck converter. The
experimental results clearly demonstrate the superior dynamic
performance and voltage regulation compared to conventional
PID and adaptive LMS control schemes, with only a modest
increase in the computational burden to the microprocessor.

Index Terms—Adaptive controller, adaptive filter, dichotomous
coordinate descent (DCD), finite impulse response (FIR) linear
predictor, proportional–integral–derivative (PID) controller, re-
cursive least square (RLS), switch-mode dc–dc power converter
(SMPC), system identification.
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I. INTRODUCTION

MANY CLASSICAL digital control systems for switch-
mode power converters (SMPCs) suffer from inaccura-

cies in the design of the controller. This may be due to poor
knowledge of the load characteristics or unexpected external
disturbances in the system [1], [2]. In addition, SMPC un-
certainties, such as component tolerances, unpredictable load
changes, changes in ambient conditions, and aging effects, all
affect the performance of the controller [1]–[3]. For these rea-
sons, autotuning and adaptive digital controllers are playing an
increasingly important role in SMPC systems. Adaptive digital
controllers offer a robust control solution and can rapidly adjust
to system parameter variations. However, often, these con-
trollers are not fully exploited in low-cost low-power SMPCs
due to the computational complexity of the autotuning algo-
rithm, which may require a high-specification microprocessor
to successfully implement [4]. Therefore, there is a requirement
to further research and develop cost-effective computationally
light autotuning methods which continue to offer robust control
performance.

Recent research demonstrates several productive self-tuning
and adaptive control techniques for power electronic converter
applications. However, these solutions are not always aimed
toward low-complexity systems. Often, the algorithms require
advanced digital signal processing resources which introduce
cost penalties to the target application. Straightforward relay-
feedback-based methods have successfully been used in the
parameter identification and autotuning of dc–dc converters [5],
[6]. However, during the parameter tuning of the PID controller,
these methods typically introduce undesirable oscillations into
the regulated output for short periods of time [7]. Also, this
type of approach requires relatively complex algorithmic steps
to tune the controller parameters. Other techniques have been
proposed, such as inserting limit cycle oscillations (LCOs) into
the duty cycle signal of the power converter [8]–[10]. The
compensator is then retuned using pole-zero PID cancellation.
This technique is highly efficient in terms of hardware; how-
ever, it results in lower system identification accuracy [11].
Alternative methods consider perturbing the duty cycle with a
frequency-rich input signal [1], [12], [13]. Typically, Fourier
transform methods are applied to find the frequency response
of the system. The PID controller parameters are then tuned on-
line using discrete-time dynamic measurements of the system.
Unfortunately, the identification process can take significant
amount of time to complete and may need to process long
data sequences. In addition, during the identification process,
the system operates in open loop without regulation [8]. These
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Fig. 1. Adaptive PD+I controller using DCD-RLS algorithm.

self-tuning and adaptive control techniques are most effective
during the steady state where the parameters are tuned using
predetermined rules, such as phase margin and gain margin
requirements. For this reason, these categories of controller
are generally unsuitable for time-varying systems where online
compensation is desirable.

Kelly and Rinne [14] proposed an adaptive self-learning
digital regulator, based on a one-tap least mean square (LMS)-
prediction error filter (PEF) for online system identification.
The presented solution is simpler than many other methods.
However, there appears to be two limitations to this sys-
tem. First, the scheme involves subjecting the system to a
repetitive disturbance [4], which after many iterations the
controller begins to learn. In this way, the control system
“acclimatizes” to the disturbance [8]. Consequently, there is
a risk of instability in the system due to an external non-
repetitive disturbance to the system. Furthermore, in this
scheme, only a proportional–derivative (PD) controller is
considered, and this can yield a nonzero steady-state error
[8]. For this reason, this paper attempts to build upon the
PD adaptive controller scheme presented by Kelly. Specif-
ically, an adaptive proportional–derivative+integral (PD+I)
controller is presented to address some of the issues raised
in this work. Different implementation methods are presented,
and with dc–dc converter control in mind, emphasis is placed
on achieving high-quality performance with a simple signal
processing attitude.

This paper is set out as follows: The proposed PD+I adaptive
control technique is outlined in Section II, while Section III
presents the unique application of a DCD-RLS-PEF within
the adaptive control structure. Section IV then provides a

specific overview of the DCD-RLS algorithm. Following this,
the relationship between a one-tap finite impulse response
(FIR) filter and a PD controller is explained in Section V.
Section VI presents detailed simulation results, highlighting the
positive performance of the proposed technique. Section VII
presents the experimental validation of the proposed solution
and experimental comparison to conventional PID and adaptive
LMS controllers. A method to further reduce the computational
complexity of the scheme is then suggested in Section VIII.
Finally, conclusions from the work are outlined in Section IX.

II. CONTROL OF A DC–DC CONVERTER USING AN

ADAPTIVE PD+I CONTROLLER

Fig. 1 shows a block diagram of the proposed control
scheme. Here, a similar PD control method to Kelly and Rinne
[14] is employed. However, a nonadaptive integral compensator
is included in the feedback loop. This replaces a reference
voltage feed-forward path in the original scheme. In this way,
we look to achieve an adaptive PD+I controller. The integral
compensator has a number of roles. First, during the initial
convergence time for the filter tap weight, the integral com-
pensator is used to excite the system. The integral effectively
introduces a transient, which is then amplified. This, in turn,
initiates an oscillation in the control error signal. The excitation
signal improves the convergence time of the adaptive filter, the
time to obtain optimal tap weight parameters. It also allows the
adaptive controller to work continuously in an online mode. For
all online identification methods, some form of perturbation
of the system is essential for the identification and prediction
process [1], [3], [5].
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Fig. 2. One-step-ahead linear FIR predictor.

The advantage of this scheme is that the adaptive PEF rapidly
“learns” the behavior of the oscillation created by the integral
compensator and rejects it from the control loop. Therefore, for
the majority of the time, a smooth output response is observed.
The oscillation in the output voltage response only appears
for a very brief period of time, sufficient for identification
purposes. The final purpose of the integral compensator is more
obvious; it helps the output voltage regulation and ensures a
zero steady-state error in the system. When actually choosing
the value of integral gain KI , a compromise exists between
the magnitude of the excitation signal in the loop and the need
to avoid unwanted LCOs [15], [16]. At the output of the PD
compensator, a fixed gain (K) is included in the control loop
(Fig. 1). This gain increases the excitation until the adaptive
filter weight converges to the optimal value. For the buck
converter system under consideration, K = L/T , where T is
the switching period and L is the inductor value [14].

III. ADAPTIVE RLS LINEAR PREDICTOR FILTER

A second alteration to the original algorithm in [14] is made
by replacing the original LMS-PEF with an RLS-PEF. The clas-
sical RLS algorithm is used in many adaptive control strategies.
Unfortunately, these schemes often require significant signal
processing and microprocessor hardware to implement. This
can be a problem in cost-sensitive systems. For this reason, the
RLS algorithm is implemented using a fast, computationally
light, and hardware-efficient adaptive algorithm, known as di-
chotomous coordinate descent (DCD) [17]. This algorithm has
traditionally been developed for use in the field of telecommu-
nications. Here, we adapt the algorithm and apply it for the
first time in the adaptive control of power electronic circuits.
In Fig. 1, the adaptive error predictor (stage 1 FIR filter) is
responsible for the identification, or prediction, of the error
signal [18]. The desired output is the minimization of this error
signal. The FIR filter is implemented using a one-step-ahead
linear FIR predictor, as shown in Fig. 2 [19].

This predictor consists of N unit delays and N tap weights.
The output estimation y(n) is the prediction of the present input
signal x(n). It is determined as follows [19]:

y(n) =
N∑

k=1

wkx(n − k) = wx (1)

w = [w1 w2 . . . . . . . . . . . . wN ]

x = [x(n − 1) x(n − 2) . . . . . . . . . x(n − N)]T . (2)

To define the vector coefficients w of the linear prediction
filter, analytical calculation of the linear system equations is

Fig. 3. Adaptive FIR linear predictor based on DCD-RLS.

required. This can be achieved using Wiener equations, but
this requires considerable computational effort. Alternative
methods, such as the Levinson–Durbin algorithm, can reduce
the number of mathematical operations. Adaptive approaches
can also be used to optimally calculate the tap weights and
further trim the computational load [14], [19]. Fig. 3 shows
the proposed DCD-RLS method of implementing an adaptive
FIR predictor. The adaptive FIR predictor consists of two key
components: a digital RLS-FIR filter which includes the tap
weight coefficients previously described and the DCD algo-
rithm which is used to vary the tap weight coefficients in
real time. The DCD algorithm continuously adjusts the filter
coefficients to minimize the error prediction signal eP (n). The
error prediction is defined as

eP (n) = x(n) − y(n) = x(n) −
N∑

k=1

wkx(n − k). (3)

According to (3), the error prediction signal is determined
by applying the delayed input signal to the digital filter to
produce the estimation output signal y(n). The prediction error
is then the difference between the desired signal x(n) and
this generated estimation output signal. To minimize the error
signal, the adaptive algorithm must solve a series of linear
equations to estimate the coefficient vector w, where [20]

w = R−1β. (4)

Here, R is an autocorrelation matrix of size N × N , and β is an
element vector of length N . R and β are continually updated
at each time instant n. For the proposed DCD-RLS, R(n) and
β(n) may be described as follows [17]:

R(n) =λR(n − 1) + x(n)xT (n)

β(n) =λβ(n − 1) + z(n)x(n). (5)

In (5), λ is a forgetting factor which applies weighting to
the previously calculated elements of R and β. When λ = 1,
the system behaves like the classical RLS algorithm. z(n)
is the scalar desired signal, which relates the actual adaptive
filter output estimation y(n) to the estimation error [17] e(n)
according to e(n) = z(n) − y(n). Importantly, from a practical
point of view, it is possible to find vector coefficients w without
any mathematical division operations.
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TABLE I
DCD ALGORITHM DESCRIPTION

IV. DCD ALGORITHM

Least square estimation techniques are fundamental in adap-
tive signal processing applications. In real-time applications
[20], the solution is normally based on matrix inversion, which
is computationally heavy and presents implementation difficul-
ties. However, there are alternative algorithms for solving the
linear equations expressed in (4). Amongst them, the DCD al-
gorithm appears to be a particularly effective method [17], [20],
[21]. Attractively, the computation is based on an efficient fixed
point iterative approach with no explicit division operations
[21]. The DCD-RLS algorithm is only slightly more complex
than the conventional LMS method; the DCD-RLS uses 3N
multiplications per sample, compared to 2N for the LMS,
where N is the length of the filter. It is also appropriate for real-
time hardware implementation [21]. The overall computational
requirement of the DCD algorithm depends mainly upon the
number of iterations (Nu) used to update the parameter set.
The number of iterations is very important for the speed and
accuracy of the identification process [20].

Table I shows the operational steps of the DCD algorithm
[17], [21]. For a more rigorous mathematical analysis of the
algorithm, the reader is referred to the work originally presented
by Zakharov et al. [17], [20], [21]. It is based on an iterative
approach to estimating N parameters within an estimation
parameter vector h(h = w). Each parameter is assumed to
reside within a defined amplitude range [−H,H]. Initially, the
iteration step size d is chosen such that it equals H . Then, dur-
ing each pass of the algorithm, the step size is halved (d = d/2,
step 1). This division by two processes is very important from a
hardware point of view. It allows a multiplication operation to
be replaced with a more computationally efficient shift register
[21]. The algorithm is performed using binary arithmetic. It
starts the iterative search from the most significant bit Mb for
each element in the parameter vector h. Once complete, the
algorithm determines the next most significant bit Mb−1 and
so on until M0. At this point, the binary representation of M is
fully updated. During each iteration, the magnitude of a residual
vector r is analyzed. In the event that the residual is too small,
the solution is not updated (step 3). If the residual is sufficiently
large, one element of the parameter vector is updated (step 4)
by adding, or subtracting, the value of d, depending upon the
polarity of rn. Following this, the residual vector (r) is updated

(step 5). The algorithm repeats this process until all elements in
the residual vector r become small enough that the set condition
in step 3 is met [21] or the number of iterations reaches a
predefined limit number (Nu) [17]. The iteration limit may be
used to control the execution time of the algorithm.

V. ONE-TAP LINEAR FIR PREDICTOR FOR

PD COMPENSATION

A digital FIR filter can be described, in difference equation
form, by (1). From this, it is possible to describe the digital filter
in the z-domain as

Y (z) = X(z)(w1z
−1 + w2z

−2 + . . . + wNz−N ). (6)

Referring to Fig. 3 and using (3) and (6), a FIR-PEF can
therefore be represented in z form as

EP (z)
X(z)

= (1 + w1z
−1 + w2z

−2 + . . . + wNz−N ). (7)

The order of the digital filter candidate model is application
dependent. As described by Kelly and Rinne [14], [22], a
second-order minimum phase plant, such as a buck converter,
can be compensated using a typical moving average filter model
(FIR or all-zero filter). Based on pole placement methods, the
order of the moving average filter is one order lower than the
plant. Hence,

D(z)
E(z)

= δ0 + δ1z
−1 (8)

where, δ0 and δ1 are the coefficients of the digital filter. By
comparing (8) with (7), a low-order approximation FIR-PEF
can actually be implemented as a gain controllable compen-
sator [14]

δ0 + δ1z
−1 = Kd(1 + w1z

−1). (9)

Equation (9) is equivalent to a PD controller. Importantly, it
only requires one addition and one multiplication operation. A
good quality regulator is required to optimally place the poles
within the z-plane unit circle [14], [22]. This is the second
purpose of the two-stage adaptive linear predictor shown in
Fig. 1. In the first stage FIR, the adaptive algorithm places a
zero (w1) as close as possible to the dominant poles of the
autorecursive model to minimize the error in the loop [23]. In
the second stage, the adaptive algorithm estimates and adapts
the gain (Kd) to minimize the prediction error in the adaptive
filter. Conveniently, the adaptation of Kd is performed by the
same mathematical process as the stage 1 FIR filter. However,
here, the FIR filter uses the prediction error signal ep1(n) as an
input signal [14], rather than the voltage error signal (Fig. 1).
Finally, automatic adjustment of (Kd, w1) reduces the variance
of the prediction error and influences the final controller output
duty signal. This PD controller is then incorporated with the
integral compensator to form the PD+I structure. As a result, a
low-complexity adaptive controller is achieved. This controller
is capable of self-regulation, by finding and placing the optimal
closed-loop poles in any system, without explicit knowledge of
the actual circuit parameters.
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Fig. 4. Reference voltage feed-forward: Comparison of transient response
between LMS and DCD-RLS. Repetitive load change between 0.66 and 1.32 A
every 5 ms.

VI. SIMULATION RESULTS

To test the concept of the proposed DCD-RLS adaptive
control scheme, a voltage-controlled synchronous dc–dc buck
SMPC circuit has been simulated using Matlab/Simulink. The
circuit parameters of the buck converter are the following:
RO = 5 Ω, RL = 63 mΩ, RC = 25 mΩ, L = 220 μH, C =
330 μF, Vout = 3.3 V, and Vin = 10 V. The buck converter is
switched at 20 kHz using conventional pulsewidth modulation.
The output voltage is also sampled at 20 kHz. For the DCD-
RLS algorithm, the parameters are as follows: Nu = 1, H = 1,
and M = 4 (number of bits). For completeness, the simulation
model includes all digital effects, such as analog to digital
converter (ADC) quantization and sample and hold delays. To
present the viability of the proposed DCD-RLS algorithm, an
equivalent system based on the conventional LMS adaptive
controller presented in [14] is also simulated.

A. Reference Voltage Feed-Forward Adaptive Controller

Fig. 4 shows the initial comparison between the LMS with
different step size (μ) values and the proposed adaptive DCD-
RLS algorithm, using the original reference voltage feed-
forward structure presented by Kelly and Rinne [14]. Both
methods are able to maintain voltage regulation and recover
from abrupt system changes. However, it is clear from Fig. 4
that the dynamic characteristics using the proposed DCD-RLS
are much better than the conventional LMS. There is much
smaller overshoot and a distinctly faster recovery time after a
parametric change or when there is an increase in excitation.
From this, we can deduce that the DCD-RLS method yields an
overall improvement in the transient response of the system.

In LMS algorithms, the choice of step size (μ) may give rise
to problems; one has to compromise between fast convergence
rate and estimation accuracy. It is also compulsory to ensure
that μ is within a range that guarantees that the filter tap weights
will approach their optimal value [18]. This range is defined as

0 < μ <
1

λmax
. (10)

Here, λmax is the largest eigenvalue of the autocorrelation
matrix R. However, a first-order PEF filter is proposed; thus,

Fig. 5. Adaptation of gain (Kd) and tap weight (w1) in the two-stage
adaptive linear predictor.

the value of λ is simply equal to R(1), and μ mainly depends on
the maximum input signal value. For this specific example, the
optimal step size value is when μ = 1. The adaptive gain (tap
weight) of the LMS predictor filter, the convergence time, the
tap-weight gradient noise, and the stability of the adaptation all
depend heavily on μ. Large values of μ decrease convergence
time and improve the dynamic response as shown in Fig. 4 but
increase the filter gradient noise and vice versa for low values
of μ [14].

Fig. 5 shows the adaptation performance of the LMS and
DCD-RLS algorithms. In both methods, the tap weights ap-
proach approximately the same values, and the zeros of (9)
lie inside the unit circle of the z-plane. Hence, a minimum
phase PEF filter is created and the stability criterion may be
fulfilled [24], [25]. However, the DCD-RLS is superior in
terms of convergence time and effect of gradient noise on the
determination of the adaptive gains. As a result, the choice
of step size is important for dealing with unexpected system
disturbances. For example, in SMPC applications, one might
observe a high control error signal, due to a high initial transient
or an abrupt change in load current; if the step size is large,
instability may arise. This is demonstrated in Fig. 6, where a
significant change in load current (1.3–6.5 A) is observed at
25 ms. It can be seen that, when μ = 1, the converter output
voltage collapses due to loss of control. In this particular case,
a lower value of μ is required to cope with this disturbance, as
shown when μ = 0.1. Alternatively, a signal conditioning unit
(an attenuator or rate limiter) may be included before the LMS
filter. However, this will also slow down the convergence rate
and the overall final response of the system. This problem is
eliminated through the use of the DCD-RLS algorithm, since it
is independent of any step size parameter.

B. Voltage Control Using Adaptive PD+I Controller

In this section, the adaptive PD+I controller initially dis-
cussed in Section II is implemented. Fig. 7 shows the
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Fig. 6. Comparison of transient response between LMS and DCD-RLS.
Significant change in load current (1.3–6.5 A).

Fig. 7. Transient response of the proposed adaptive controller. (a) Output
voltage. (b) Inductor current. (c) Load current. Load current change: 0.66–
1.32 A every 5 ms.

performance of placing the integral compensator (see Fig. 1)
in the feedback loop to increase the excitation of the adaptive
filter and drive the steady-state error to zero, hence improving
the identification accuracy of the adaptive filter. To investigate
the robustness of the algorithm to system disturbances, a load
change is introduced into the system. This load change forces
the load current to switch between 0.66 and 1.32 A every
5 ms (Fig. 7). Usually, the performance of adaptive methods
and self-tuning controllers is measured using particular metrics.
A cost function is one metric that can be used to describe the
performance of a PEF. The benefit of using a PEF is that a
cost function naturally exists. The optimum cost function for
a PEF is actually the minimization of the prediction error signal
power required to reduce the loop error to zero. It is clear from
Fig. 8 that the algorithm is capable of minimizing the prediction
error power; thereby, a well-regulated output voltage is ensured.
However, the main role of the PEF is to continuously work
alongside the adaptive algorithm to minimize the prediction

Fig. 8. Error signal behavior during adaptation process. (a) Loop error.
(b) Prediction error (ep1). Load current change: 0.66–1.32 A every 5 ms.

Fig. 9. Transient response of the proposed adaptive PD+I controller using
DCD-RLS or LMS and the comparison with the reference voltage feed-forward
scheme using LMS (μ = 1).

error. This, in turn, improves the prediction and identification
of the input filter.

The conventional LMS method can be applied with the
adaptive PD+I structure to provide enhanced performance over
the previous reference voltage feed-forward method (Fig. 9).
With the introduction of the integrator into the control loop,
the loop excitation is increased, and this helps the identification
process. However, as mentioned earlier, careful attention must
be given to the selection of the step size μ. Fig. 9 also shows
the equivalent performance of the PD+I structure using the
DCD-RLS technique. Once again, it is clear that the DCD-RLS
approach provides superior performance and is not a function
of step size.

The trajectory path of the adaptive filter coefficients can be
represented by combining the two weights of the PEF into one
coefficient vector. Here, both cascade FIR filter coefficients are
responsible for the minimization of the prediction error. Fig. 10
shows the trajectory paths, in the vicinity of the optimal point,
on the mean-square-error surface. It is noticed that the weights
of the DCD-PEF algorithm move toward the optimal values
using much larger increments. Therefore, the minimization of
error prediction is much faster than the LMS-PEF.
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Fig. 10. Trajectory paths of the adaptive filter coefficients. (a) Adaptive PD+I,
LMS. (b) Adaptive PD+I, DCD-RLS.

Fig. 11. Frequency response of the PD+I compensator and the compensated/
uncompensated open-loop gains.

Often, SMPC controller behavior is also expressed in terms
of frequency response criteria. The frequency response of the
proposed adaptive controller is shown in Fig. 11. Here, it
is shown that the phase margin of the compensation system
is increased through the introduction of the first-order FIR-
PEF (PD compensator) into the loop. The phase margin of
the adaptive PD+I compensator is 53◦, and the gain margin
is 20.6 dB. Furthermore, the versatility of the proposed PD+I
adaptive controller has been tested with other converter circuit
parameters, to represent alternative dc–dc converter designs. It
has been evaluated with higher switching frequency systems
and compared with nonadaptive control systems such as the
classical digital proportional–integral (PI) controller [26]. In
each case, the proposed adaptive controller shows very promis-
ing results and can handle a wide range of uncertainty in the
SMPC parameters.

VII. EXPERIMENTAL VALIDATION

To fully validate the proposed control system, an experi-
mental synchronous dc–dc buck converter has been designed
and tested for 5 W operation. For comparison with the sim-

Fig. 12. Transient response of PID controller with abrupt load change
between 0.66 and 1.32 A. (a) 4 ms/div: showing two transient changes.
(b) 400 μs/div: “zoom-in” on second transient.

ulation results, similar parameters and component values to
those outlined in Section VI are chosen. A Texas Instruments
TMS320F28335 digital signal processor (DSP) platform is used
to implement the digital adaptive control algorithm. The DSP
has onboard digital pulsewidth modulation and 12-b A/D con-
verter channels. Initially, a conventional PID voltage controller
is implemented on the experimental hardware. The PID is set
to control the buck converter output voltage at 3.3 V. This
serves as a benchmark for testing the DCD-RLS method. The
PID gains are optimally tuned using the well-recognized pole-
zero matching techniques previously presented in the literature
[8], [27]. The transient characteristics of the PID controller
are determined by applying a repetitive step change in load to
the buck converter. This step change causes the load current
to switch between 0.66 and 1.32 A at 25 ms intervals. The
results, shown in Fig. 12, demonstrate that the buck converter
is always operating in continuous current mode. The output
voltage transient shows significant oscillatory behavior at the
points of load change.

Following this, the DCD-RLS adaptive algorithm is imple-
mented on the DSP. For consistency, all circuit parameters
remain the same, and the buck converter is subjected to the
same load change as previously described. The experimental
results, shown in Fig. 13, are in excellent agreement with the
simulation results in Fig. 7, thus confirming the successful
practical implementation of the proposed DCD-RLS control
scheme. Compared to the experimental results achieved with
the conventional PID controller, the DCD-RLS scheme yields
significantly improved transient performance for the same
dynamic load change. The DCD-RLS method demonstrates
lower transient overshoot, significantly less oscillatory behav-
ior, and faster recovery time.

Finally, the LMS adaptive controller is implemented on
the DSP. Here, each DCD-RLS in Fig. 1 is replaced with
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Fig. 13. Transient response of adaptive PD+I DCD-RLS controller with
abrupt load change between 0.66 and 1.32 A. (a) 4 ms/div: showing two
transient changes. (b) 400 μs/div: “zoom-in” on second transient.

Fig. 14. Transient response of adaptive PD+I LMS (μ = 1) controller with
abrupt load change between 0.66 and 1.32 A. (a) 4 ms/div: showing two
transient changes. (b) 400 μs/div: “zoom-in” on second transient.

an adaptive LMS filter. As previously described, with the
LMS-PEF (stage 1), there is a need to define the step size
(μ), in accordance with (10). A range of step sizes has been
experimentally tested, and in agreement with the simulations,
optimal values of μ = 1.0 are selected. Again, the same set
of system parameters is used, and the experimental results
are shown in Fig. 14. These results are a good match to the
initial simulation waveforms shown in Fig. 9. Compared to the
conventional PID controller, the adaptive LMS controller offers

Fig. 15. Load transient response at significant change in load current, with
two-stage DCD–DCD adaptive controller and hybrid DCD–LMS adaptive
controller.

improved transient performance. However, as predicted by the
simulation results and confirmed experimentally, the DCD-RLS
offers superior dynamic performance over the LMS.

VIII. COMPLEXITY REDUCTION

In most applications, there is a tradeoff between the dynamic
performance and computational complexity (i.e., speed of exe-
cution) of the controller. This paper has presented two solutions,
each giving a different weighting to these two important per-
formance indicators. The LMS is designed for good dynamic
performance with low computational complexity, while the
DCD-RLS is designed for optimum dynamic performance. The
DCD-RLS is a computational-efficient algorithm compared to
the classic RLS schemes, but it is acknowledged that a higher
computational burden than the LMS exists. For this reason, the
overall system complexity of the proposed DCD-RLS scheme
(Fig. 1) can be reduced by exchanging the second stage DCD-
RLS for a classical LMS-PEF. The first stage DCD-RLS still
remains in place. In this way, we develop a “hybrid” DCD-
RLS:LMS control scheme.

This change does not appear to significantly compromise
the behavior of the system response with respect to conver-
gence time, identification accuracy, and control error signal
power, even during the initial transient or due to a significant
change in the system parameters. When the first stage is faced
with a high error signal, the DCD-FIR filter influences the
prediction error signal. This prediction error signal is then
passed onto the second stage LMS-FIR filter to adapt the
tap weights and adaptive gain. The simulation results from
DCD-RLS:LMS system are shown in Fig. 15 (load change:
1.3–6.5 A). The experimental results are shown in Fig. 16
(load change: 1.32–0.66 A). Here, the same conditions have
been used as those originally specified in Section VII.
While it is apparent that the dynamic performance of hybrid
DCD-RLS:LMS is not quite as good as the originally pro-
posed two-stage DCD–DCD algorithm, it still achieves an
excellent response (as shown in Fig. 15). For this reason, in
systems where computational complexity may be an issue,
this gives a good compromise solution. Also, in this particular
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Fig. 16. Transient response of hybrid DCD-RLS:LMS (μ = 1) adaptive
controller with abrupt load change between 0.66 and 1.32 A. (a) 4 ms/div:
showing two transient changes. (b) 400 μs/div: “zoom-in” on second transient.

configuration, it is possible to use a larger value of step size μ
and still obtain acceptable performance.

IX. CONCLUSION

In the area of adaptive control and system identification, RLS
methods provide promising results in terms of fast convergence
rate, small prediction error, and accurate parametric estima-
tion. However, they often have limited application in low-cost
applications, such as SMPCs, due to computationally heavy
calculations demanding significant hardware resources.

This paper has demonstrated the feasibility of an adaptive
PD+I controller for the output voltage regulation of a dc–dc
converter. The adaptive control system uses a two-stage FIR
filter and integral controller. A computationally efficient DCD-
RLS algorithm is used to implement the adaptation mechanism.
This algorithm overcomes many of the limitations of classic
RLS methods, making it well suited for power electronic ap-
plications. The controller has the ability to work continuously
in the feedback loop and rapidly minimize the controller er-
ror signal by finding real-time tap weights for the FIR filter.
The integral controller generates an amplified oscillation in the
feedback loop for a very short period of time to increase the
excitation for prediction and identification purposes. The adap-
tive filter parameters quickly converge and eliminate this oscil-
lation. In this way, the approach is suitable for two important
purposes: prediction/identification and controller adaptation.
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