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Abstract--The principles of a new technique using particle 

swarm algorithms for condition monitoring of the stator and 
rotor circuits of an induction machine is described in this paper. 
Using terminal voltage and current data, the stochastic 
optimization technique is able to indicate the presence of a fault 
and provide information about the location and nature of the 
fault. The technique is demonstrated using experimental data 
from a laboratory machine with both stator and rotor winding 
faults. 
 

Index Terms--Condition monitoring, induction machine, 
stochastic optimization, swarm algorithms. 

I.  INTRODUCTION 
ONVENTIONAl induction machine condition 
monitoring techniques [1] usually involve the use of 

embedded sensors to measure, for example, temperature or 
vibration and help detect a developing fault. There has also 
been considerable interest in detecting winding and other 
machine faults by current signature analysis of stator current 
waveforms [2]. This involves frequency-domain analysis of 
data gathered under steady-state operating condition and may 
involve the calculation of quantities such as input power [3] or 
machine negative sequence components [4]. More recently, 
other fault detection methods using data acquired during 
speed transients [5] and estimation of machine parameters [6] 
have also been suggested. 

This paper describes a new technique for machine 
condition monitoring and fault identification from terminal 
and rotor position data obtained during transient operation. In 
this method, a stochastic search is carried out using particle 
swarm algorithms to estimate values of winding resistance 
which give the best possible match between the performance 
of the faulty experimental machine and its mathematical 
model, thus identifying both the location and nature of the 
winding fault. 
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II.  SCHEMATIC DESCRIPTION OF THE NEW METHOD 
Fig. 1 shows a schematic diagram of the new fault 

identification technique. Terminal voltage and rotor position 
data from a laboratory induction machine is used as the input 
to a transient ABCabc to calculate the three stator currents. 
These calculated currents are then compared to the actual 
measured currents to produce a set of current errors that are 
integrated then summed to give an overall calculation error. 

When the machine is in its healthy state, its effective 
parameters correspond to the model parameters and the 
calculation error is small. If a fault occurs in the machine’s 
windings its electrical parameters are of course modified and 
when the measured stator currents are compared to the 
calculated currents there will be a large calculation error 
giving a fast indication that a fault of some type is present. 
Fault identification is carried out by adjusting the model 
parameters, using a stochastic search method, such as particle 
swarm algorithms, to minimize the error. The new set of 
model parameters then defines the nature and location of the 
fault, for example, an increased value of resistance for stator 
winding b, indicates a developing open-circuit condition in 
that circuit, and so on. 
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Fig. 1.  Schematic representation of the fault identification technique using 
particle swarm algorithms. 
 

A.  Particle Swarm Optimization 
Particle Swarm Algorithms (PSA) is an evolutionary 

computation technique [7] inspired by social behavior of bird 

C 



 

flocking. Like other evolutionary optimization techniques 
such as Genetic Algorithms, it is based on a population of 
randomly generated potential solutions that are dynamically 
adjusted in an iterative process in search for an optimum 
solution. Unlike GA techniques however, the particle swarm 
algorithm is not based on the idea of the survival of the fittest. 
Members of the population with lower fitness functions do 
survive during the optimization process and can potentially 
visit any point in the search space.  

Each bird or member of the population in a PSA Xi is 
treated as a point in the N-dimensional space representing the 
optimization problem, so that: 

Xi = (xi1, xi2, …, xiN) for i = 1, 2, …, M  (1) 
where N is the number of variables and M is the number of 
particles that form the population.  

The position of each particle within the search space is a 
potential result that can be evaluated in accordance with a 
given performance function to assess the fitness value of that 
member of the population. In addition to its position within 
the search space, each particle is free to fly with a velocity Vi 
that is continuously adjusted in accordance with the flying 
history (i.e. position and speed) of the particle itself and of 
other members of the population.  

Vi = (vi1, vi2, …, viN) for i = 1, 2, …, M  (2) 
The dynamic equations for the particle swarm algorithm 

are given by: 
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where n = (1, 2, …, N),  i = (1, 2, …, M), a1 and a2 are 
positive constants used to fine tune the operation and 
convergence of the algorithm,  b1 and b2 are random numbers 
between 0 and 1,  pgn is the position of the best particle in the 
flock, i.e. the bird with the best position and w is a weighting 
function that determined the extent to which previous 
velocities can influence the current velocity of the particle. A 
large value of w assists the exploration of new areas by the 
flock, whereas a small value will restrict or narrow the search 
area for fine tuning purposes. 

 To apply this concept to condition monitoring of an 
induction machine or for machine parameter identification [8], 
each individual Xi in the bird population represents one set of 
values of the machine winding resistances (Rsa, Rsb, Rsc, Rra, 
Rrb and Rrc) where the resistance values must lie within a pre-
defined search space. In this paper the resistance values are 
allowed to vary from 0.1x to 5x their nominal values. 

B.  Mathematical Model of the Motor 
Assuming that the machine has a smooth air-gap, the three-

phase machine equations can be written in the natural 
ABCabc reference frame (Equation 5), where vA, vB, vC, iA, iB, 
iC are stator winding voltages and currents, va, vb, vc, ia, ib, ic 

are rotor winding voltages and currents, RA, RB, RC are stator 
winding resistances, Ls is stator winding self inductance, Ra, 
Rb, Rc are rotor winding resistances, Lr is rotor winding self 
inductance, Ms is the mutual inductance between pairs of 
stator windings, Mr is the mutual inductance between pairs of 
rotor windings, M is the peak value of rotor position 
dependent mutual inductance between stator/rotor winding 
pairs, θ1 is the rotor position angle measured in electrical 
radians, θ2 = θ1 + 2π/3 and  θ3  = θ1 + 4π/3. 

Only the stator and rotor winding resistances are separately 
defined, and subsequently adjusted during the search routine. 
Of course many faults also have an impact on machine 
inductance parameters and to obtain an exact match between 
measured and modeled armature currents (Fig. 1) under fault 
conditions it would be necessary to include the inductance 
parameters in the search. However, the aim of this work is not 
to completely identify the faulted machine parameters, but 
rather to demonstrate the new technique by using it to identify 
the location and type of rotor and stator series winding faults. 
Other machine faults could of course be included by 
extending the search to take in a wider range of machine 
parameters. 

Because the six winding resistances may have different 
values, there is no advantage in seeking to transform the 
machine equations into an alternative reference frame. Instead 
the six winding voltage equations in are simply subjected to 
the constraints imposed by winding connection (star or delta) 
and short-circuiting of the secondary, then solved by 
numerical integration. 

III.  EXPERIMENTAL RESULTS 
A three-phase, 50 Hz, 240 V, 2-pole wound-rotor induction 

motor rated at 1.5 kW was used to obtain experimental results 
for both healthy and faulted operating conditions. Both the 
stator and rotor windings of the machine are delta connected, 
though the rotor delta is short-circuited between all three 
terminals, giving effectively three independent short-circuited 
windings. Standard tests (dc resistance, no-load and locked 
rotor tests) were carried out to determine the nominal values 
of the machine parameters, giving the following results: 

RA = RB = RC = 3.47 Ω, Ra = Rb = Rc = 4.3 Ω, Ls = 0.29 H, 
Lr = 0.47 H, Ms = 0.14 H, Mr = 0.23 H and M = 0.36 H.  
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For each of the operating conditions discussed below, data 
was collected over a time window of 0.4 sec, with a sampling 
interval of 1 ms, as the machine accelerated from rest 
following the direct switch on of the 3-phase supply voltage. 
The acquired data was then processed off-line using the 
particle swarm algorithm to determine the effective resistances 
of the six windings.  

A.  Initial Test using Healthy Machine 
Initially, a test was carried out with the healthy, un-faulted 

machine to ensure that no spurious fault indications would 
arise and also to illustrate the behavior of the particle swarm 
algorithm. The three graphs in Figs. 2-4 show the two sets of 
estimated winding resistances and the error produced by the 
existing solution. About 25 investigations of potential 
solutions were required to obtain convergence of the two sets 
of estimated resistances to common values. The calculation 
error falls from a maximum value of 28 A.s, before gradually 
reducing to 5.5 A.s. These values of calculation error must be 
considered in the context of peak currents in the three stator 
windings reaching 60A throughout the 0.4s data window. The 
simplicity of the motor model means that it would be 
unreasonable to expect the calculation error to reduce to zero, 
even with a larger number of investigations. 
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Fig. 2.  Stator resistance estimation for healthy operating conditions. 
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Fig. 3.  Rotor resistance estimation for healthy operating conditions. 
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Fig. 4.  Current estimation error for healthy operating conditions. 

 

B.  Search for Rotor Winding Series Fault 
A 5Ω resistance was then placed in series with rotor 

winding a to mimic a developing rotor winding open-circuit 
fault. The operation of the particle swarm algorithm as it 
estimates the winding resistances is illustrated in Figs. 5-7. A 
clear trend is established very quickly, with the estimated 
resistance of rotor winding a being noticeably higher than that 
of the other two rotor resistances. These trends become firmly 
established over the subsequent 25 investigations and 
highlight the presence of a developing open-circuit fault in 
rotor winding a. The calculation error in this case falls from a 
maximum value of 16 A.s, before gradually reducing to just 
less than 6.8 A.s. 
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Fig. 5.  Stator resistance estimation for operation with rotor winding fault 
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Fig. 6.  Rotor resistance estimation for operation with rotor winding  fault 
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Fig. 7.  Current estimation error for operation with rotor winding fault 

IV.  CONCLUSIONS 
A new condition monitoring technique based on particle 

swarm optimization is shown to be able to identify the type 
and location of a motor winding series fault. Because the 
technique uses time-domain data, there is no requirement for 
the machine to be in a steady-state operating condition: in fact 
data acquired during a starting transient may be more helpful 
in discriminating between healthy and fault conditions. 

The general scheme, described here for a wound rotor 
induction motor, is capable of being further developed by 
including in the machine model an appropriate set of 
equations to describe the secondary circuits of a cage 
induction machine. Other machine faults, such as inter-phase 
and inter-bar faults, could be included by extending the search 
to cover a wider range of machine parameters, including the 
inductances of the machine 
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