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Abstract— The appearance of nonlinear phenomena like bi-
furcations and chaos in dc-dc converters are mainly studied by
using the Poincaré map of the system. This paper presents an
alternative method based on the eigenvalues of the state transition
matrix over one full cycle which provides better insight of the
system and its stability properties. The paper shows how the
state transition matrix for a full cycle can be applied to a wide
class of power electronic circuits to investigate the stability of
various limit cycles and offers considerable advantages over other
convectional methods without increasing the complexity of the
analysis. Another advantage of this method is its ability to explain
and predict the length of intermittent subharmonic phenomena
which occur when these converters are coupled with spurious
signals.

I. INTRODUCTION

DURING the last 15 years the scientific community has
turned its attention to the study of the nonlinear behavior

of piecewise smooth systems and more specifically the analy-
sis of the bifurcation structure of dc-dc converters. The main
and desired behavior of the system is a stable periodic motion
around a predetermined/predefined value. The period of that
motion being equal the period of the external clock that is
used to control the system. There are cases, however, where
a small change of a system parameter may cause the limit
cycle to lose its stability and another periodic orbit maybe
born with double period. By far the most common method
of studying this period doubling bifurcation is the use of the
Poincaré map, [1]–[3], which samples the states of the system
at regular intervals with the stability properties of the system
being described by the eigenvalues of this map. Other maps
have also been proposed like the A and S-switching maps
[4]. Methods like the trajectory sensitivity analysis [5] have
also been used to study the stability. Most of these methods,
apart from answering the fundamental question of determining
the stability of the limit cycle, offer little knowledge of how
and why this loss of stability occurs. In [6], [7] we have
shown that using the monodromy matrix it is possible to study
the stability of period-1 limit cycles of the step down dc-dc
converter. Based on this knowledge we were able to propose
and optimally design a period doubling bifurcation controller
[6] which can greatly extend the region of the stable period-1
motion.
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This paper extends the use of the monodromy matrix to
period two limit cycles and proves that the state transition
matrix during the switching can be the identity matrix (when
there is no sliding mode [8]). Initially the stability of the period
one and two limit cycles of the buck converter is studied before
the analysis is extended to another dc-dc converter, namely
the boost converter. Finally we use the eigenvalues of the
monodromy matrix to identify the length of the intermittent
subharmonic windows that were reported in [9].

II. DEFINITION OF THE MONODROMY MATRIX

One of the most important properties of a system is its
stability. Even though the stability of equilibria is fairly simple
the determination of the stability of limit cycles is rather
tricky. One method of determining the stability of periodic
motions is to calculate the state transition matrix of the system
over one full cycle and then to determine its eigenvalues.
If they lie in the unit circle then the periodic motion is
stable. The state transition matrix of the system (also called
fundamental solution matrix) evaluated over a full period is
referred to as the monodromy matrix [10], [11]. If the system
is piecewise smooth then the effects of the switching(s) must
be taken into account when calculating the monodromy matrix.
For example, if there is one switching in a period, then the
monodromy matrix must be broken into three state transition
matrices. Two for the two smooth regions before and after
the switching, and one for the transition across the switching
surface:

M(Tp, 0) = Φ(Tp, tΣ) × Φ(tΣ, tΣ) × Φ(tΣ, 0) (1)

where Φ(TA, tA), is the state transtion matrix from t = tA
until t = tB , Tp is the period of the cycle and tΣ is the instant
where the trajectory crosses the manifold. The matrix S =
Φ(tΣ, tΣ) is the state transition matrix during the switching
(also called the saltation matrix) and is defined as [11]:

S = I +
(lim
t↓tΣ

(f−(x(t))) − lim
t↑tΣ

(f+(x(t))))nT

nT lim
t↑tΣ

(f+(x(t))) +
∂h

∂t
(x(t), tΣ)

(2)

To determine the Floquet multipliers of the system i.e. the
eigenvalues of the monodromy matrix we have to calculate the
three state transition matrices shown in eqn. 1. If the system
is linear time invariant then the state transition matrix before
and after the switching can be easily calculated by using the
exponential matrix. On the other hand the calculation of the
saltation matrix can be rather cumbersome as the system may
have transcendental equations [7].
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III. THE BUCK CONVERTER

A. Analysis of period-1 operation

The voltage controlled buck converter is shown in Fig. 1.
It consists of a dc voltage source (Vin), a switch (S), an
low pass filter (L, C) and a resistor (R) which represents the
load. The switch is controlled through a PWM signal which
is obtained through a comparison of the control signal (Vcon)
with a sawtooth signal (Vramp). Due to the switching action the
response of the system will be a dc value with a small periodic
ripple (limit cycle). In normal operating conditions the period
of this cycle equals the period of the saw tooth signal T , Fig
2a. To study the stability of this cycle it suffices to study the
evolution of the system in t ∈ [0, T ). In that interval it can
be seen that we will have one crossing of the trajectory with
the switching manifold, at tΣ = (1−d)T , where d is the duty
cycle. The two vector fields before and after the switching are:

f+(x(t)) =
[

x2(t)/C − x1(t)/RC
−x1(t)/L

]
,

f−(x(t)) =
[

x2(t)/C − x1(t)/RC
(Vin − x1(t))/L

]
.

Since the system is piecewise linear Φ(tΣ, T ) = eAsdT

and Φ(0, tΣ) = eAs(1−d)T , where As is the Jacobian of the

two vector fields: As =
[−1/RC 1/C
−1/L 0

]
. The switching

hypersurface (h) is given by

h(x(t), t) = x1(t) − Vref − vramp(t)
A

= 0, A �= 0. (3)

vramp(t) = VL + (VU − VL)
(

t

T
mod 1

)
(4)

We numerically calculated the duty cycle by solving a
nonlinear transcendental equation to derive the duty cycle and
hence we determined the stability of the system. The results of
this analysis which were first presented in [7] and were verified
experimentally and numerically. The results are presented for
convenience in Table I.
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Fig. 1. The voltage mode controlled buck dc-dc converter.
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Fig. 2. Period 1 and 2 of the buck converter.

TABLE I

FLOQUET MULTIPLIERS FOR VARIOUS INPUT VOLTAGES, PERIOD 1

Vin, V Floquet multipliers

14 −0.6265 ± 0.5354j

20 −0.6919 ± 0.4477j

24 −0.8211 ± 0.0708j

25

(
−0.6214

−1.0929

)

B. Period two

Fig. 2b also shows a stable period two limit cycle of
the buck converter and it is obvious from this, that the
trajectory will cross the switching manifold 3 times (assuming
no border collision or other discontinuous bifurcations) in
t ∈ [0, 2Tp). Hence the overall state transition matrix is
M(2T, 0) = Φ(2T, tΣ3)×S3×Φ(tΣ3 , T )×S2×Φ(T, tΣ1)×
S1 × Φ(tΣ1 , 0). To calculate S2 we have to find the time
derivative of the switching manifold at t = T . Since the
manifold is discontinuous (with respect to time) at this point
the time derivative will be either −∞ or +∞. Regardless of
its sign the saltation matrix will be S2 = I hence our analysis
is greatly simplified as we do not have to take into account
this discontinuity. S1 and S3 are given by:

S1 =




1 0
Vin/L

x2(tΣ1) − x1(tΣ1)/R

C
− VU − VL

AT

1


 (5)
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S3 =




1 0
Vin/L

x2(tΣ3 ) − x1(tΣ3)/R

C
− VU − VL

AT

1


 (6)

To calculate the state vector at t = tΣ1 and t = tΣ3 we will
follow a procedure similar to [12] and [7]:

x(2T ) = eAs(2T−tΣ3)x(tΣ3) +
∫ 2T

tΣ3

eAs(2T−τ)


 0

Vin

L


 dτ (7)

x(tΣ3) = eAs(tΣ3−T )x(T ) (8)

x(T ) = eAs(T−tΣ1)x(tΣ1) +
∫ T

tΣ1

eAs(T−τ)


 0

Vin

L


 dτ (9)

x(tΣ1 ) = eAs(tΣ1 )x(0) (10)

and
x(2T ) = x(0)

tΣ1 is defined by tΣ1 = d′1T and hence T−tΣ1 = (1−d′1)T .
Likewise we define as tΣ3 − T = d′2T and hence tΣ3 = T +
d′2T so 2T − tΣ3 = 2T − T + d′2T = (1 − d′2)T . From the
circuit topology it is obvious that d′1 = 1−d1 and d′2 = 1−d2,
where d1 and d2 are the two duty cycles for each clock cycle
respectively.

The two switchings occur when:

[
1 0

]
x(tΣ1) = Vref +

VL + (VU − VL)d′1
A

(11)

[
1 0

]
x(tΣ3) = Vref +

VL + (VU − VL)d′2
A

(12)

These two eqns. will give a system of two nonlinear
transcendental equations with two unknowns which was solved
numerically. The solutions of that are shown in Fig. 3 and a
sample of the corresponding state vector in Table II.

TABLE II

STATE VECTORS AT SWITCHING INSTANTS, PERIOD 2

Vin, V x(tΣ1 ) x(tΣ3 )

25
h
11.986 0.48225

iT h
12.062 0.4835

iT

30
h
11.94 0.4454

iT h
12.19 0.4731

iT

30.5
h
11.938 0.4412

iT h
12.199 0.47249

iT

31
h
11.937 0.43694

iT h
12.207 0.47191

iT

31.5
h
11.935 0.43258

iT h
12.214 0.47137

iT

By using the values of Table II is possible to compute the
monodromy matrix of the period 2 cycle for various values of
the input voltage and from that to calculate the corresponding
floquet multipliers (Fig. 4 and Table III).

The presented results of period 1 and 2 were validated
by numerical and experiential results and by the bifurcation
diagram shown in Fig. 5
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Fig. 3. Evaluation of the duty cycles, period 2

TABLE III

FLOQUET MULTIPLIERS FOR VARIOUS INPUT VOLTAGES, PERIOD 2

Vin, V Floquet multipliers

25 0.613895 ± 0.29059j

30 −0.50408 ± 0.45521j

31

(
−0.90387

−0.51037

)

31.5

(
−1.241

−0.37172

)

IV. BOOST CONVERTER

The preceding analysis can also be carried out on the
boost converter. We recognize that the stability analysis of
the current controlled boost converter is a lot easier than the
one of the buck converter when we use the Poinacré map since
it does not involve any transcendental equations. Nevertheless
we present here how the previously mentioned method can
be used in order to demonstrate the fact that it is universally
applicable to any piecewise smooth system.

The current controlled boost converter, shown in Fig. 6 is
another piecewise system whose main and desired behavior
is a period one limit cycle, Fig. 7. The switching manifold
is defined as h(x(t)) = x2 − Iref , and the system before and

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

real part

Im
ag

in
ar

y 
pa

rt

r = 1

r=0.6792

25

25

32 31
31

32

31.5

 

Fig. 4. Evolution of the Floquet multipliers of the period-2 orbit, as Vin is
varied.
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Fig. 5. Bifurcation diagram of the buck converter

after the switching is described by

ẋ =
[ −1

RC 0
0 0

]
x +

[
0
1
L

]
Vin, ẋ =

[ −1
RC

1
C−1

L 0

]
x +

[
0
1
L

]
Vin

where [
vc

iL

]
=

[
x1

x2

]

The two smooth vector fields before and after the switching
are:

f−(x) =
[−x1/RC

Vin/L

]
, f+(x) =




x2R − x1

RC
Vin − x1

L


 (13)

Hence n =
[
0
1

]
By using the formula of eqn (1) it is found that the saltation

matrix is:

S = I +
(f+ − f−)nT

nT f−
=

[
1 x2(tΣ)L

CVin

0 Vin−x1(tΣ)
Vin

]
(14)

Notice that since the switching manifold is not time dependent
the calculation of the saltation matrix is simpler than its
counterpart for the buck converter. To calculate the value of the
state vector at (tΣ) we can use either the same process as for
the buck converter or we can obtain it analytically, [1]. Based
on these values it is possible to find the Floquet multipliers of
the system (Table IV) and to study its stability. These values
agree perfectly with the results that were obtained from the
numerical simulation of the system (Fig. 8) and they also agree
with the bifurcation diagram of the system (Fig. 9).

V. INTERMITTENT SUBHARMONIC WINDOWS

In [9] it was first reported that external spurious signals
may influence the stability properties of the system. To model
these signals the authors in [9] substituted Vref by Vref +
aVref sin(ωst), where a is the strength of the spurious signal
and ωs is their frequency which maybe different from ω = 2π

T .
For convenience we reproduce these results in Fig. 10

 

Fig. 6. Current controlled boost converter
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Fig. 7. Phase space for boost converter, Iref = 0.4A

The problem with the analysis of that system is that the
value of Vref is time periodic with a period other than T and
hence we cannot use the assumption t ∈ [0, T ). This implies
that we cannot simplify the equation of the switching manifold

to: h(x(t), t) = x1(t) − Vref − VL + (VU − VL)/T

A
= 0 as

we have for the normal uncoupled period one operation. In
[7] we studied the cause for the appearances of subharmonic
windows by assuming that ω = ωs. In order to carry out
the analysis the duration of the subharmonic window had to
be extended from −∞ to +∞ instead of the experimentally

TABLE IV

FLOQUET MULTIPLIERS FOR VARIOUS Iref , BOOST CONVERTER

Iref , A Floquet multipliers

0.46

(
0.5560

−0.9240

)

0.49

(
0.56011

−0.990

)

0.5

(
0.5613

−1.012

)

0.51

(
0.5624

−1.034

)
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Fig. 8. Numerical results for Iref = 0.49A and 0.5A

 

Fig. 9. Bifurcation diagram of boost converter

observed period 2π/|ω −ωs| [9]. In this part of the paper the
analysis is extended to semi-analytically predict the length of
the subharmonic window. To do this we break the frequency
of the spurious signal to ωs = ω + ∆ω and hence sin(ωst) =
sin((ω + ∆ω)t). Since ∆ω is a lot smaller than ω it can be
assumed to be constant and hence we can repeat the analysis
[7] for various values of ∆ω. This implies that the switching
manifold can be considered to be:

h(x(t), t, τ) = x1−Vref −aVref sin(ωt+∆ωτ)−Vramp (15)

t ∈ (0, Tp), τ ∈
(

0,
2π

∆ω

)
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Fig. 10. Voltage response for a = 0.0001 and a = 0.0003

The interval
(
0, 2π

∆ω

)
is broken into 100 points and for these

we calculate the points where the period one orbit becomes
unstable. Fig. 11 shows the numerical simulation of the buck
converter with the spurious signal and Fig. 12 shows the
duration of the window as it was calculated by using the
previous method for a = 0.0003 and Vin = 24V. Table V
summarizes the results.
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Fig. 11. Subharmonic window for a=0.0003
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 Fig. 12. Duration of the subharmonic window as it was semi-analytically

calculated

TABLE V

LENGTH OF SUBHARMONIC WINDOW

Strength of spurious signal Duration

0.0003 0.303

0.0004 0.363

0.0006 0.404

0.0009 0.424

VI. CONCLUSION

The monodromy matrix has been derived for various limit
cycles for the dc-dc buck and boost converters. This matrix
which defines the state transition matrix over one full cycle
has been used to determine the stability of various limit cycles
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of both circuits. This method offers an alternative to other
existing methods based on the Poincaré map and also offers a
deeper insight of how and the limit cycles lose their stability.
The proposed method has been shown to be universally
applicable to any piecewise smooth system. This was further
demonstrated by its use to determine semi-analytically, the
length of subharmonic windows experienced by the system.
This knowledge can be used to design appropriate controllers
to ensure period one operation over a wider range in the
presence of severe disturbances by external spurious signals.
Currently the authors are working on the application of the
new method to more complicated AC-DC converters.

APPENDIX

Parameters of buck converter: Vin = 24V , Vref = 11.3V ,
L = 20mH, R = 22Ω, C = 47µF, A = 8.4, T =
1/2500s,ωs = 2505 × 2πs, the ramp signal varies from 3.8V
to 8.2V.

Parameters of boost converter: C = 10µF ,L = 1.5mH ,
R = 40Ω, T = 100µs and Vin = 5V .
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