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Abstract—This paper proposes an optimization framework to 

deal with the uncertainty in a day-ahead scheduling of smart 

active distribution networks (ADNs). The optimal scheduling for 

a power grid is obtained such that the operation costs of 

distributed generations (DGs) and the main grid are minimized. 

Unpredictable demand and PVs impose some challenges such as 

uncertainty. So, the uncertainty of demand and PVs forecasting 

errors are modeled using a hybrid stochastic/robust (HSR) 

optimization method. The proposed model is used for the optimal 

day-ahead scheduling of ADNs in a way to benefit from the 

advantages of both methods. Also, in this paper, the AC load flow 

constraints are linearized to moderate the complexity of the 

formulation. Accordingly, a mixed-integer linear programming 

(MILP) formulation is presented to solve the proposed day-ahead 

scheduling problem of ADNs. To evaluate the performance of the 

proposed linearized HSR (LHSR) method, the IEEE 33-bus 

distribution test system is used as a case study. 

 
Index Terms— Distributed Generations, Bounded Symmetric 

Optimization, Mixed Integer Linear Programming (MILP), 

Robust Optimization, Stochastic Optimization, Normal 

Distribution, Beta Distribution. 

 
NOMENCLATURE 

The symbols used in this paper are listed and defined in this 

section. 

A. Indices and Sets 

, ii   Index and Set of DGs, respectively. 

, tt   Index and Set of periods, respectively. 

, ,n bn N  Index and Set and total number of buses, 

respectively. 

, ,l ll N  Index and Set and total number of lines, 

respectively. 
n
i  Set of DGs placed at bus n. 

, n

DD   Index and set of demands placed at bus n. 

( )s l  Sending bus of line l. 

( )r l  Receiving bus of line l. 

B. Parameters 

MG

tC  Locational marginal price of electricity at the 

substation bus at time t ($/MWh). 

, ,,D D

n t n tp q  Forecasted active (MW) and reactive (MVAr) 

power of load at bus n in period t, respectively. 

max

MGS  
Maximum imported apparent power of main 

grid (MVA). 

max,

DG

iS  Maximum apparent power of DG i (MVA). 

max

lS  Maximum apparent power flow of line l (MVA). 

minV  Minimum voltage magnitude of buses (PU). 

maxV  Maximum voltage magnitude of buses (PU). 

lY  Admittance of line l (PU). 

lG  Conductance of line l (PU). 

l  Susceptance of line l (PU). 
PV

np  Output power of PV placed at bus n (MW). 

C. Variables 

, ,,DG DG

i t i tp q  Generated active and reactive power by DG i 

in period t, respectively. 

, ,,MG MG

n t n tp q  Injected active and reactive power by main 

grid to bus n in period t, respectively. 

,n tV  Magnitude of voltage of bus n in period t 

(PU). 

,l tS  Apparent power flow of line l in period t 

(MVA). 

, ,,l t l tp q  Active and reactive power flow of line l in 

period t. 

,n t  Voltage angle of bus n in period t. 

  Angle between apparent power and active 

power. 
DG

iC  Cost function of DG i ($). 

I. INTRODUCTION 

A.  Aims and Background  

CTIVE distribution network (ADN) is a new solution to 

realize wide and flexible access to various distributed 

generations (DGs), e.g., photovoltaics (PVs), in smart 

distribution systems. The widespread integration of renewable 

energy sources (RESs) and the increase of the number of PVs 

have brought new challenges to the safe and economic 

operation of the ADNs [1]. The main objective of the “active” 

network management is to coordinate the controllable DGs, 

PVs and demand loads.  

In the traditional radial distribution networks, the power 

flow is unidirectional from generating station to the 

consumers. Nevertheless, the penetration of RESs has a 

significant impact on the power flow, voltage magnitude and 

reactive power flow in distribution networks. The AC load 

flow (AC-LF) model plays a vital role in the ADN to manage 

and realize the distributed power supply. Accordingly, the 

optimal day-ahead scheduling necessitates employing accurate 
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AC-LF models. The AC-LF models can be formulated with 

different objective functions: minimization of energy costs, 

line congestion, voltage deviations or network losses [2]. 

Mathematically, the AC-LF models are inherently non-

convex. Since, in the AC-LF models, there are both integer 

variables (representing resource statuses) and non-linear 

equations (AC-LF equations), they are in the form of mixed 

integer non-linear programming (MINLP). 

Currently, the MINLP models are hard to solve and 

computationally intractable if they are directly solved by 

traditional MINLP solvers [3]. Accordingly, the economic 

operation of the ADN based on the AC-LF may not be a 

tractable problem even for the small size systems. Therefore, 

scheduling problems based on a linearized AC-LF model yield 

valid results near to nonlinear AC-LF, and it is more 

computationally efficient for the practical applications to have 

desirable solutions [4]. Although, the linearization of AC-LF 

model is not easy to obtain.  

Furthermore, there are some uncertainties introduced by the 

loads and the presence of RESs as a result of forecasting errors 

in their day-ahead consumption/ production. This aspect 

makes the optimization problem even more complex as it 

includes uncertain parameters. Accordingly, the uncertainty 

modeling of RESs and loads can be developed by the available 

stochastic approach (SA) and/or robust approach (RA) [5] and 

[6]. Each method has its own ‘pros and cons’. Some research 

works on the stochastic programming in the area have been 

reported in [7], [8] and [9]. A two-stage stochastic unit 

commitment model considering RESs is represented in [7] 

wherein the uncertain parameters are demand, wind, and PV. 

In order to account for the uncertainty around the true 

outcomes of load, wind, and PV, a minimum conditional value 

at risk term has been included in the formulation. In [8], a unit 

commitment problem with the stochastic solar power 

penetration is considered. In the first stage, the unit 

commitment, economic dispatch, and solar power scheduling 

decisions are formulated based on the day-ahead forecasted 

solar power and in the second stage, the solar power is 

planned and finally the uncertainty of solar power is 

discussed. The SA usually needs the generation of a rather 

large number of scenarios leading to large execution times, 

even for reasonably large values of the duality gap. Therefore, 

different scenario reduction approaches have been proposed to 

select the main scenarios while the small number of samples 

may lead to the infeasibility conditions. Stochastic 

programming is modeled while the expected total energy costs 

are minimized in [9] where in the first-stage of the stochastic 

model, the storage capacities (e.g., batteries) are determined. 

Run times and optimization gaps are significantly decreased 

by performing a dynamic cut selection procedure and a lower 

bound improvement plan within the stochastic dual dynamic 

programming framework. The SA usually needs the 

generation of a rather large number of scenarios leading to 

impossibly large executing times, even for reasonably large 

values of the duality gap [8]. Therefore, different scenario 

reduction approaches have been proposed to select the main 

scenarios that the small number of samples may lead to the 

infeasibility issues. That is, the day-ahead scheduling decision 

might not be feasible for some scenarios that are not selected. 

This is the main disadvantage of the SA. On the other hand, 

the RA has the advantages that the uncertainty is represented 

by a robust set instead of scenarios, and hence the problem 

remains a moderate complexity that does not grow with the 

number of scenarios and it requires minimal information of the 

input uncertain parameters. Similarly, the RA has been 

proposed to ensure the robustness and make the problem 

feasible for the most outcomes of the real time uncertain input 

parameters. Some research works have been focused on the 

RA in the area [6], [10] and [11]. In [6], the robust 

optimization model is presented for economic dispatch with 

wind power uncertainty under different levels of uncertainty 

budgets. In the ADNs, in order to address the uncertainties of 

the PV outputs, a two-stage RA is applied for the centralized 

optimal dispatch of PV inverters [10]. Similarly, a two-stage 

robust optimization model is presented for the uncertain wind 

power generation in [11] to harmonize the compensators of the 

discrete and continuous reactive power sources. However, 

while the objective function of the RA is to minimize the 

worst case cost, it always faces the challenges on over 

conservatism because the worst case scenario seldom occurs. 

To address the above shortages of both stochastic and robust 

methods, in this paper, the SA and RA are combined to take 

advantages of the both stochastic and robust methods, 

particularly when the problem size is large and the historical 

data is not fully available. 

B. Contributions 

The main contributions of this paper are as follows. 

− This paper presents an optimization framework for 

analyzing the PV integrated ADNs. The intrinsic uncertainties 

of the network in this problem are the uncertain loads and PV 

generations. Combination of the RA and SA are utilized to 

implement the uncertain parameters in the problem to benefit 

from both RA and SA features. Moreover, the output power of 

PVs is represented by Beta Probability Distribution Function 

(BPDF). Since, in the proposed hybrid stochastic/robust 

(HSR) approach, the uncertain parameter should have a 

normal PDF (NPDF), a new approximation methodology is 

introduced in a way to convert the BPDF to the NPDFs with 

the least possible error. That is, an NPDF with a specific mean 

and standard deviation replaces the BPDF that expresses the 

output power of the PVs. The previously mentioned NPDF 

which is above the curve of BPDF, has the lowest difference 

with the curve of BPDF when compared to any other NPDFs.  

− In order to simplify the calculations, nonlinear load flow 

equations are approximated to piece-wisely linearized lines 

with specified slopes and intercept elevation which as 

compared to any other lines have the minimum difference with 

the nonlinear equations.  

− The bounded and symmetric approach is utilized for 

uncertainty handling of the intermittent and uncertain PV 

power generation. 

C. Structure of the paper 

The rest of this paper is organized as follows. Section II 

describes the proposed method and states mathematical 

formulation. Section III provides the linearization of load 

flow. Section IV explains the PDF approximation. Simulation 
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Results and Discussion are presented in Section V. Finally, 

conclusions are drawn in Section VI. 

II. MATHEMATICAL FORMULATION 

In this section, the proposed methodology will be explained. 

The problem is formulated based on the proposed optimization 

framework wherein the operation cost function is minimized 

subject to the operation and technical constraints as expressed 

in the following subsections. 

A. Proposed Methodology 

In this section, the proposed method is proved. The problem 

based on combination robust optimization (RO) and 

stochastich programming (SP) is expressed as follows [13]: 

min/ max T Tq x j y+
 (1) 

Gx Dy e+ 
 (2) 

2 2 2 2

max[1,| |]

l l

lm m li i lm m li i l

m i m M i I

l l

g x d y g x d y e

e e l

 

+ + + +

 + 

   


 

(3) 

x x x 
 

(4) 

0,1iy i= 
 (5) 

(1 )true

lm lm lmg g= +
 

(6) 

(1 )true

li li lid d= +
 

(7) 

(1 )true

l l le e= +
 

(8) 

In the above MILP problem, G and D are uncertain 

parameters. Also, x and y are variables. Ml and Il are the set of 

indices regarding uncertain parameters.   is a variable related 

to the normal distribution. Constraints (6)-(8) denote the 

relation between true value and nominal value. In order to 

prove this problem, two conditions must be satisfied: 

(i) the problem is feasible for the nominal value; 

(ii) Pr max[1,| |]true true true

lm m li i l l

m i

g x d y e e 
 

+  +  
 
   

where 𝜆=𝐹𝑛
−1(1 − 𝜅). 

Proof of condition (ii):  

Pr max[1,| |]true true true

lm m li i l l

m i

g x d y e e
 

+  + 
 
  

 

| |

Pr | |

| | max[1,| |]

l

l

lm m lm lm m

m m M

li i li li i

i i I

l l l l

g x g x

d y d y

e e e





 
+ 

 
  

= + +  
 
 + +
 
  

 

 

 

 

 

  

 
2 2 2 2

| | | | | |

Pr l l

l l

lm lm m li li i l l

m M i I

lm m li i l

m M i I

g x d y e

g x d y e

  


 

 

=

 
 + −
  

 
+ + 

 
  

 

 
  

 1 Pr 1 ( ) 1 (1 )nF   = −   = − = − − =   

Where, is a random variable with standardized normal 

distribution. Also, if the non-equality constraint (2) is 

converted to the equality constraint, then: 

Gx Dy e+   (9) 

2 2 2 2

max[1,| |]

l l

lm m li i lm m li i l

m i m M i I

l l

g x d y g x d y e

e e l

 

+ + + +

 + 

   


 

(10) 

B. Problem Statement  

The objective function of the problem is defined as follows: 

, ,min ( , )
t i n

DG DG MG MG

i i t t n t

T i n

f y u C p C p
  

 
= + 

 
    (11) 

, ,[ , ]DG MG

i t n ty p p=   (12) 

, ,[ , ]n t l tu V S=  (13) 

, 1, 2, ,[ , ,..., ]
bn t t t N tV V V V=  (14) 

, 1, 2, ,[ , ,..., ]
ll t t t N tS S S S=  (15) 

In (11), the first term and second term are related to the 

operation cost of DGs and the cost of injected power by the 

main grid, respectively. The vector of y is introduced as 

control variables in (12) and u states the dependent variables 

in (13). In (4) and (5), the components of these vectors are 

represented.  

Quadratic cost function of a DG is described as follow [21]: 
2

, , ,( ) ( )DG DG DG DG

i i t i i i t i i tC p a b p c p= + +   (16)   

In addition, it should be noted that the operation cost of the 

reactive power of the DGs and the main grid has been ignored. 

The operation constraints on this problem based on the 

combination of robust and stochastic methods are discussed 

below [12], [13]: 

, , , ( ), ( ), ( ), ( )

: ( )

, ( ), ( ), ( ), ( ) ,

: ( )

( , , , )

( , , , ) ,

n
i

n
D

MG DG

n t i t l t s l t r l t l s l r l

l s l ni

D

l t s l t r l t l s l r l n t

l r l n D

p p p V V Y

p V V Y p n t





=

= 

+ −

+   

 

 

  

(17) 

, , , ( ), ( ), ( ), ( )

: ( )

, ( ), ( ), ( ), ( ) ,

: ( )

, ,

( , , , )

( , , , )

max 1, ,

n
i

n
D

n n
D D

MG DG

n t i t l t s l t r l t l s l r l

l s l ni

D

l t s l t r l t l s l r l n t

l r l n D

D D

n t n t

D D

p p p V V Y

p V V Y p

p p n t





 

=

= 

 

+ −

+ 

  
+ −   

  

 

 

 

 
(18) 

, , , ( ), ( ), ( ), ( )

: ( )

, ( ), ( ), ( ), ( ) ,

: ( )

( , , , )

( , , , ) ,

n
i

n
D

MG DG

n t i t l t s l t r l t l s l r l

l s l ni

D

l t s l t r l t l s l r l n t

l r l n D

q q q V V Y

q V V Y q n t





=

= 

+ −

+   

 

 
 (19) 
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, , , ( ), ( ), ( ), ( )

: ( )

, ( ), ( ), ( ), ( ) ,

: ( )

, ,

( , , , )

( , , , )

max 1, ,

n
i

n
D

n n
D D

MG DG

n t i t l t s l t r l t l s l r l

l s l ni

D

l t s l t r l t l s l r l n t

l r l n D

D D

n t n t

D D

q q q V V Y

q V V Y q

q q n t





 

=

= 

 

+ −

+ 

  
+ −   

  

 

 

 

 
(20) 

, , 1 2max 1, ,
n n
D D

D D

n t n t

D D

p p z z n t
 

  
= +   

  
                     (21) 

, , 3 4max 1, ,
n n
D D

D D

n t n t

D D

q q z z n t
 

  
= +   

  
                      (22) 

1 2 1z z+ =                                                   (23) 

3 4 1z z+ =                                                   (24) 

, 1 1
n
D

D

n t

D

p z z


                                         ,n t   (25) 

, 2 2
n
D

D

n t

D

p z z


                                         ,n t   (26) 

, 3 3
n
D

D

n t

D

q z z


                                          ,n t   (27) 

, 4 4
n
D

D

n t

D

q z z


                                         ,n t   (28) 

Constraints (17) and (19) are related to active and reactive 

power balance in the grid, respectively, that are relaxed. 

Constraints (18), (20) are the same as (17) and (19), where 

uncertainty is also considered in them and 𝛿 represents the 

infeasibility tolerance. Besides, 𝜀 and 𝜅 are defined as 

uncertainty and reliability level, respectively. In this method, a 

constraint that has an uncertain parameter should be displayed 

as (18) and (20). Here, the load demand, as an uncertain 

parameter, is written in three terms in the right-hand side of 

equation (18). Moreover, 𝜅 is a function of 𝜆 which is shown 

as follows: 
21

1 exp( )
22

x
dx




−

= − −  (29) 

It is noted that we have 𝛿 ≥ 𝜀𝜆, otherwise, the problem would 

be infeasible. Constraints (21) and (22) correspond to the 

second term of the right side of the constraints (18) and (20). 

Indeed, the multiplied term by 𝛿 in constraints (18) and (20) is 

nonlinear. To linearize these terms, the right side of 

constraints (21) and (22) should be replaced for them to be 

used in the constraints (23)-(28). Constraint (23) states that 

only one of the binary variables z1, z2 can be equal to 1. 

Constraint (24) is similar to constraint (23). In (25), if 𝑧1 = 1 , 

𝑝𝑛.𝑡
𝐷 ≥ 1, according to (23), 𝑧2 = 0 and the maximum of 1 and 

𝑝𝑛.𝑡
𝐷  is equal to 𝑝𝑛.𝑡

𝐷  corresponding to the right side of 

constraint (11). In (26), if 𝑧2 = 1 , then 𝑝𝑛.𝑡
𝐷 ≤ 1, and 

according to (23), 𝑧1 = 0 and maximum of 1 and 𝑝𝑛.𝑡
𝐷  is equal 

to 1 that it corresponds to the right side of constraint (21). In 

(27), if 𝑧3 = 1 , we have 𝑞𝑛.𝑡
𝐷 ≥ 1, according to (24), 𝑧4 = 0 

and the maximum of 1 and 𝑞𝑛.𝑡
𝐷  is equal to 𝑞𝑛.𝑡

𝐷  that it 

corresponds to the right side of constraint (22). In (28), if 𝑧4 =

1 , 𝑞𝑛.𝑡
𝐷 ≤ 1, according to (24), 𝑧3 = 0 and maximum of 1 and 

𝑞𝑛.𝑡
𝐷  is equal to 1 that it corresponds to the right side of 

constraint (22). Constraints of DG, the main grid and power 

grid are represented as follows: 
2 2 2

, , max( ) ( ) ( )MG MG MG

n t n tp q S+                               ,n t   (30) 
2 2 2

, , max,( ) ( ) ( )DG DG DG

i t i t ip q S+                                ,i t   (31) 
2 2 2

, , max( ) ( ) ( )l

l t l tp q S+                                   ,l t   (32) 

min , maxn tV V V                                               ,n t   (33) 

Constraint (30) certifies that the imported active and reactive 

power by the main grid is restricted to the maximum apparent 

power of transformer. Constraint (31) keeps the ratings of 

generated active and reactive power by DGs. Also, in (32), the 

range of active and reactive power flow in the branches is 

taken into account. Upper and lower limits of voltage are 

indicated in (33). Also, it should be noted that when the PV is 

connected to the network, the active power load (𝑝𝑛.𝑡
𝐷 ) is 

replaced by the new variable named net load (𝑝𝑛.𝑡
𝑁𝑒𝑡) as 

follows: 

, ,
n
D

Net D PV

n t n t n

D

p p p


= −            ,n t   (34) 

𝑚𝑎𝑥{1. |𝑝𝑛.𝑡
𝑁𝑒𝑡|}  in (21) is determined by the size of PV. Thus, 

if the difference between load and output power of the PV is 

greater than one, then the constraint (21) is equal to the net 

load, otherwise, it equals one. 

C. Deterministic Problem 

If the uncertainties of the network are not considered, the 

problem changes to the deterministic form. The deterministic 

problem is the same as the previous subsection, with the 

difference that constraints (35) and (36) replace the constraints 

(17)-(29). 

, , , ( ), ( ), ( ), ( )

: ( )

, ( ), ( ), ( ), ( ) ,

: ( )

( , , , )

( , , , ) ,

n
i

n
D

MG DG

n t i t l t s l t r l t l s l r l

l s l ni

D

l t s l t r l t l s l r l n t

l r l n D

p p p V V Y

p V V Y p n t





=

= 

+ −

+ =  

 

 
   (35) 

, , , ( ), ( ), ( ), ( )

: ( )

, ( ), ( ), ( ), ( ) ,

: ( )

( , , , )

( , , , ) ,

n
i

n
D

MG DG

n t i t l t s l t r l t l s l r l

l s l ni

D

l t s l t r l t l s l r l n t

l r l n D

q q q V V Y

q V V Y q n t





=

= 

+ −

+ =  

 

 
 (36) 

The constraints (35) and (36) are equivalent to active and 

reactive power equations in the network, respectively, wherein 

the uncertainty is not considered. 

III. LINEARIZATION OF LOAD FLOW 

To facilitate the problem solving, the nonlinear equations of 

load flow are linearized. In [14], a linearized load flow for the 

practical implementation has been applied. AC feasibility, the 

ability to handle large-scale real power systems and lower 

computational complexity are the main features of the 

linearized AC network [15]. These nonlinear equations are as 

follows: 
2

, ( ) ( ) ( ) ( ), ( ),

( ) ( ) ( ), ( ),

cos( )

sin( )

l t l s l l s l r l s l t r l t

l s l r l s l t r l t

p GV GV V

V V

 

  

= − −

+ −
    ,l t   (37) 
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, ( ) ( ) ( ) ( ), ( ),

( ) ( ) ( ), ( ),

cos( )

sin( )

l t l s l l s l r l s l t r l t

l s l r l s l t r l t

q V V V

GV V

   

 

= − −

− −
     ,l t   (38) 

In Eqs. (37) and (38), active and reactive power flow of lines 

are represented, respectively. In order to linearize these 

equations, the following activities are performed: 

, ,1n t n tV V= +                                                   ,n t   (39) 

, ( ),

( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ),

(1 2 )

(1 )cos( )

(1 )sin( )

l t l s l t

l s l t r l t s l t r l t

l s l t r l t s l t r l t

p G V

G V V

V V

 

  

= + 

− +  + −

+ +  + −

  (40) 

, ( ),

( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ),

(1 2 )

(1 )cos( )

(1 )sin( )

l t l s l t

l s l t r l t s l t r l t

l s l t r l t s l t r l t

q B V

V V

G V V

  

 

= + 

− + + −

− + + −

 (41) 

In )39(, the voltage magnitude has been written in terms of 

voltage variations. By replacing (39) in (37) and (38) and 

using Teylor extension, the equations (40) and (41) are 

obtained. Then, a mathematical approximation is used as 

follows: 

( ), ( ), ( ), ( ),sin( )s l t r l t s l t r l tV V V V +    +   (42) 

Since the voltage variation is close to zero, it can be 

approximated by the sinus of these changes, as seen in (42). 

By locating (42) in (40) and (41), equations (43) and (44) are 

attained: 

, ( ), , ,

, , , ,

2 cos( ) (sin( )

sin( )) sin( ) (cos( ) cos( ))

l t l l s l t l l t l l t

l t l l t l l t l t

p G G V G G 

     

= +  − −

− + + −
  (43) 

, ( ), , ,

, , , ,

2 cos( ) (sin( )

sin( )) sin( ) (cos( ) cos( ))

l t l l s l t l l t l l t

l t l l t l l t l t

q V

G G

     

   

= +  − −

− − − −
 (44) 

( ), ( ), ,s l t r l t l t  − =  (45) 

( ), ( ), ( ), ( ), ,s l t r l t s l t r l t l tV V    +  + − =  (46) 

In deriving equations (43) and (44), the trigonometric relations 

(multiplication to sum) are utilized. Eqs. (45) and (46) are 

used to express the equations (43) and (44). 

A. Linearization of sin (x) 

If the trigonometric functions can be approximated in 

equations (43) and (44) with an innovative optimal piece-wise 

linearization technique, the load flow equations become 

linear. To this end, to linearize the sin (x): 

1 1( ) sin ( )f x x m x e= − +   (47) 

In (47), first, for a specified m1, e1 and −1 ≤ 𝑥 ≤ 1,  f (x) 

values are distinguished. Then, the maximum value is 

determined. In the following, for the other specified m1, e1 and 

−1 ≤ 𝑥 ≤ 1, f(x) values are determined and again the 

maximum value is assigned. This procedure will continue for 

different lines. Finally, the minimum value is chosen among 

the maximum values. This minimum value corresponds to the 

best alternative line of the sinus function. In Fig. 1(a), the line 

that is the best approximation for sin (x) has m1= 0.9, e1= 0. In 

this case, the maximum value of f(x) is 0.0585 which is less 

than the maximum value of f(x) for any other lines. 

B. Linearization of cos (x) 

For approximating cos(x) by a linear function, (mx+e), the 

following approximation formulations can be adopted: 

( ) cos ( )g x x mx e= − +  (48) 

2 2 1 3 3 2 1 2cos ( ) ( )x m x e w m x e w + + + = +  (49) 

1 2 1w w+ =  (50) 

1 1 1w K  −  (51) 

1 1 2w K   (52) 

1 2 2 1 3( ) (1 )m x e w K  + − −  (53) 

1 2 2 1 4( ) (1 )m x e w K  + + −  (54) 

2 2 5w K  −  (55) 

2 2 6w K   (56) 

2 3 3 2 7( ) (1 )m x e w K  + − −  (57) 

2 3 3 2 8( ) (1 )m x e w K  + + −  (58) 

Eq. (48) is similar to (47). In the interval −1  to 1, cos (x) 

should be approximated by two lines, which is shown in (49). 

Due to the multiplication of binary variables (w1, w2) in 

another variable, equation (49) is nonlinear. To deal with this 

nonlinearity, the first and second terms in the equation (49) are 

equal to Ω1 and Ω2 and are exerted from constraints (50) to 

(58). In (50), it is represented that only one of the binary 

variables w1 and w2 can be equal to 1. In (41) and (52), if 

w1=1, then Ω1 ≥ −𝐾1 , Ω1 ≤ 𝐾2 that K1 = −0.6, 𝐾2 = 1 and 

according to (53) and (54), Ω1 = 𝑚2𝑥 + 𝑒2 and since w2 = 1, 

according to (55) and (56), Ω2 = 0 and constraints (57) and 

(58) are inactive wherein 𝐾7 and 𝐾8 are big numbers. In (55) 

and (56), if w2 = 1, then Ω2 ≥ −𝐾5 , Ω2 ≤ 𝐾6 that K5 =-0.6, 

𝐾6 = 1 and according to (57) and (58), Ω2 = 𝑚3𝑥 + 𝑒3 and 

while w1 = 1, according to (51) and (52), Ω1 = 0 and 

constraints (53) and (54) are inactive in which 𝐾3 and 𝐾4 are 

large numbers.  

Fig. 1(b) shows two lines that are the best approximation for 

cos(x) which have m2=0.4, 𝑒2 = 1, m3=-0.4, 𝑒3 = 1. The 

maximum difference between two lines with cos (x) is 0.0811 

which is less than the maximum difference of any other 

possible lines. In order to linearize the constraints (30)-(32), 

the following constraints can be applied: 

max cosp S    (59) 

max ( )p S m e +  (60) 

Constraint (59) is the same nonlinear constraint, which is 

linearized with the procedure described above for cos (x) as 

shown in (60). Accordingly, by implementing the proposed 

linearization technique, the day-ahead scheduling problem of 

active distribution networks is converted to an MILP model. 

IV. PDF APPROXIMATION 

To deal with the uncertainties (load and PV generation 

uncertainties) of the day-ahead scheduling of ADNs, a 

combination of RA and SA have been adopted. In the 

proposed method, the uncertain parameter should be modeled 

by a NPDF. 
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(a) 

 
(b) 

Fig. 1. Approximation of trigonometric functions to linear functions. (a) sin 

(x). (b) cos (x) 

Normally, the load is expressed by the NPDF, but the PV 

power is characterized by the Beta PDF [16]. In the previous 

section, the difference between load and PV output power is 

defined as the net load. Since, the net load is the uncertain 

parameter, it should be expressed by an NPDF. Therefore, if 

one can approximate the Beta PDF of the PV to the Normal 

PDF, then the net load is an uncertain parameter which is 

described by the normal PDF, and the proposed method can be 

used (which is a uncertain parameter to be described by a 

normal PDF). According to the technique proposed here, the 

BPDF of the PV generated power can be approximated by 

NPDF. The BPDF is represented as [17]: 
1 1(1 )

( )
( , )

x x
f x

B

 

 

− −−
=  (61) 

( ) ( )
( , )

( )
B

 
 

 

 
=
 +

 (62) 

In (61) and (62), 𝜏 and 𝜗 are two positive shape parameters 

and  Γ is gamma function. Approximation of BPDF to NPDF 

is carried out as follows: 

2

1

2

1

1 1

2
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( , )
( )

1
exp ( 0.5( ) )
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PV PV
PV

PV

PV
PV

p p
dp
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dp

 








 





− −−

=
−
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  (63) 

In (63), ID (pPV) is the integral difference between BPDF and 

NPDF. First and second integrals are related to BPDF and 

NPDF, respectively. Since the surface below the distribution 

function in an interval is equal to the probability of a variable 

in the same interval, if for an NPDF, it is found that the area 

under curve has the minimum difference with the surface 

below BPDF, this NPDF can be considered as the best 

approximation for the BPDF. In other words, different NPDFs 

are placed in (63) and each time the integral difference is 

determined. Among the integral differences, the minimum 

integral difference is specified as the best NPDF to 

approximate the BPDF. If 𝜏 = 4.2 and 𝜗=1.8 [18], 𝜌1 = 0.5 and 

𝜌2 = 0.9, then the approximation of BPDF to NPDF is seen in 

Fig. 2. The minimum integral difference pertains to NPDF 

with 𝜇=0.7 and 𝜎=0.2 and the value of the minimum is 0.056. 

Thus, with this approximation, the above-mentioned approach 

can be utilized. The percent error of the average approximated 

distribution is 4.76%, which is acceptable. 

V. SIMULATION RESULTS AND DISCUSSION 

In this section, all simulations are utilized to appraise the 

proposed approach. The case studies are executed using 

CPLEX solver within GAMS [19] on a personal computer 

with Core i7 processor and 8 GB RAM. 

A. IEEE 33-bus Distribution Test System 

In Fig. 3, the single line diagram of the IEEE 33-bus 12.66 kV 

and 5 MVA radial distribution network is illustrated. All of the 

data in this network and load profile are detected in [20] and 

[21]. Maximum apparent power flow in the lines 1-9 and 10-

32 is 6 MVA and 3 MVA, respectively. Also, it is assumed the 

maximum imported apparent power from the main grid to the 

grid is infinite. 

 
Fig. 2. Approximation of BPDF by NPDF. 

 

 
Fig. 3. The IEEE 33-bus radial distribution test system [20] 

 

This network is equipped with 4 diesel-based DGs at buses 8, 

13, 16 and 25. The cost coefficients and technical data of DGs 

are shown in Table II. The data of the forecasted day-ahead 

active and reactive load and day-ahead wholesale electricity 

prices can be found in [20]. Load ratios for all buses is 

considered to be equal. 

1) Case I: Uncertain modeling by the proposed LHSR 

method: Here, the uncertain parameter is the net load and 

problem formulation is related to subsection B of the section 

II. The results of the hourly cost in the LHSR are represented 

in Table III. As it can be seen, with the increasing of the load, 

especially during peak hours, the cost of operation increases. 

Additionally, the wholesale electricity prices are higher at the 

peak hours. Also, the range of voltage magnitude is 0.95 to 

1.05 pu. PVs can be integrated into the network. The output 

power of PV is considered as an uncertain parameter and is 

described by the BPDF, which is approximated to the NPDF 

as described in section IV. Accordingly, the difference 

between load and PV power is defined as the net load, see Eq. 

(34), which is considered as the uncertain parameter. In Fig. 3, 

two PVs are placed on buses 18 and 33, as the forecasted 

https://en.wikipedia.org/wiki/Shape_parameter


IEEE TRANSACTIONS ON ….  7 

output power of the both PVs is 1 MW for day hours [22]. In 

the all results it is assumed that the PV has storage (see Fig. 3) 

and produces 1 MW in each hour even at night. As it can be 

observed in Table III, the PV reduces the hourly and total 

costs. The total cost of the case without PV is 62357.124$, 

while its value in the case with PV is 58840.04$ and 

accordingly, the cost reduction is equal to 3517.084$. By 

integrating the PVs into the network, the injected power 

through the main grid as well as the generated power by DGs 

are reduced, which reduces the cost. 
 

TABLE II: Cost coefficients and technical data for DG units 
  

Unit 

Cost function coefficients 

ai 

($) 

bi          

($/MW) 

ci 

($/MW2) 
  

Technical 

constraints 

𝑆𝑚𝑖𝑛
𝐷𝐺  𝑆𝑚𝑎𝑥

𝐷𝐺  
  

DG1 27 79 0.0035 
 

1 4.12 
 

DG2 25 87 0.0045 
 

1 3.53 
 

DG3 28 92 0.0045 
 

1 3.53 
 

DG4 29 81 0.0035 
 

1 4.83 
 

 

 

TABLE III: Hourly and total cost results for linearized problem (case I) 

hour 
Operation cost ($) 

(no PV) 

Operation cost ($) 

(with PV) 
Cost reduction($) 

1 1626.704 1540.919 85.785 

2 1461.966 1382.166 79.800 

3 1347.632 1273.817 73.815 

4 1262.838 1193.013 69.825 

5 1192.737 1128.897 63.840 

6 1372.028 1296.218 75.810 

7 1482.539 1402.739 79.800 

8 1841.998 1744.243 97.755 

9 1977.711 1875.966 101.745 

10 2280.569 2161.868 118.701 

11 2665.962 2522.970 142.992 

12 2834.142 2680.979 153.168 

13 3347.768 3159.038 188.73 

14 3889.931 3661.042 228.889 

15 4471.128 4199.188 271.94 

16 4553.418 4275.104 278.314 

17 4514.452 4237.405 277.047 

18 4341.492 4075.897 265.595 

19 3607.794 3398.804 208.990 

20 2923.465 2763.894 159.571 

21 2683.026 2538.684 144.342 

22 2597.046 2457.880 139.166 

23 2217.915 2102.205 115.710 

24 1862.864 1767.104 95.760 

Total 62357.124 58840.040 3517.084 

 

This is shown in Figs. 4, 5 and 6 (i.e. the linearized and 

nonlinear problem). In the first 12 hours of the day, due to 

lower demand and cost of the main grid, the DGs produce 1 

MW, which is the minimum output power of DGs and the grid 

is supplied by the main grid. From 13:00 to 19:00, due to the 

increased demand of power grid, the production capacity of 

DGs should exceed their minimum capacity to achieve the 

optimal cost. From 20:00 to 24:00, DGs production are the 

same as in the first 12 hours. As it can be seen from these 

figures, the output power of DGs and the imported power of 

the main grid in the no PV case is greater than the PV–

integrated case, which shows the impact of the PVs. Fig. 7 

represents the output power of DGs for the nonlinear problem. 

According to this figure, it is possible to compare the output 

power of DGs of both linear and nonlinear cases and obtain 

the error of load flow linearization. For example, the power 

output of the DG1 at 14 o’clock are 3.185 and 3.121 for linear 

and nonlinear load flows, respectively. The error rate for the 

linearization is about 2% for the output power showing a 

negligible linearization error for the load flow. It should be 

noted that the values of 𝜀, 𝜆 and 𝛿 in both cases are 0.05. This 

value indicates that the results obtained by the simulations 

have 5% uncertainty. As 𝜀 increases, the total cost increases 

and subsequently the uncertainty of the results is augmented. 

Fig. 8 represents the total cost of the case I with PV under 

different values of 𝜀 and 𝜅 and 𝛿=0.05. For 𝜅 >0.5 that 𝜆<0, 

according to (29), the total cost is more than the case 𝜅 <0.5 

that 𝜆>0. Because of 𝜆<0, the right side of Eq. (18) increases 

and this is similar to increasing the load leading to an increase 

in the cost. The cost is generally reduced with the increase of 

𝜆 and 𝜀. The small tale in the Fig. 8 states that by decreasing 

the 𝜅 and keeping the 𝜀 constant, the value of the objective 

function is reduced. The results of the nonlinear problem 

(NLP), (11)-(34) and (37)-(38), are shown in Table IV. The 

total cost in the nonlinear problem for the no PV and with PV 

are $61219.837 and 57701.732, respectively. The difference 

between the results of the linear and nonlinear problems is 

low. The time duration of the simulation is represented in 

Table V. For instance, the duration of times in case I (no PV) 

for the both linear and nonlinear problems are 125 and 1307 

seconds, respectively. The error percentages of the linearized 

problem for no PV and with PV are 1.8% and 1.93%, 

respectively. 

 

 
Fig. 4. Optimal generated active power by DGs (case I&no PV&linear) 

 
Fig. 5. Optimal generated active power by DGs (case I&with PV&linear) 
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Fig. 6. Injected active power by main grid (case I) 

 
Fig. 7. Optimal generated active power by DGs (case I&no PV&nonlinear) 

 

 

Fig. 8. Total cost of case I, LP-with PV, under different values of  and    

TABLE IV: Hourly and total cost results for nonlinear problem (case I) 

Hour 
Operation cost ($) 

(no PV) 

Operation cost ($) 

(PV integrated) 
Cost reduction ($) 

1 1626.704 1540.919 85.785 

2 1461.966 1382.166 79.800 

3 1347.632 1273.817 73.815 

4 1262.838 1193.013 69.825 

5 1192.738 1128.897 63.841 

6 1372.028 1296.218 75.810 

7 1482.539 1402.739 79.800 

8 1841.998 1744.243 97.755 

9 1977.711 1875.966 101.745 

10 2280.569 2159.059 121.510 

11 2665.962 2521.407 144.555 

12 2834.142 2681.207 152.935 

13 3320.590 3132.040 188.550 

14 3769.371 3543.111 226.260 

15 4254.429 3988.364 266.065 

16 4321.877 4049.527 272.350 

17 4274.422 3999.977 274.445 

18 4118.745 3852.680 266.065 

19 3529.260 3319.760 209.500 

20 2923.465 2762.150 161.315 

21 2683.026 2536.376 146.650 

22 2597.046 2445.586 151.46 

23 2217.915 2096.405 121.510 

24 1862.864 1767.104 95.760 

Total 61219.837 57701.732 3518.105 

 
TABLE V: Time duration of simulation (case I) 

Type of Linearized Linearized Nonlinear Nonlinear 

problem problem 
(no PV) 

problem (PV 
included) 

problem (no 
PV) 

problem (PV 
included) 

Computation 

time (s) 
125 136 1307 1324 

 

 
Fig. 9. Optimal generated active power by DGs for linearized problem (case 

II) 
 

 
Fig. 10. Injected active power by main grid for linearized problem (case II) 

 
Fig. 11. Total costs of both cases in different states 

 

2) Case II: Deterministic Problem: In this case, the 

formulation of the subsection C of the section II is used while 

the uncertainty modeling is ignored. Also, PVs are not 

included in this case. The results of the simulation for the 

linearized and nonlinear problem are represented in Table VI. 

As seen, the total cost in LP is 59684.715 ($) and in NLP is 

52738.525 ($). The output power of DGs and the power input 

to the network through the main grid for the linearized 

problem are shown in Figs. 9 and 10, respectively. As in the 

previous case, DG power has been increased during peak 

hours, resulting in fewer injections to the network through the 

main grid, and during the rest of the time, DG power is 

lowered and injected power is increased by the main grid. In 

Fig. 11, the total cost of both cases for different states is 

illustrated where the total cost of the deterministic problem is 

less than the case I while the uncertainty has been ignored. 

The simulation execution times are represented in Table VII. 

This time for the NLP is 1061 seconds. It is clear that because 

of intrinsic complexity of the NLP, it takes a long time for the 

model to respond as the dimension enlarges. 
TABLE VI: Hourly and total costs (case II) 

Hour 
Operation cost ($) 

(linearized problem) 

Operation cost ($) 

(nonlinear problem) 

Difference 

($) 

1 1558.969 1558.969 0 

2 1398.750 1398.750 0 

3 1289.063 1289.063 0 
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4 1207.344 1207.344 0 

5 1142.000 1142.000 0 

6 1311.875 1311.875 0 

7 1419.375 1419.375 0 

8 1764.938 1764.938 0 

9 1897.703 1897.703 0 

10 2186.813 2186.813 0 

11 2552.734 2552.734 0 

12 2712.563 2712.563 0 

13 3201.505 2898.938 302.567 

14 3720.458 2939.672 780.786 

15 4276.783 2980.406 1296.377 

16 4355.548 2980.406 1375.142 

17 4318.408 2939.672 1378.736 

18 4152.203 2898.938 1253.265 

19 3450.108 2890.791 559.702 

20 2797.109 2797.109 0 

21 2568.844 2568.844 0 

22 2487.125 2487.125 0 

23 2127.000 2127.000 0 

24 1787.500 1787.500 0 

Total 59684.715 52738.525 6946.19 

TABLE VII: Time duration of simulation (case II) 

Type of problem Linearized problem Nonlinear problem 
Duration time 

(seconds) 
134 1061 

 

These problems belong to the NP-hard category, and the 

solution time increases exponentially as the problem size rises, 

in other words. However, by applying the proposed linearized 

formulation the execution time has been significantly 

decreased to 134 Seconds which implies the advantage of the 

linearization. Since the uncertain parameter in the uncertainty 

model is slightly more than its nominal value, the difference in 

linear and nonlinear results in the uncertain model is less than 

the results in the deterministic model. Indeed, the uncertain 

parameter in the active power balance equation causes the 

variables to be closer together than deterministic model in the 

linear and nonlinear problems to achieve the optimal solution. 

B. IEEE 69-bus Distribution Test System 

All data of IEEE 69-bus and load profile are given in [23], 

[24]. 

Case I: Uncertain modeling by the proposed LHSR method: In 

this case, there are uncertain parameters of the PV power and 

the load. Three PVs are located on  buses 8, 33 and 61. Their 

predicted output powers are 0.5 kW. The simulation results for 

the linearized problem are presented in Table VIII. As seen in 

Table VIII, the PV reduces the hourly and total costs. The total 

costs of the case I (linearized problem) without and with PV 

are 18885.940$ and 17252.621$, respectively. 

 
TABLE VIII: Hourly and total cost results for linearized problem (case I) 

hour 
Operation cost ($) 

(no PV) 

Operation cost ($) 

(with PV) 
Cost reduction($) 

1 541.449 477.110 64.339 

2 526.740 466.890 59.850 

3 516.919 461.557 55.362 

4 513.031 460.663 52.368 

5 510.392 462.512 47.880 

6 526.444 469.586 56.858 

7 534.720 474.870 59.850 

8 584.233 510.917 73.316 

9 722.185 645.876 76.309 

10 875.940 789.158 86.782 

11 1026.497 923.256 103.241 

12 1096.616 987.390 109.226 

13 1189.937 1060.827 129.110 

14 1164.627 1078.183 86.444 

15 1138.953 1095.539 43.414 

16 1144.465 1104.218 40.247 

17 1115.945 1086.861 29.084 

18 809.579 878.995 69.416 

19 846.955 798.198 48.757 

20 825.091 709.880 115.211 

21 755.625 650.888 104.737 

22 712.835 611.090 101.745 

23 644.520 557.737 86.783 

24 562.240 490.420 71.820 

Total 18885.940 17252.621 1633.319 

Accordingly, the cost reduction is equal to 1633.319$ 

indicating the effect of the PVs on the cost reduction. Table IX 

tabulates the simulation results for the nonlinear problem. The 

total costs of without and with PVs are 19906.511$ and 

19472.506$, respectively. As a result, the cost reduction is 

equal to 726.358$. The error percentages of the linearizing 

problem for no PV and with PV are 5.12 % and 11.4%, 

respectively. The execution time of the simulation is shown in 

Table X. For instance, the execution time in case I (no PV) for 

both linear and nonlinear problems are 1055 and 11394 

seconds, respectively illustrating the effect of linearization on 

reducing the computational time. 

Case II: Deterministic Problem: In this case, uncertainty and 

PVs are not considered. The results are shown in Table XI. As 

seen, with respect to previous case, the cost is increased by 

increasing the load. The total costs in LP and NLP are 

15465.042$ and 16191.4$, respectively. The execution time of 

simulation is shown in Table XII. Computation time for the 

LP is 1036 seconds and in NLP is 10867 seconds. Same as the 

previous case, the linearization has reduced computational 

time. 
TABLE IX: Hourly and total cost results for nonlinear problem (case I) 

hour 
Operation cost ($) 

(no PV) 

Operation cost ($) (with 

PV) 

Cost 

reduction($) 

1 541.449 541.449 0 

2 526.740 526.740 0 

3 516.919 516.919 0 

4 513.031 513.031 0 

5 510.392 510.392 0 

6 526.443 526.443 0 

7 534.720 534.720 0 

8 584.234 584.233 0 
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9 722.185 722.185 0 

10 875.940 875.940 0 

11 1026.498 1026.498 0 

12 1096.616 1096.616 0 

13 1197.278 1191.000 6.278 

14 1252.967 1208.357 44.61 

15 1311.958 1225.937 86.021 

16 1327.788 1235.114 92.674 

17 1311.205 1217.035 94.170 

18 1080.354 1000.191 80.163 

19 949.483 919.394 30.089 

20 825.091 825.091 0 

21 755.625 755.625 0 

22 712.835 712.835 0 

23 644.520 644.520 0 

24 562.240 562.240 0 

Total 19906.511 19472.506 434.005 

 
TABLE X: Time duration of simulation (case I) 

Type of 

problem 

Linearized 

problem 
(no PV) 

Linearized 

problem (PV 
included) 

Nonlinear 

problem (no 
PV) 

Nonlinear 

problem (PV 
included) 

Computation 

time (s) 
1055 1061 11394 11535 

 
 

TABLE XI: Hourly and total costs (case II) 

Hour 
Operation cost ($) 

(linearized problem) 

Operation cost ($) 

(nonlinear problem) 

Difference 

($) 

1 445.000 445.000 0 

2 445.000 445.000 0 

3 445.000 445.000 0 

4 445.000 445.000 0 

5 445.000 445.000 0 

6 445.000 445.000 0 

7 445.000 445.000 0 

8 445.000 445.000 0 

9 547.000 547.000 0 

10 677.000 677.000 0 

11 790.000 790.000 0 

12 846.500 846.500 0 

13 860.236 958.000 97.764 

14 974.882 1082.200 107.318 

15 1017.347 1219.700 202.353 

16 1035.819 1251.000 215.181 

17 1127.258 1231.000 103.742 

18 889.500 889.500 0 

19 695.000 695.000 0 

20 560.500 560.500 0 

21 515.000 515.000 0 

22 479.000 479.000 0 

23 445.000 445.000 0 

24 445.000 445.000 0 

Total 15465.042 16191.400 726.358 

 
TABLE XII: Time duration of simulation (case II) 

Type of problem Linearized problem Nonlinear problem 
Duration time (seconds) 1036 10867 

C. Comparing LHSR with SP and RO 

In this subsection, the simulation results on IEEE 69-bus are 

represented in Table XIII. In (3), if the 𝜀 is neglected, the 

proposed method is equivalent to SP and if the 𝜆 is ignored in 

(3), the proposed method is equivalent to RO. It is noted that 

the results in Table XIII are related to the linear problem (no 

PV). 

TABLE XIII: Objective function in different methods 

Type of 

method 
LHSR Deterministic RO SP 

Cost ($) 18885.940 15465.042 19345.230 19674.560 

 

As can be seen from the results, the cost of a RO and SP is 

greater than the proposed LHSR due to neglecting the 

parameters 𝜆 and 𝜀. 

VI. CONCLUSION 

Within the context of day-ahead generation scheduling under 

load and PV uncertainties, an innovative framework approach 

has been proposed to deal with the aforementioned 

uncertainties. Numerical results of this paper on the IEEE 33-

bus and 69-bus distribution test systems reveal the following 

conclusions: 

− The linearized model reduces the execution time by about 

90% while the difference between the results of the linear and 

nonlinear cases is low. Hence, the proposed model is effective 

because moderate computational burden within practical time 

frames has been necessary to achieve a high-quality near-

optimal solutions. 

− The proposed analytical method can replace the current 

practice in uncertainty modeling for the operation of 

distribution networks.  

− The proposed model is useful to the system operator as the 

model including the uncertainty allows the simulation of 

possible realistic states of the system. Indeed, this issue helps 

in the necessity of the minimum changes in real practice of the 

operation decisions. 

As the proposed probabilistic method is based on the 

assumption of Beta probability distribution of PVs, the future 

research may focus on extending the core models with other 

PDFs (i.e., Rayleigh, Weibull). The model can also be 

enriched by adding concepts like incorporating demand 

response programs to deal with the uncertainties of the RESs. 

Appendix 

The load profile and electricity price are given as follows: 

 
Day-ahead wholesale electricity prices for 33-bus [21] 
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Forecasted day-ahead load profile of the AND for 33-bus [21] 

 

 
Typical daily load curves for 69-bus [23] 
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