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Abstract—A new method is described which considerably 

improves the performance of rotor flux-MRAS based sensorless 
drives in the critical low and zero speed region of operation. It is 
applied to a vector controlled induction motor drive and 
experimentally verified. The new technique uses an Artificial 
Neural Network as a rotor flux observer to replace the 
conventional voltage model. This makes the reference model free 
of pure integration and less sensitive to stator resistance 
variations. This is a radically different way of applying Neural 
Networks to MRAS schemes. The data for training the Neural 
Network is obtained from experimental measurements based on 
the current model avoiding voltage and flux sensors. This has the 
advantage of considering all the drive nonlinearities. Both open 
loop and closed loop sensorless operation for the new scheme are 
investigated and compared with the conventional MRAS speed 
observer. The experimental results show the great improvement 
in the speed estimation performance for open loop and closed 
loop operation including at zero speed. 

Index Terms— Flux estimation, Induction Motor, Model 
Reference Adaptive Systems (MRAS), Neural Networks (NN), 
Sensorless Control.  
 

I. INTRODUCTION 
HERE has been much recent development of sensorless 
vector controlled induction motor drives for high 

performance industrial application [1]. Such control reduces 
the drive cost, size and maintenance requirements while 
increasing the system reliability and robustness. However, 
parameter sensitivity, high computational effort and stability 
at low and zero speed can be the main shortcomings of 
sensorless control. Much recent research effort is focused on 
extending the operating region of sensorless drives near zero 
stator frequency [2, 3].  

Several solutions for sensorless control of induction motor 
drives have been proposed based on the machine fundamental 
excitation model and high frequency signal injection methods, 
as summarized recently [1]. Fundamental model based 
strategies use the instantaneous values of stator voltages and 
currents to estimate the flux linkage and the motor speed. 
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Various techniques have been suggested such as: Model 
Reference Adaptive Systems (MRAS), Luenberger and 
Kalman-filter observers, sliding-mode observers and Artificial 
Intelligence (AI) techniques. MRAS schemes offer simpler 
implementation and require less computational effort 
compared to other methods and are therefore the most popular 
strategies used for sensorless control [3, 4].   

Various MRAS observers have been introduced in the 
literature based on rotor flux, back EMF and reactive power 
[5-8]. However, rotor flux MRAS, first introduced by 
Schauder [6], is the most popular MRAS strategy and 
significant attempts have been made to improve its 
performance [1]. This scheme suffers from parameter 
sensitivity and pure integration problems [7] which may limit 
the performance at low and zero speed region of operation [5].  

Online adaptation of the stator resistance can improve the 
performance of the MRAS sensorless drive at low speed [9]. 
In [4], a simultaneous estimation of rotor speed and stator 
resistance is presented based on a parallel MRAS observer 
where both the reference and adaptive models switch roles 
based on two adaptive mechanisms. Moreover, pure 
integration for flux represents a crucial difficulty which may 
cause dc drift and initial condition problems [2, 7, 10]. Low-
Pass Filters (LPF) with low cut-off frequency have been 
proposed to replace the pure integrator [11]. This introduces 
phase and gain errors and delays the estimated speed relative 
to the actual, which may affect the dynamic performance of 
the drive [12, 13] in addition to inaccurate speed estimation 
below the cut-off frequency [7]. To overcome this problem, 
Karanayil et al [12] introduce a programmable cascaded low 
pass filter (PCLPF) to replace the pure integration by small 
time constant cascaded filters to attenuate the dc offset decay 
time. In [14] another technique is used where the rotor flux is 
estimated by defining a modified integrator having the same 
frequency response as the pure integrator at steady state. A 
nonlinear feedback integrator for drift and dc offset 
compensation has been proposed in [15]. Further research has 
tried to entirely replace the voltage model (VM) with a state 
observer with current error feedback or with full order stator 
and rotor flux observers which reduces the scheme’s 
simplicity [10, 16].    

Neural Networks (NN) have been introduced as universal 
function approximators to represent functions with weighted 
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sums of nonlinear terms [17]. Multilayer feedforward NN 
have shown a great capability to model complex nonlinear 
dynamic systems [18]. Various attempts to model machine 
flux from measured quantities such as stator voltages, currents 
and motor speed have been discussed [17-20]. A 
comprehensive review of applications of NN in the field of 
power electronics and motor drives is covered in [21]. 

NN have been used before with MRAS schemes. In [22] an 
Artificial NN (ANN) detects the thermal variations in the 
stator resistance at different operating conditions. Better low 
speed operation was shown when this ANN open loop model 
is combined with the MRAS observer. NN were also 
combined with MRAS for online stator and rotor resistance 
estimation based on stator current and rotor flux [23]. In [11] a 
two layer linear neural network is proposed to represent the 
conventional adaptive current model (CM) using a simple 
forward Euler integration method. The estimated speed 
represents one of the neural network weights updated online 
using a back propagation algorithm. An evolution to this 
scheme is presented in [24, 25] where an Adaptive linear NN 
(ADALINE) is employed in the adaptive model using 
modified Euler integration to represent the CM. The Ordinary 
Least Square (OLS) algorithm is used to train the NN online to 
obtain the rotor speed information. A NN has also been 
presented as an adaptive filter used for signal integration to 
eliminate the offset in the flux integration for the VM flux 
observer [25, 26]. 

This paper describes a completely novel application of the 
NN for MRAS. This new MRAS scheme employs a NN rotor 
flux observer to entirely replace the conventional VM (and not 
the CM as described in [11, 24]) to improve the sensorless 
drive performance at low and zero speed. A multilayer 
feedforward NN estimates the rotor flux from present and past 
samples of the terminal voltages and currents. Compared to a 
VM flux observer, the NN does not employ pure integration 
and is less sensitive to motor parameter variations. Compared 
to other conventional schemes that make use of a LPF for flux 
estimation, the NN observer does not employ any filtering. 
This avoids delaying the estimated speed and prevents 
estimation errors below the filter cut-off frequency. The 
training data for the NN is obtained from experimental 
measurements giving a more accurate model that includes all 
the drive nonlinearities. This avoids using search coils which 
are not a suitable way to obtain flux measurements in most 
applications [17]. In this paper outputs from the CM are used 
as target values for the NN to provide harmonic-free signals 
and an accurate output at low speed. An experimental 
implementation of the new NN MRAS observer is described. 
The training was done at 0-25% load, reflecting the expected 
application, but additional tests at 100% load are also 
included. The new NN scheme is compared with the 
conventional, which employs a VM for flux estimation, in 
both open loop and closed loop sensorless modes for an 
indirect vector control induction motor drive. The drive 
performance is tested when running at very low and zero 
speed at various load levels. Experimental results confirm the 
great improvement in the performance of the MRAS observer. 

II.    ROTOR FLUX MRAS SPEED OBSERVER 
The classical rotor flux MRAS speed observer structure 

shown in Fig.1 consists of a reference model, an adaptive 
model, and an adaptation scheme which generates the 
estimated speed. The reference model, usually expressed as a 
VM, represents the stator equation. It generates the reference 
value of the rotor flux components in the stationary reference 
frame from the stator voltage (estimated to avoid a direct 
measurement as discussed later) and monitored current 
components. The reference rotor flux components obtained 
from the reference model are given by [6, 7]:  
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The adaptive model, usually represented by the CM, 
describes the rotor equation where the rotor flux components 
are expressed in terms of stator current components and the 
rotor speed. The rotor flux components obtained from the 
adaptive model are given by [6, 7]:  
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Based on Popov’s hyperstability theory, the adaptation 
mechanism can be designed to generate the value of the 
estimated speed used so as to minimize the error between the 
reference and estimated fluxes [7, 8]. In the classical rotor flux 
MRAS scheme, this is done by defining a speed tuning signal, 
εω, minimized by a PI controller which generates the estimated 
speed which is fed back to the adaptive model. The 
expressions for the speed tuning signal and the estimated 
speed can be given as [7]: 

rqrdrdrq ψψψψεω ˆˆ −=  (5)  

ωεω ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

p
kk i

prˆ  (6)  

rψ

rψ̂

sv

si

rω̂

 
Fig.1 Classical rotor flux MRAS speed observer 

The main problems associated with the low speed operation 
of model based sensorless drives are related to machine 
parameter sensitivity, stator voltage and current acquisition, 
inverter nonlinearity and pure integration for flux. Since all 
model based estimation techniques rely on rotor induced 
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voltage, which is very small and even vanishes at zero stator 
frequency, these techniques fail at or around zero speed [2].    

A. Parameter sensitivity   
Since the speed estimation is based on the machine model, 

it is highly sensitive to machine parameter variations. Stator 
resistance variation with machine temperature is a most 
serious problem at low speed. Since the fundamental 
component of the stator voltage becomes very low, the stator 
resistance drop becomes comparable to the applied voltage. 
Hence continuous adaptation of the stator resistance is 
required to maintain stable operation at low speed. 

B. Stator voltage acquisition and inverter nonlinearity   
The most accurate stator voltage acquisition is that 

measured across the machine terminals. This cannot be used 
easily since it requires a very high sampling rate [2]. Low pass 
filtering the PWM voltage waveform may solve the problem at 
medium and high speed but not at low speed, where the effect 
of filter gain and phase error causes performance to 
deteriorate. A synchronous integrator technique can aid a 
solution. However, not using voltage sensors is preferred in 
industrial applications. Using the reference voltages, available 
in the control unit, is possible since they are harmonic free. 
However, at low speed these reference voltages deviate 
substantially from the actual machine voltages due to inverter 
dead time effects and inverter nonlinearities due to the 
characteristics of the power switches including threshold 
voltages and voltage drops. 

C. Stator current acquisition and pure integration 
problems 

Errors in the measured currents can be due to unbalanced 
gains of the measurement channels, DC offset and drift. This 
may cause oscillation in the measured speed [27].  

Rotor flux estimation based on VM needs open loop 
integration for flux calculation. This pure integration is 
difficult to implement because of DC drift and initial condition 
problems. Replacement of pure integration by a low pass filter 
may help [7, 14, 26]. However, the flux estimation deteriorates 
below the filter cut-off frequency.  

III. NEURAL NETWORK MRAS OBSERVER 
To overcome these problems of the conventional RF-MRAS 

scheme a NN was used to completely replace the VM. The 
training of this network was based on the CM and hence the 
MRAS scheme effectively uses two versions of the CM - one 
based on (3) & (4) and one based on the trained NN. This 
greatly improves the performance of the speed estimator as 
will be experimentally proved later. This section briefly 
describes various network topologies and training methods; a 
0-25% load range was used.  A range reflecting the application 
is required for best performance, e.g. 0-100% if high loads at 
very low speeds are expected.  

The unit of structure of ANN is the neuron which consists 
of a summer and an activation function. The commonest type 
of ANN is the multilayer feedforward neural network which 

consists of layers; each layer consists of neurons [11, 17].  
Consider a neuron j in a layer m with n inputs in the (m-1) 

layer and a threshold (b).  The net input to the neuron is given 
by: 
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And the neuron output is given by: 
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where (g) is the activation function or the neuron transfer 
function.    

Here an 8-25-2 multilayer feedforward NN is used to 
estimate the rotor flux components in the stationary reference 
frame. To obtain good estimation accuracy, the inputs to the 
network are the present and past values of the d-q components 
of the stator voltage and current in the stationary reference 
frame. Compensated versions of the reference voltages are 
used, as discussed later. One of the major drawbacks of NN is 
the lack of design techniques. Hence the number of neurons in 
the hidden layer is chosen by a trial and error technique to 
compromise between computational complexity, if a larger 
number is selected, and approximation accuracy, if a smaller 
number is selected [18]. This degree of trial and error may 
increase the training process time. The output layer consists of 
two neurons representing the rotor flux components in the 
stationary reference frame. Since the case is approximating a 
nonlinear function with bipolar input/output pattern, 
hyperbolic tan (tansigmoid) activation functions will be used 
in both hidden and output layers [21].  
In this case, the neuron transfer function can be written as: 
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In this type of learning a set of input/ target data is used to 
train the NN [21]. At each sample the NN output is compared 
with the target value and a weight correction via a learning 
algorithm is performed to minimize the error between the two 
values [18, 22].  

Once trained, the NN gives a fast execution speed due to its 
parallel processing [18, 21]. The offline trained NN is used as 
a reference model for the MRAS observer to form the new 
NN-MRAS scheme as shown in Fig.2.  

IV. THE EXPERIMENTAL SYSTEM 
The experimental platform consists of a 7.5 kW, 415 V, 

delta connected three phase induction machine loaded by a 9 
kW, 240 V, 37.5 A separately excited DC load machine allows 
separate control of load torque and speed. A 15 kW four 
quadrant DC drive from the Control Techniques “Mentor” 
range is used to control the DC machine to provide different 
levels of loading on the induction machine up to full load. The 
parameters of the induction machine are shown in Appendix.    

The AC drive power electronics consists of a 50 A 3 Phase 
Diode Bridge and 1200 V, 50 A half bridge IGBT power 
modules. To control the induction motor a dSPACE system is 
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used which contains a PowerPC 604e running at 400 MHz, 
and a Slave TMS320F240 DSP.   

Hall effect current sensors were used to measure the motor 
line currents. The actual motor speed is measured by a 5000 
pulses/revolution speed encoder. The inverter switching 
frequency is 15 kHz and the vector control is executed with 
the same sampling frequency. The observer and the speed 
control loop have a sampling frequency of 5 kHz and the 
speed measurement is executed with a sampling frequency of 
250 Hz.    
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Fig.2 Proposed NN MRAS speed observer 

During practical implementation of the conventional MRAS 
scheme it was necessary to cascade a low cut-off frequency 
HPF with the outputs of the VM (VM) to remove integrator 
drift and initial condition problems. The cut-off frequency 
should be selected as low as possible since the purpose is just 
to remove the DC component and therefore a value of 1 Hz 
was chosen. Moreover, the rotor flux CM (3) - (4) did not 
show stable operation due to the mutual coupling between the 
d-q axis fluxes. Therefore, an implementation in the rotor 
reference frame was used instead, which eliminates the cross 
coupling [15, 28]. In the rotor reference frame, the rotor flux 
based on the CM can be written as: 

r
s

r

mr
r i

sT
L
+

=
1

ψ   (10) 

A simple dead time compensator similar to [29, 30] is 
implemented and reference voltages which are available in the 
control unit are used as the real stator voltages and will be 
used for both VM and NN flux observers. Hence, no stator 
voltage sensors are to be used.  

V. EXPERIMENTAL RESULTS 
In this section NN training based on experimental data will 

be demonstrated to overcome the problems that are mentioned 
in section II. The NN is trained to match the performance of 
the CM which is free from stator resistance dependency and 
dc-drift problems. Once the NN is trained it is shown that it 
accurately matches the CM. Hence it is possible to replace the 
VM with the proposed ANN. Since the performance of the 
conventional MRAS scheme improves at higher speeds. NN is 
suggested to replace the VM only in the low speed region. 
This will dramatically reduce the number of training samples 
and consequently the training time in addition to reducing the 
NN size. At high speed conventional MRAS employing VM 
can be used. To further experimentally validate the proposed 

scheme open and closed loop sensorless operation will be 
compared for the new and conventional schemes.  

A. Neural Network training and testing 
To generate the training data the encodered vector control 

drive is run with different operating conditions in the low 
speed region (100 rpm to -100 rpm) including the zero speed 
at various load levels ranging from 0 to 25% of rated load. 
Small and large references speed changes were applied to the 
drive during the training phase. The reference voltages and 
measured stator currents are transformed from 3-phase (a, b, 
c) to 2 phase (d, q) for the NN training data. A LPF with 40 
rad/s cut-off frequency was used to remove drift and noise 
from the reference stator voltage signals. The present and past 
samples of filtered stator voltages and stator currents 
components are obtained which will be used as inputs to the 
NN model .Even using direct flux sensing via search coils 
[18], noise and rotor slot harmonic effects on the 
measurements require that a LPF be used.  

The outputs from the rotor flux CM, which are obtained 
from stator currents components and encoder speed, are used 
as target values for the NN. This is an effective way to obtain 
the correct values of the rotor flux since the obtained signals 
are relatively noise and harmonic-free including all the drive 
nonlinearities. Moreover, the CM flux observer produces 
accurate flux estimation even at low speed [16]. A block 
diagram of the training data acquisition is shown in Fig. 3. 

The training is performed off-line with Matlab-Simulink 
using the Levenberg-Marquardt training algorithm which is 
faster than the gradient descent back propagation algorithm 
but needs a large memory [18, 21]. A 5000 input/output 
pattern was used to train the NN. After the training the Mean 
Squared Error (MSE) between targets and neural network 
outputs decays to a satisfactory level (4.5 × 10-4) after about 
2200 epochs. The training lasts for less than one hour on a 
Pentium ® IV PC running at 3 GHz with 512 MB of RAM. 
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Fig.3 NN Training data acquisition  

Extensive experimental tests were carried out to test the 
performance of the NN observer in various operating 
conditions not seen during training to ensure the 
generalization capability of the NN model. Compared to the 
VM, the NN matches the CM extremely well in both transient 
and steady state conditions even when the drive is operating at 
low speed. To further validate the NN observer, three tests are 
conducted. The performance of both observers is compared to 
the CM when the encodered drive is working at 20 rpm and 
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5Nm. Attenuation and phase delay take place in the VM due 
to the filter effect where as NN output closely track the CM 
output at this very low speed as shown in Fig. 4(a).  To test the 
NN observer sensitivity to parameter variation, simulations 
have been conducted with variations in  and . 
Experimental verification of Rs sensitivity can only be done 
with a NN by switching an external resistor, since there is no 
explicit value for Rs in the observer.  Although desirable this 
was not attempted, so instead simulation was used for 
verification. Performance of VM and NN flux observers for 
25% increase in  is shown in Fig. 4(b). NN shows less 
sensitivity to  variation than the VM. NN observer also 
shows good performance with 50%  variation as shown in 
Fig. 4(c).  

sR rR

sR

sR

rR

These results show that the NN can fairly handle the 
parameter variation problem with a good level of robustness. 
Consequently, for integrated drive applications, where the 
inverter and machine are sold as one unit, the NN observer can 
be trained on the actual inverter-machine combination. The 
NN should be able to cope with changes from these nominal 
parameters for other drives in the production line which is due 
to the manufacturer’s tolerance.  

However, in a mass-production environment, where the 
inverter can be used with several sizes of motors, the 
application of this technique is more difficult. In this case, a 
standard NN scheme becomes unsuitable unless the training is 
performed during commissioning for each inverter-machine 
combination. This may present a drawback of the proposed 
method. However, this could be overcome by using a range of 
previously trained networks where an appropriate one can be 
selected according to the machine nameplate rating.  

B. Open loop operation    
The new scheme was tested in open loop with the drive 

operated as an encodered vector control, i.e. the encoder speed 
is used for speed control and rotor flux angle estimation. The 
open loop performance of the conventional and the new NN-
MRAS speed observers is compared. PI controller gains of 
each scheme are tuned separately for optimal performance to 
allow a comparison between the best performance of each 
scheme. Figs. 5-6 show the open loop performance of both 
schemes for a ±30 rpm speed reversal at 10% load and 
disturbance rejection for a 20% step of load torque at 25 rpm. 
The NN MRAS observer demonstrates better transient and 
steady state performance and less sensitivity to machine 
parameters than the conventional scheme.   

Operation up to rated load can be achieved by extending the 
training range of the NN observer by applying various loads 
ranging from 0 to 100% rated load over the same speed region 
using the same training procedure described in section V.A. 
Results for a ±25 rpm speed reversal at 100% rated load are 
shown in Fig.7. NN MRAS scheme performance is clearly 
superior to that of the classical scheme at rated load.  

At low speed a steady state error in the estimated speed is 
observed for the conventional MRAS observer. This is mainly 
due to the stator resistance mismatch between the motor and 

the observer. Moreover, dead time effects cannot be 
completely removed even by complicated compensation 
schemes [2]. So the reference voltages used for the VM do not 
match the actual stator voltages across the machine terminals 
representing another source for the steady state error in the 
estimated speed. Using the new NN-MRAS scheme 
completely removes the steady state error in the estimated 
speed and improves the load torque disturbance rejection 
performance of the speed observer at low speed. This 
improvement in the performance can be explained based on 
the fact that the NN estimates a flux, similar to the CM flux, 
which is not directly dependent on use of the actual stator 
voltage, unlike the situation with use of the VM in the 
conventional scheme. Moreover, no filters are needed in the 
flux observer with no pure integrator present in the NN model. 
Less sensitivity to parameter variation is given, with the new 
NN-MRAS scheme showing much better performance 
compared to the conventional MRAS observer at low and zero 
speed.  
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Fig.4 NN observer testing (a) LPF effect (experimental) (b)  25% 

variation (simulation) (c) 50% variation  (simulation)  
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          (c)                 (d)     

Fig.5 Open loop speed reversal 30 rpm to -30 rpm, 10% load. Speed: (a) Conventional MRAS (b) NN MRAS. Model outputs: (c) Conventional MRAS (d) NN 
MRAS  

1) Test 1:  Stair case speed transients from 100rpm to 0rpm 
to -100 rpm at no load: 

In this test the sensorless vector control drive is subjected to 
a stair case speed demand from 100 rpm to zero speed in a 
series of five 20 rpm steps continuing to -100 rpm, at no load. 
The performance of both schemes is shown in Fig. 8. Stable 
operation is obtained for the NN MRAS scheme especially 
around zero speed.  

C. Sensorless closed loop operation  
In the following tests, the estimated speed is used for speed 

control and field orientation where the drive is working as 
sensorless indirect rotor flux oriented. The encoder speed is 
used for comparison purposes only. 

Tests are conducted in the low speed and at or around the 
zero speed region based on some recommended benchmark 
tests [15, 31, 32]. Selected experimental results for the tests 
are shown in the following section.  

37 37.5 38 38.5 39 39.5 40 40.5 41
-10

0

10

20

30

40

50

60

70

Time (s)

M
ot

or
 s

pe
ed

 (r
pm

)

Reference speed
Measured speed
Estimated speed

37 37.5 38 38.5 39 39.5 40 40.5 41
-10

0

10

20

30

40

50

60

70

Time (s)

M
ot

or
 s

pe
ed

 (r
pm

)

Reference speed
Measured speed
Estimated speed

 
          (a)                   (b)  



Manuscript ID 08-TIE-0156.R2 7

37 37.5 38 38.5 39 39.5 40 40.5 41
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

d-
ax

is
 ro

to
r f

lu
x 

(w
b)

VM
CM

37 37.5 38 38.5 39 39.5 40 40.5 41
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

d-
ax

is
 ro

to
r f

lu
x 

(w
b)

NN
CM

 
         (c)               (d)     
Fig.6 Open loop 20% load torque disturbance rejection, 25 rpm. Estimated speed: (a) Conventional MRAS (b) NN MRAS. Model outputs: (c) Conventional 
MRAS (d) NN MRAS  
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                              (a)            (b)  

Fig.7 Open loop speed reversal 25 rpm to -25 rpm, rated load (100% load torque). Speed: (a) Conventional MRAS (b) NN MRAS  
 

2) Test 2 Take off from zero speed to 100 rpm after 30 sec 
at zero at no load: 

This tests the drive capability to maintain field orientation at 
zero stator frequency followed by an application of a finite 
reference speed. The results of this benchmark test are shown 
in Fig. 9. Unstable operation at zero speed was observed for 
the conventional MRAS with oscillation around zero speed. 
The NN MRAS proves its ability to hold the zero speed at no 
load without any oscillations. Both schemes succeed in taking 
off to 100 rpm after 30 s at zero speed. 

3) Test 3 Speed step down from 20 rpm to 0 rpm in three 
steps each of 10 rpm at 10% load 

This tests the performance of the sensorless drive at very 
low and zero speed with load. The results are shown in Fig. 
10. At a reference speed of 20 rpm, the NN MRAS scheme 
was stable, showing less steady state error compared to the 
conventional. At such speeds and below, the conventional 
MRAS fails to provide stable operation giving large 
oscillations.  
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                              (a)                                                  (b) 
 Fig.8 Sensorless performance for benchmark test 1, no load. Speed: (a) conventional MRAS (b) NN MRAS  
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 Fig.9 Sensorless result benchmark test 2, no load. Speed: (a) conventional MRAS (b) NN MRAS. Rotor flux position: (c) conventional MRAS (d) NN MRAS   
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                                         (c)                (d)     
Fig.10 Sensorless result benchmark test 3, 10% load. Speed: (a) conventional MRAS (b) NN MRAS. Rotor flux position: (a) conventional MRAS (b) NN MRAS  
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                         (a)                (b)     
Fig.11 Sensorless performance for benchmark test 4, 20% load torque rejection, 50 rpm. Speed (a) conventional MRAS (b) NN MRAS 
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                                (a)                   (b)       
Fig.12 Sensorless performance benchmark test 5, ±25 rpm speed reversal, 10% load. Speed: (a) conventional MRAS (b) NN MRAS 
 
4) Test 4 20% load torque rejection at 50 rpm  

This test examines the load torque disturbance rejection 
capability of the sensorless drive. Both schemes have been 
tested when a 20% step change in load torque is applied at 50 
rpm. The NN MRAS shows better dynamic and steady state 
performance with negligible steady state error between the 
actual and estimated speed as shown in Fig. 11.   
5) Test 5 ±25 rpm speed reversal at 10% load  
This last test shows the drive performance for a very low 
speed reversal under load torque. A ±25 rpm speed reversal 
demand was applied to the drive when working at 10% load. 
Better performance with negligible steady state error was 
obtained from NN MRAS observer compared to the 
conventional MRAS scheme as shown in Fig. 12. A summary 
of test results from zero to full load using the conventional and 
new schemes is given in Table I showing the superior 
behavior of the new scheme under various load conditions. 

VI. CONCLUSION 
This paper has presented an entirely new application of a 

NN to give an improved MRAS speed observer scheme 
suitable for speed sensorless induction motor drives. A 
multilayer feedforward NN estimates the rotor flux 

components from present and past samples of reference stator 
voltages and measured currents. The new scheme makes use 
of the off-line trained NN observer as a reference model in 
MRAS scheme. Training data is obtained from experiments 
without the need for search coils. Using the new NN scheme 
for flux estimation eliminates the need for pure integration 
with less sensitivity to stator resistance variations.  

Results obtained from a systematic set of benchmark 
experimental tests using an 7.5 kW induction motor drive 
system prove the great improvement of the sensorless drive 
performance around and at zero speed. Open loop tests show 
that the steady state error in the estimated speed has been 
totally removed compared to the conventional observer using 
a VM. Closed loop sensorless operation is greatly improved at 
very low and zero speed without using voltage sensors.  
 

APPENDIX 
MOTOR PARAMETERS 

7.5 kW, 3-phase, 415V, delta connected, 50 Hz, 4 pole, Star 
equivalent parameters: Rs = 0.7767 Ω, Rr = 0.703 Ω, Ls = 
0.10773 H, Lr = 0.10773 H, Lm = 0.10322 H, J = 0.22 kgm2  
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TABLE I 
SUMMARY OF TEST RESULTS 

 25 rpm 
100% 

rated load 
Open loop 

-25 rpm 
100% 

rated load 
Open loop 

Zero speed 
No load 

Sensorless 

Zero speed 
10% load 
Sensorless  

Zero speed 
20% load 
Sensorless  

20 rpm 
10% load 
Sensorless 

10 rpm 
10% load 
Sensorless  

50 rpm 
20% load 
Sensorless 

-25 rpm 
10% load 
Sensorless 

-25 rpm 
25% load 
Sensorless  

Conv. 
MRAS 

20 rpm 
steady state 

error  

35 rpm 
steady state 

error  
Unstable Unstable Unstable 

10 rpm 
steady state 

error 
Unstable 

3 rpm 
steady state 

error 

5 rpm 
steady state 

error 
Unstable 

NN 
MRAS 

Negligible 
steady state 

error  

Negligible 
steady state 

error  

Zero steady 
state error 

3 rpm 
steady state 

error 

7 rpm 
steady state 

error 

4 rpm 
steady state 

error 

3 rpm 
steady state 

error 

1 rpm 
steady state 

error 

Negligible 
steady state 

error 

7 rpm 
steady state 

error 
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