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SUMMARY

Interleaved boost converters (IBCs) are used when energy conversion is required at high current levels. Such
converter systems may undergo various nonlinear phenomena which can affect their performance adversely.
In this paper, we study an IBC and demonstrate the first instability through a Neimark—Sacker bifurcation,
resulting in a torus. An analysis based on the calculation of the monodromy matrix reveals that the torus
has a rather strange form as the complex Floquet multipliers that became unstable have a real value close
to —1. We show that further variation in a parameter can result in novel nonlinear phenomena where the torus
itself folds and grazes a switching manifold, resulting in a ‘wobbling’ of the closed loop that represents the
torus in discrete time. Numerical and analytical results validate our work. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Power converters have to be connected in parallel whenever power conversion is necessary at a higher
value of current than what the devices can carry [1-6]. By paralleling converters, the inductor current in
each phase is reduced, and hence the size of the inductor can be decreased [1,7-10]. This may be
necessary in high-current applications like motor drives and battery chargers, and also in situations
where the current carrying capacity of the switch is small, as is the case in on-chip power converters.

As with single converters, it is possible to control the voltage and/or the current depending on the
application [11-14]. In electric drives, usually an inner current loop and an outer voltage loop are
required, while in battery chargers, only a current loop is often employed.

Various strategies for controlling parallel-connected converters have been proposed in the literature
and are used in industry. These include, among others, the Master—slave logic [15, 16] and the Winner-
Take-All logic [17]. It is usually desired in parallel converters that the switches in the different legs

*Correspondence to: Damian Giaouris, Chemical Process Engineering Research Institute (C.P.E.R.L), Centre for
Research and Technology Hellas (CE.R.T.H.), P.O. Box 60361, 57001 Thermi-Thessaloniki, Greece.
TE-mail: damian.giaouris@ncl.ac.uk, giaouris@cperi.certh.gr

Copyright © 2013 John Wiley & Sons, Ltd.



D. GIAOURIS ET AL.

operate in a complementary fashion (interleaving operation) thus reducing the current ripples seen
by the source and the load. The aforementioned strategies may be used for interleaving operation
[15], for example by appropriately designing the triangular waveforms used to produce the PWM
signals. Another approach is to directly control the switches complementarily [18] by normal peak
current controllers whose clock signals have an appropriate phase delay. It is also possible to have
only one peak current controller for the first phase and then to appropriately delay and use the
delayed control signal for the other phases. Like conventional dc-dc converters [19-29], parallel
connected converters may also undergo various bifurcations that force the converter to operate in
an undesirable way [30-32, 18,17,10]. This can cause many problems to the converter as it can
increase the current/voltage ripple, add extra harmonics and increase the switching losses. It has
been demonstrated [23] that it is possible for parallel-connected buck converters to lose stability
either through a period doubling bifurcation or through a slow-scale bifurcation [15], while parallel-
connected boost converters go through a slow-scale (Neimark—Sacker) bifurcation. Some work has
been done in studying the evolution of the torus in dc-dc converters [33—36], and how it may be
deformed or even destroyed. Normally, the mechanism involves a homoclinic intersection between
the stable and unstable manifolds of a saddle fixed point. In this paper, we demonstrate a new
mechanism of deformation of the torus through interaction with a switching manifold.

We study a two-phase interleaved boost converter (IBC) with two peak current controllers (one for
each phase). We report for the first time four interesting phenomena: (1) that a torus is created through a
slow-scale bifurcation of a fixed point with complex eigenvalues that have real part close to —1, and
hence the bifurcation has some characteristics of period doubling, (2) a folding that occurs on the
torus when the duty cycle becomes greater than 0.5, (3) a wobbling that appears on the torus when it
grazes one of the switching manifolds and (4) a saddle-node bifurcation on the torus creating a
period-4 orbit.

2. SYSTEM DESCRIPTION

The IBC has multiple ‘legs’ with inductors and switches sharing a common output capacitor. The
input current is distributed among the parallel legs which turn on sequentially, so that the input
current ripple is kept low and smaller inductances/diodes can be used. A simple approach to control
these converters is to use a peak current controller for the first leg and then delay the control signal by
2n/n for the other phases, where n is the number of the corresponding phase. Mathematically, this
creates a piecewise smooth vector field with one switching manifold that depends on the state vector
and n-1 manifolds that depend only on time. However, this approach does not allow independent
control of the separate legs which may be necessary at times to meet the demanded current. In such
cases, n separate controllers are used for each phase, whose clock signals are separated by 27/n. This
ensures the proper and safe operation of each phase even in the case of unbalanced operation. In this
work, a two-leg converter was chosen for simplicity (Figure 1), and two separate controllers for the
two phases were used.
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Figure 1. Schematic diagram of the current controlled interleaved boost converter. The nominal parameter
values taken in this study are V;,=5V, R=40 (2, L=1.5mH, C=10 uF, T=100 us.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
DOI: 10.1002/cta



FOLDINGS AND GRAZINGS OF TORI

The mathematical model of the system is given by the state space equations:

0
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where 5; = 1 when the switch S; is OFF. The two switching manifolds are given by /;(x,) =x, — L,
ho(x,t)=x3 — Ior. The orbit is allowed to move in the state space inside the area confined by these
two fixed switching borders, but cannot cross them. In order to obtain a Poincaré map, the state
vector has to be sampled in synchronism with the clock of one of the legs (we choose that of the
first leg). As the system is symmetrical, this will not cause a problem. However, this aspect has to be
kept in mind when analyzing the orbit, especially when the legs are unbalanced.

When the demanded current in each phase is 0.1 A, the response is a normal period-1 orbit as shown
in Figure 2. The current in the second leg is delayed by 7/2s from that of the first leg, and the system
goes through the following sequence of switch states: (1) where Sy is ON and S, is OFF, (2) where
S7 and S, are OFF, (3) where S; is OFF and S, is ON and (4) where S; and S, are OFF. The duty
ratio is given by d=T,,/T, where T,, is the time that the switch is closed during one clock period.

As the demanded current is increased, this orbit loses stability through a slow-scale bifurcation as
expected, [23]. In this particular case, the resulting orbit has rather strange characteristics, as shown
in Figure 3(a). As Ir changes from 0.291165 A to 0.291167 A, the stable periodic orbit develops a
slow sinusoidal oscillation. However, the samples on the torus jump from one side to the other as
can be seen in Figure 3(a).
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Figure 2. Time response of the two currents for /.;=0.1 A.
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Figure 3. (a) Sampled time response showing the unstable period-1 point and the stable torus at /.¢=0.291167 A.
(b) Bifurcation diagram of a two-leg interleaved converter under peak current control.
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3. STABILITY ANALYSIS OF THE PERIOD-1 ORBIT

In order to study the aforementioned bifurcation, the eigenvalues of the fixed point in the Poincaré¢ map
were calculated. As shown in [37], it is possible to determine the stability of the orbit by calculating
the monodromy matrix of the limit cycle (the state transition matrix over a complete clock period).
Care must be taken to include the effect of the two switching instances using the saltation matrix, [38,
39], see also the analysis in the appendix. The duty cycle can be calculated using the methodology
presented in [37] or, assuming equal inductances, using the formula:

Vin 1 DT
g = 2

where D is the steady-state duty cycle. The eigenvalues of the period-1 limit cycle for different values of
Ier are given in Table I which clearly show a Neimark—Sacker or slow-scale bifurcation [40] at
Les=0.291166 A. The resulting birth of a torus is confirmed by the bifurcation diagram of Figure 3(b).
It is interesting to highlight the fact that at this bifurcation, the real part of the complex eigenvalues
also is close to —1, and hence the bifurcation has the dual characteristics of period doubling as well as a
Neimark—Sacker bifurcation. Because of the period doubling, a period-2 point develops on the Poincaré
section, and because of the (small) imaginary part, the two points rotate on a closed loop. Close to the
bifurcation point, the angle between two successive points on the torus is fan~ '0.0349/
—0.9994=3.1066 rads which agrees with our observation that the points on the torus jump from one
side to another (Figure 3(a)).

In an earlier publication, the occurrence of an ‘interactive bifurcation’ was reported [41], where a
pair of complex conjugate eigenvalues goes out of the unit circle, and at the same time a real
eigenvalue crosses —1. In contrast, a single pair of complex eigenvalues crossed the unit circle, but
had the real part close to —1 in the bifurcation described in this paper. Furthermore, two-dimensional
bifurcation diagrams were produced in order to check if this were a co-dimension 2 bifurcation or a
case of 1:2 strong resonance [40]. The bifurcation parameters were chosen to be the supply voltage,
Vin, and the demanded current, /... In all cases, the period-1 orbit lost stability through a slow-
scale bifurcation with a real eigenvalue close to —1. This excludes the possibility of having a 1:2
strong resonance. To our knowledge, such a bifurcation has not been reported earlier in power
electronic systems.

Table I. Floquet multipliers.

Lier d Xo Eigenvalues Magnitude
0.1 0.1184 [5.6977] [ 0.3132 i [0.3132]
0.0605 | —0.1949 £ 0.0014; | 10.1972 |
 0.0829 |
0.25 0.4367 [8.5512] [ 0.5255 | [0.5255]]
0.1125 | —0.8324 £ 0.0125i | 0.8325 |
 0.2296 |
0.29 0.4587 [9.2360 ] I 0.5428 1 [0.5428 ]
0.1371 | —0.9947 £ 0.0341i | 0.9953 |
[ 0.2784 |
0.291166 0.4599 [9.2553 ] I 0.5432 | [0.5432 ]
0.1379 | —0.9994 + 0.0349; | !
0.2799 |
0.3 0.4690 [9.4006 [ 0.5462 | [0.5462
0.1437 | —1.0346 £ 0.0408i | | 1.0354 |
0.2910 |
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4. FOLDING OF THE TORUS

As the demanded current is further increased, we observe a folding in the torus as shown in Figure 4(a).

In order to understand why this folding occurs, we need to consider the behavior of a period-1 orbit
for various values of the duty cycle. Generally, it is possible to have three qualitatively different
responses, shown in Figure 5. In the first case (D < 0.5), the first phase is ahead of the second, and
the switching modes are: (ON, OFF) — (OFF, OFF) — (OFF, ON) — (OFF, OFF). When D=0.5, we
have only two cases: (ON, OFF) — (OFF, ON), while when D > 0.5, the switching modes are: (ON,
ON) — (ON, OFF)— (ON, ON) — (OFF, ON). Hence, we have a border collision (change in topological
sequence) when the duty cycle becomes 0.5.

When the torus develops in the system under consideration, the duty ratio varies from cycle to cycle.
When the demanded current becomes 0.29154 A, there are cycles on the torus that have duty ratio
greater than 0.5. Numerical simulations showed that the maximum value of the duty cycle is 0.5005,
and that causes the onset of folding. By further increasing the demanded current, the folding
becomes more severe. Furthermore, as can be seen from Figure 6, the folding happens exactly where
the torus touches the demanded current (0.3 A here). This can be explained by Figure 5. For D=0.5
at =0 (the sampling instant), the current in the second phase is equal to /¢ (Figure 5(b)). As the
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Figure 4. (a) Sampled state space orbit showing the folding, inner cycle for /,.;=0.2915 A, middle cycle for

Ls=0.29152 A, outer cycle for /,.,;=0.2916 A. (b) Time domain waveforms of the sampled currents and duty
cycle of the first leg for /,.;=0.2916 A.
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Figure 5. Typical waveforms for D < 0.5,D0=0.5,D > 0.5.
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Figure 6. 2D sampled state space showing the folding, 7..¢=0.3 A.

demanded current is increased and D > 0.5 (Figure 5(c)), the current at the observation instant will be
less than 7.¢ (Figure 4b). This folding also stops the expansion of the torus as seen in Figure 3(b).

5. GRAZING OF THE TORUS

Another interesting phenomenon occurs when the demanded current is further increased; the torus goes
through repeated foldings much like the ‘chattering’ problem of mechanics (but unlike chattering
this happens in discrete time). The bifurcation diagram of Figure 3(b) shows some change in the
structure at around /,.=0.36 A. Figure 7 shows the torus when [.+=0.365A where we seec a
deformation of the loop. Following the sequence of events that leads to it, we find that this repeated
folding is caused by the grazing of the torus with the switching manifold. Figure 8 clearly shows
that when 7.s=0.35 A, the torus is away from the manifold and when 7.=0.36 A, it just grazes it,
which initiates the repeated folding or ‘wobbling’.

Note that the grazing of the torus with the switching surface occurs in discrete time. Such a
phenomenon has earlier been reported in a mechanical system [42]. Furthermore, it is interesting to
note that even though the grazing occurs only in the area around i;, = I, the deformation is
observed in four different regions of the closed loop (Figure 7). This is explained by the facts that
(1) the fixed point located inside the closed loop has eigenvalues close to —1 and (2) there is a
symmetry between the two states. As it has been mentioned, when the orbit grazes the switching
manifold, multiple foldings take place that force the torus to deform. Due to the negative eigenvalue,
the points on the sampled torus jump from right to left and vice versa (see Figure 3(a)), and hence
this wobbling also appears on the left of the torus in the area where iy, >~ 0.05 4. Also, there is a
symmetry between the two phases, and hence whatever happens in one phase in one specific instant
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Figure 7. Sampled 2D torus when /.s=0.365 A, including the two switching manifolds.
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Figure 8. Sampled 2D torus at /.;=0.35 A and 0.36 A, including the two switching manifolds, showing the
onset of grazing.

will also happen in the other phase after a lapse of 7/2s. When the period-1 orbit lost stability through a
slow-scale bifurcation, the torus that was created inherited this property. Suppose, starting from any
point on the torus, one has to go through N iterates to traverse the loop. Because of the above
symmetry, whatever happens on the torus at one specific point will also appear after ~ N/2 samples
[43]. In this case, one has to go through approximately 138 iterates to traverse the loop, and hence
the wobbling appears again after 69 samples. This explains the two areas where the wobbling
appears in the bottom of the torus iz, >~ 0.2 4. In order to further validate this, three- and four-
legged converters were simulated, which showed that indeed the deformation appears after N/n
points on the torus, where 7 is the total number of phases.

6. SADDLE-NODE BIFURCATION

After the onset of wobbling, as the demanded current is further increased, the wobbling increases, and
the torus appears to have rings on it (Figure 9), as if locally, there are period doublings on the torus.
This is revealed to be the approach of an impending saddle-node bifurcation. In the run-up to the
bifurcation, the round-trip time around the loop increases as a ‘bottleneck’ develops, and the period
increases to infinity. In many features, this is similar to the infinite period bifurcation observed in
continuous-time systems [44]: (1) that there is a bottleneck on the torus, i.e. points gather in specific
areas on the limit cycle in the sampled state space, (2) that the round-trip time around the closed
loop increases to infinity following an inverse square root law: T o< 1/4/|Lef,; — Iref| and (3) that
the torus is destroyed by a saddle-node bifurcation, i.e. a stable and an unstable limit cycle are
created with one eigenvalue being 1.

After the onset of rings at /,.;=0.375, we observe that more points of the torus are gathered around
these rings. This is clear when Figure 8 is compared with Figure 9. The two figures are plotted with the
same number of points, but in Figure 9, a large number of points accumulate on the rings while the
other parts of the torus are sparsely populated. The rings, thus, represent the bottlenecks.

0.2 04 8
A

iL1’
Figure 9. 3D and projected 2D sampled state space when Z.¢=0.375 A, including the two switching manifolds.
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Furthermore, as we increase the demanded current, we see that the time taken to traverse the closed
loop also increases [43]. For example, when I.s=0.375 A, we need approximately 337 samples
(or 0.0337s) to complete a circle, while for 0.376 A we need 707 samples. Figure 10 shows that the
round-trip time becomes infinite at around /.;=0.3762718 A obeying an inverse square root law. In
order to check the character of the period-4 orbit that appears towards the right of Figure 3(b), we
used a method similar to that in [43] and calculated the eigenvalues as the parameter is decreased
toward the bifurcation point; see also the analysis in the appendix. It was revealed that the period-4
orbit has an eigenvalue of 1 just after the bifurcation point (Table II), which indicates the occurrence
of a saddle-node bifurcation.

7. CONCLUSION

In this paper, we reported an instability in the IBC that is a Neimark—Sacker bifurcation with some
features of period doubling. In this bifurcation, a pair of complex eigenvalues crosses the unit circle
with real part close to —1 (i.e. the imaginary part is very small compared to the real part). This
bifurcation causes the Poincaré section points to flip between the opposite ends of a closed loop, and
to rotate on the closed loop.

We have also shown that the torus undergoes a fold when it makes contact with the switching
manifold. Further contacts with the switching manifold causes repeated foldings in quick succession,
which appear in ring-like structures on the closed loop. This is a grazing induced bifurcation where
the discrete-time closed loop grazes the switching manifold. Finally, we show that the torus is
destroyed by a saddle-node bifurcation.

APPENDIX A

In this section, we present the detailed steps in calculating the eigenvalues of the period-1 orbit in
Section 3 and of the period-4 orbit in Section 4.

5 T !
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Period, s
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Figure 10. The number of iterates in one full rotation around the torus versus demanded current showing that
the round-trip time increases to infinity.

Table II. Floquet multipliers of the period-4 orbit.

Lot Eigenvalues

0.37700 0.8777, 0.1847, — 0.8358
0.37680 0.8968, 0.1818, — 0.8325
0.37650 0.9333, 0.1765, — 0.8262
0.37640 0.9503, 0.1742, — 0.8235
0.37635 0.9614, 0.1728, — 0.8218
0.37632 0.9697, 0.1717, — 0.8205
0.37630 0.9769, 0.1709, — 0.8195

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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Eigenvalues of the period-1 orbit before the slow-scale bifurcation

According to (1), Figures 5 and 11, for D < 0.5 (a similar analysis can be followed for D > 0.5), the
evolution of the orbit in the state space is being governed by the following equations:

DT
x(DT) = 6Py, 4 / ANPTRAT = &yxp + 1
0

0.5T7
X(OST) _ eA(S,-)(OAS—D)Tx(DT) + eA(s,)(O.ST—z)Rd_E _ (I)QX(DT) +h
DT

(0.5+D)T
x((0.5 4+ D)T) = e"0PTx(0.5T) + / ANOSHDT=) R — $3x(0.5T) + I
0.5T
T
x(T) = 6)O35-DITx((0.5 + D)T) + / ANTRAT = Byx((0.5 + D)T) + I
(0.5+D)T

whereR=[0 V;,/L Viy/L ]T. The state transition matrices P are calculated using a series expansion:

o]

D=e"=> (41)/i 3)

i=0

In this work, the series was expanded up to seventh-order components.
Combining the above equations, we have the following expression that allows us to calculate the
location of the limit cycle using (2):

X(T) =X = @4((1)3(@2(@1)60 +11) +]2) +I3) + 1y 4

From Figure 11, we see that the period-1 orbit has two switching events that need to be represented
by a saltation matrix, one at t=DT and one at #=(0.5+ D)T; hence, the Monodromy matrix is given
by [37]:

@(T,O,X(O)) = @4 X S2 X (1)3 X q)z X S] X (I)l (5)

where the saltation matrices are given by:

N\, T
_ —fi)n
S——I+4gf {;h)
nfi + 5 li=s

(6)

Therefore, for each value of the demanded current, we use (2) to find the duty cycle and then (4) to
find the location of the limit cycle and hence the switching instants and points. The state transition

i X(05eD)T) i
1

- P

Figure 11. State space for /,.,=0.1 A.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
DOL: 10.1002/cta



D. GIAOURIS ET AL.

matrices are calculated by (3), and then with (5) and (6), we can find the Floquet multipliers and hence
can determine the stability of the system.

For example, for [.=02A, (2) gave a duty cycle of D=0.3397, and from (4)
x(0) = [7.6397 0.0868 0.1726]". The 4 state transition matrices are:

0.9441 1.5618 1.5618 0.8824 3.2157 0
Py =Py = [ —-0.0104 0.9916 —0.0084 |, ®3 = & = | —0.0214 0.9628 0
—0.0104 —0.0084 0.9916 0 0 1

The two saltation matrices are:

1 6.0033 0 1 0 6.0033
S 0-0.4965 0(,5=10 1 0
0 0 1 0 0 —0.4965

This gives the monodromy matrix as:

0.4496 1.1078 7.9482
&(T,0,x(0)) = | —0.0309 —0.6567 —0.2303
0.0101 0.0114 —0.5503

And therefore the Floquet multipliers are:

[0.4920 —0.6247 +0.0013; 0.6247 — 0.00131’]T

Eigenvalues of the period-4 orbit after the torus destruction

In order to determine the stability of the period 4, we calculated the eigenvalues of the stable period-
4 orbit just before it lost stability, going from higher to lower values of /... For each value of /., we
find the stable period-4 orbit by simulating the system until it reaches a stable behavior. The state
variables at the beginning of the period are extracted from it. For example, at /.s=0.3763 A, these
values are xo = [9.8216 0.2758 0.2122]".

Then, we add a small perturbation to xj, and we record the value of x(4T). Since there are
nine unknown variables (the elements of the monodromy matrix), we repeat the same process two more
times. Thus, we have nine equations with nine unknowns which can easily be solved to determine the
elements of the monodromy matrix. Specifically, for the aforementioned value of I.r we used
three different initial conditions:

xo(1) x 0.9999 xo(1) x 1.0001 xo(1) x 0.9999
x4(0) = | x0(2) x 1.0001 | ,x5(0) = | x0(2) x 1.0001 |,xc(0) = | x0(2) x 1.0001
x0(3) x 1.0001 xo(3) % 0.99998 x0(3) % 0.9999

Simulations starting from these initial conditions gave three state vectors at =47. Substituting in the
equation

x(4T) = ®(4T,0,x(0))x(0),
we get nine equations with nine unknowns, which when solved gave the monodromy matrix:

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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—0.1427 —8.9559 —0.9714
0.0318 1.2320 0.2985
0.0390 0.3062 —0.7610

with the eigenvalues:

[0.9769 0.1709 —0.8195]"

This process was repeated for all values of /.. that appear in section 6.

ACKNOWLEDGEMENTS

This work is co-financed by the National Strategic Reference Framework 2007-2013 of Greece and the
European Union, research program ‘Archimedes III’ (OPT-VIPS) and the King Abdulaziz University,
Jeddah, Saudi Arabia, under grant No. 5-4-1432/HiCi. Finally, the authors would like to thank Mr Haimeng
Wu (Newcastle University) for his valuable help in cross-checking the simulation results using Saber.

10.

11.

18.

19.

20.

REFERENCES

. Huang Y, Tse CK. Circuit theory of paralleling switching converters. International Journal of Circuit Theory and Ap-

plications 2009; 37(1):109-135.

. Thounthong P, Pierfederici S. A new control law based on the differential flatness principle for multiphase interleaved

dc-dc converter. IEEE Transactions on Circuits and Systems-1I 2010; 57(11):903-907.

. Lin B, Huang C, Li M. Novel interleaved zvs converter with ripple current cancellation. International Journal of

Circuit Theory and Applications 2009; 37(3):413—431.

. Veerachary M, Senjyu T, Uezato K. Signal flow graph modelling of interleaved buck converters. International

Journal of Circuit Theory and Applications 2003; 31(3):249-264.

. Veerachary M, Senjyu T, Uezato K. Small-signal analysis of interleaved dual boost converter. International Journal

of Circuit Theory and Applications 2001; 29(6):575-589.

. Lin BR, Chao CH, Chiang YJ. Implementation of an interleaved pulse-width modulation converter for renewable

energy conversion. International Journal of Circuit Theory and Applications 2011; 41(2):168-185.

. Kassakian JG. High frequency switching and distributed conversion in power electronic systems. Proceedings of

Sixth Conference on Power Electronincs and Motion Control, Budapest, Hungary, 1990, 1990; 990-994.

. Perreault D, Kassakian J. Distributed interleaving of paralleled power converters. Circuits and Systems I:

Fundamental Theory and Applications, IEEE Transactions on 1997; 44(8):728-734.

. Huang Y, Tse CK. Circuit theoretic classification of parallel connected dc ndash;dc converters. Circuits and Systems I:

Regular Papers, IEEE Transactions on 2007; 54(5):1099-1108.

Debbat M, El Aroudi A, Giral R, Martinez-Salamero L. Hopf bifurcation in PWM controlled asymmetrical
interleaved dual boost dc-dc converter. [EEE International Conference on Industrial Technology 2003; 2:860-865.
Davoudi A, Jatskevich J, Chapman P. Numerical dynamic characterization of peak current-mode-controlled dc-dc
converters. [EEE Transactions on Circuits and Systems-II 2009; 56(12):906-910.

. Zhou G, Xu J. Digital peak current control for switching dc-dc converters with asymmetrical dual-edge modulation.

IEEE Transactions on Circuits and Systems-11 2009; 56(11):815-819.

. Moon YJ, Roh YS, Gong JC, Yoo C. Load-independent current control technique of a single-inductor multiple-

output switching dc-dc converter. [EEE Transactions on Circuits and Systems-1I 2012; 59(1):50-54.

. MaW, Wang M, Liu S, Li S, Yu P. Stabilizing the average-current-mode-controlled boost PFC converter via washout-

filter-aided method. /IEEE Transactions on Circuits and Systems-II 2011; 58(9):595-599.

. ITu HHC, Tse CK, Lai YM. Effects of interleaving on the bifurcation behaviour of parallel-connected buck converters.

IEEE International Conference on Industrial Technology 2002; 2:1072—-1077.

. Tu HHC, Pjevalica V, Robert B. Implementation of a simple rotating master control scheme for parallel converters.

Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 2 2004; 1494—1499.

. Ishikawa Y, Saito T. Bifurcation of multiple-input parallel dc-dc converters with dynamic winner-take-all switching.

IEEE International Symposium on Circuits and Systems 2007; 789-792.

Iu HHC, Tse CK, Dranga O. Bifurcation in parallel-connected buck converters under current-mode control. /EEE
International Symposium on Circuits and Systems 2005; 5:4445-4448.

Tu HHC, Zhou Y, Tse CK. Fast-scale instability in a PFC boost converter under average current-mode control.
International Journal of Circuit Theory and Applications 2003; 31:611-624.

Chan WCY, Tse CK. Bifurcations in current-programmed dc/dc buck switching regulators—conjecturing a universal
bifurcation path. International Journal of Circuit Theory and Applications 1998; 26(2):127-145.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)

DOI: 10.1002/cta



21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

D. GIAOURIS ET AL.

D’Amico MB, Angulo F, Olivar G, Paolini EE, Moiola JL. Influence of period-doubling bifurcations in the
appearance of border collisions for a zad-strategy-controlled buck converter. International Journal of Circuit Theory
and Applications 2012; 40(1):77-91.

Banerjee S, Verghese GC (eds). Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and
Nonlinear Control. IEEE Press: New York, 2001.

Tse CK. Complex Behavior of Switching Power Converters. CRC Press: Boca Raton, USA, 2003.

di Bernardo M, Budd C, Champneys AR, Kowalczyk P. Piecewise-smooth Dynamical Systems. Springer-Verlag:
London, 2008.

El Aroudi A, Benadero L, Toribio E, Machiche S. Quasiperiodicity and chaos in the dc-dc buck-boost converter.
International Journal of Bifurcation and Chaos 2000; 10(2):359-371.

Mazumder SK, Nayfeh AH, Boroyevich D. Theoretical and experimental investigation of the fast- and slow-scale in-
stabilities of a dc-dc converter. IEEE Transactions on Power Electronics 2001; 16(2):201-216.

Giaouris D, Banerjee S, Zahawi B, Pickert V. Control of fast scale bifurcations in power-factor correction converters.
IEEE Transactions on Circuits and Systems-1I 2007; 54(9):805-809.

Wong SC, Wu X, Tse C. Sustained slow-scale oscillation in higher order current-mode controlled converter. /EEE
Transactions on Circuits and Systems-1I 2008; 55(5):489—-493.

El Aroudi A, Rodriguez E, Leyva R, Alarcon E. A design-oriented combined approach for bifurcation prediction in
switched-mode power converters. /[EEE Transactions on Circuits and Systems—II 2010; 57(3):218-222.

Iu HHC, Tse CK. Study of low-frequency bifurcation phenomena of a parallel-connected boost converter system via
simple averaged models. /EEE Transactions on Circuits and Systems-I 2003; 50(5):679-685.

Li M, Tse CK, Iu HHC, Ma X. Unified equivalent modeling for stability analysis of parallel-connected dc/dc
converters. [EEE Transactions on Circuits and Systems-1I 2010; 57(11):898-902.

Iu HHC, Tse CK. Bifurcation behavior in parallel-connected buck converters. I[EEE Transactions on Circuits and Sys-
tems-1 2001; 48(2):233-240.

Zhusubaliyev ZT, Mosekilde E. Torus birth bifurcations in a dc/dc converter. I[EEE Transactions on Circuits and Sys-
tems-1 2006; 53(8):1839-1850.

Zhusubaliyev ZT, Mosekilde E, Maity S, Mohanan S, Banerjee S. Border collision route to quasiperiodicity:
Numerical investigation and experimental confirmation. Chaos 2006; 16:023 122 023122(1-11).

Zhusubaliyev ZT, Mosekilde E, Yanochkina OO. Torus bifurcation mechanisms in a dc/de converter with pulse-width
modulated control. IEEE Transactions on Power Electronics 2011; 26:1270-1279.

Zhusubaliyev ZT, Mosekilde E, Yanochkina OO. Torus bifurcations in multilevel converter systems. /nternational
Journal of Bifurcation and Chaos 2011; 21:2343-2356.

Giaouris D, Banerjee S, Zahawi B, Pickert V. Stability analysis of the continuous conduction mode buck converter via
Filippov’s method. IEEE Transactions on Circuits and Systems I 2008; 55(4):1084—1096.

Filippov AF. Differential equations with discontinuous righthand sides. Kluwer Academic Publishers: Dortrecht,
1988.

Aizerman MA, Gantmakher FR. On the stability of periodic motions. Journal of Applied Mathematics and Mechanics
(translated from Russian) 1958; 1065-1078.

40. Kuznetsov YA. Elements of Applied Bifurcation Theory. Springer: New York, USA, 2004.

41. Chen Y, Tse CK, Wong SC, Qiu SS. Interaction of fast-scale and slow-scale bifurcations in current-mode controlled
dc/dc converters. International Journal of Bifurcation and Chaos 2007; 17(5):1609-1622.

42. Dankowicz H, Piiroinen P, Nordmark A. Low-velocity impacts of quasiperiodic oscillations. Chaos Solitons &
Fractals 2002; 14(2):241-255.

43. Giaouris D, Banerjee S, Imrayed O, Mandal K, Zahawi B, Pickert V. Complex interaction between tori and onset of
three-frequency quasi-periodicity in a current mode controlled boost converter. [EEE Transactions on Circuits and
Systems-12012; 59(1):207-214.

44. Strogatz SH. Nonlinear Dynamics and Chaos. Addison-Wesley, 1994 New York.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)

DOI: 10.1002/cta



