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ABSTRACT

Dry-friction oscillators are mechanical systems with dry friction and stick-slip vibrations. In the context of
control theory, the stability analysis of this type of dynamical systems is important since they exhibit non-smooth bi-
furcations, or most famously a sliding-grazing bifurcation inducing abrupt chaos. This paper develops a Lyapunov-
based framework to study the so-called structural stability of the system, predicting the onset of such unique bi-
furcations. To achieve this, the non-linear system is first represented as a non-smooth Takagi-Sugeno (TS) fuzzy
model, and the structural stability is then formulated as Linear Matrix Inequalities (LMI) feasibility problems with
less conservative formulation. Solving the resulting LMI problem, the onset of sliding-grazing bifurcation can be
accurately predicted.
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1 Introduction

Oscillator mechanisms with stick-slip motion and friction have extensive industrial applications like pneumatic actuators

used for chopping and robotic pick-and-place operations. In the field of Dynamical systems and Control theory, oscillators

with dry friction are classified as sliding Filippov systems [1, 2], hybrid systems with discontinuous vector fields around



the sliding region. A variety of smooth dynamics have been observed and studied in these forced vibrating systems with

dry friction, including period-doubling bifurcations and intermittency leading to chaos [3–5]. More complex dynamics

induced by discontinuous transitions in the sliding dynamics are also observed in this so-called non-smooth systems such as

the occurrence of abrupt chaos from a stable periodic orbit upon varying a system parameter [6–8]. Stability analysis and

control of this type of discontinuity-induced bifurcations (DIBs) [9, 10] are quite difficult. This is because existing tools for

studying the stability of equilibria cannot be applied to cases where the stability of a periodic orbit due to discrete switching,

i.e. structural stability, is the matter of interest [11, 12]. The conventional analytical tool for studying DIBs in non-smooth

systems is discontinuity mapping (DM) [9,13]. This technique is normally applied to sliding bifurcations in Filippov systems

where the system trajectories can slide along the attracting portion of a switching manifold (where the vector fields becomes

discontinuous) by introducing a small perturbation to the initial condition away from the trajectory of interest and deriving a

local piecewise-smooth Poincaré map. However, in studying the onset of the grazing bifurcation, DM cannot be employed

because of the well-known problem of the square-root singularity of the Jacobian of the Poincaré map close to the grazing

event [9, 14–17]. The case of sliding-grazing bifurcations in oscillators with dry friction is one of the four codimension-one

bifurcation scenarios involving collision of a part of the periodic orbit with the boundary of the sliding region [9,18] [19]. The

sliding-grazing bifurcation is unique since grazing and sliding scenarios occur simultaneously with respect to the switching

manifold, and the resulting discontinuity map is neither continuous nor differentiable at the grazing point [2]. Therefore

the construction of DM, due to the sliding flow, leads to such analytically cumbersome and computationally expensive

expressions that the continuation of periodic orbits and the analysis of their sliding bifurcations demand special software

using high-order algorithms. What’s more, the direct numerical simulation of Filippov systems and the accurate switching

between sliding and non-sliding motions is extremely difficult using existing smooth solvers [9, 20].

To overcome these difficulties, a non-smooth TS fuzzy model-based approach 1 is proposed in this paper as an alterna-

tive to DM for the stability analysis of sliding-grazing orbits. The authors have already applied the TS fuzzy approach for

the prediction of the onset of grazing bifurcations in mechanical hard-impact oscillators, successfully avoiding the square-

root singularity problem [17] and for the analysis and control of DIBs in switching power electronic converters (non-sliding

Fillipov systems) [21]. To construct the analysis of sliding-grazing bifurcation in this paper, first it will be shown that the

proposed non-smooth TS fuzzy formalism can well represent all the essential non-linearities induced by velocity and ac-

celeration discontinuous dynamics. This is in contrast to conventional TS fuzzy modelling developed for the model-based

control of smooth dynamical systems [22, 23] which is unable to represent such discontinuities. A non-smooth Lyapunov

framework is then developed such that the bifurcation analysis is formulated based on searching non-smooth Lyapunov

functions in multiple yet flexible fuzzy operating regions and the resulting stability conditions are formulated as a Linear

Matrix Inequality (LMI) problem. The resulting LMI stabilization problem, once solved by interior-point convex optimiza-

tion methods [23–26], can pinpoint the onset of the abrupt chaotic orbit in sliding-grazing bifurcation. The proposed routine

for the automation of flexible region partitioning plays a pivotal role in the accurate prediction of the bifurcation point.

1We refer to the proposed TS fuzzy model able to represent a non-smooth system as a non-smooth TS fuzzy model.



2 Modelling of non-smooth dry-friction oscillator

2.1 Dry-friction oscillator

The model that we are studying here is a forced, one-degree-of-freedom oscillator with dry friction and stick-slip vibra-

tions [27], illustrated in Fig. 1. This model consists of a block which can move on a single horizontal surface, with mass

M, that is attached to a fixed point through a spring with a stiffness coefficient of K and damping coefficient c. The block is

subject to a sinusoidal forcing and placed on a rough driving belt moving with a constant velocity vcon (which without loss

of generality can be scaled to unity) such that the relative motion between the block and belt can be closely approximated by

a kinematic dry-friction law. Therefore, the corresponding equation of motions can be expressed as

Mü+ cu̇+Ku = P(1− u̇)+F cos(ϖt) (1)

Under non-dimensionalization, the mass M of the block and stiffness coefficient K can all be scaled to 1 and dry-friction

element c can be set to 0 as its contribution to damping is very small. The resulting equations of motion can then be expressed

in dimensionless form as

ü+u = P(1− u̇)+F cos(ϖt) (2)

where the non-linear Coulomb friction law is described by

P(1− u̇) = α0sgn(1− u̇)−α1(1− u̇)+α2(1− u̇)3 (3)

The term (1− u̇) represents the relative velocity between the driving belt and the moving block. In the case when u̇ = 1, the

relative velocity is 0 and the kinematic friction is set-valued, i.e., −α0 < P(1− u̇) < α0. The coefficients of the kinematic

friction characteristic α0, α1 and α2 are determined by the material characteristics of the block and the belt. Following

the original study by Yoshitake and Sueoka [27], we shall take the values α0 = α1 = 1.5 and α2 = 0.45. F and ϖ are the

amplitude and frequency of sinusoidal forcing function, respectively.

In technical terms, this system is categorized as a non-smooth Filippov system with a degree of smoothness (DoS) of

1 [9, 18]. Due to the Coulomb friction, the dynamics of this system become discontinuous at plane Σ = u̇−1 = 0, famously

called the switching manifold, where the solution trajectories are attracted from above and below to form a sliding region Ŝ

(region with attracting sliding motion in the close neighbourhood of Σ). For the investigation of dynamical scenarios if we

let the amplitude F = 0.1 [27], but allow the frequency ϖ to be varied as a bifurcation parameter, the sliding motion leads to

an interesting bifurcation close to ϖ ≃ 1.7078 where the sliding orbit suddenly loses its stability to a chaotic orbit (see Figs.
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Fig. 1. Model of a forced oscillator with dry friction.
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Fig. 2. (a) 4T (8π/ϖ) periodic orbit grazes the boundary of sliding region (grazing-sliding event) at ϖ = 1.7077997 and turns to a (b)
chaotic orbit. Dot-dashed line in (a) shows a stable, non-sliding periodic orbit for ϖ = 1.7082 before sliding-grazing event, and the solid line
in (a) shows the sliding orbit near the tangency of attracting switching manifold.

2 and 3).
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Fig. 3. The bifurcation diagram shows the grazing-sliding bifurcation where there is a sudden transition to a chaotic attractor.

The sliding-grazing bifurcation occurs as the sliding 4T -periodic orbit (the orbit depicted with solid line in Fig. 2a)

becomes tangential (grazing) to the switching manifold, where the boundary of the sliding region becomes the switching

manifold u̇− 1 = 0 itself. This scenario arises when the dry-friction oscillator tries to immediately enter a stick-slip phase

from a purely slip phase so the attracting orbit is placed precisely at the transition (bifurcation) point. When the transition

occurs, the orbit abruptly becomes chaotic as seen in Fig. 2b (see also Fig. 4 for the illustration of sliding-grazing scenario).



Fig. 4. With small parameter variation, periodic (sliding) orbit a → b, touches the switching manifold Σ at x∗ undergoing a sliding-grazing
bifurcation, and b → c. In fact, periodic orbits a and c might exist for the same parameters values.

2.1.1 Non-smooth TS fuzzy model

There is a rich literature on fuzzy model-based control using Takagi-Sugeno (TS) fuzzy modelling [22–26] for repre-

senting non-linear, smooth dynamical systems. This modelling approach is mainly developed to provide a multi-parametric

stability analysis framework as it essentially divides the whole state space into a number of local smooth dynamics where

the interpolations of the linear local dynamics are describe by a set of fuzzy implications [22]. However, as the authors have

discussed in previous publications [17, 21] this model cannot describe the discontinuous property of non-smooth Filippov

systems (and mechanical impacting systems) and all the arising DIBs. In this section, a non-smooth TS fuzzy formalism is

proposed for Filippov systems able to describe the sliding dynamics local to the discontinuity boundary.

To describe such formalism, first we should describe the basic smooth TS fuzzy model 2 as follows:

ẋ(t) =
l

∑
j=1

µ j(x(t))(A jx(t)+B ju(t)), (4)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the control input vector, A j ∈ ℜn×n and B j ∈ ℜn×m are respectively the

system matrix and the input matrix. µ j(x(t)) is the degree of membership described by µ j(x(t)) = ω j(x(t))/∑l
k=1 ωk(x(t)),

where ω j(x(t)) ≥ 0, ∑l
k=1 ωk(x(t)) > 0, k = 1,2, . . . , l (l is the number of model rules). The weighting function can be

described by ω j(x(t)) = ∏n
i=1 Γ j

i (xi(t)) derived by a series of model rules as:

Model Rule j : IF x1(t) is Γ j
1 AND...AND xn(t) is Γ j

n THEN ẋ = A jx(t)+B ju(t), j = 1,2, ..., l, (5)

where Γ j
i is a fuzzy set.

To represent a sliding Filippov systems (DoS of one), we propose to extend (5) to a non-smooth TS fuzzy model as

2We mean smooth TS fuzzy model as the typical TS fuzzy model able to approximate smooth nonlinear functions.



described by the following model rules:

Model Rule j : IF x1 is Γ j
1 AND . . .AND xn is Γ j

n THEN

 ẋ = ∑lm
j=1 µ j(x,m)(A j(m)x+B j(m)u)

m+ = ξ(x,m),
(6)

where the embedded discrete function m+(t) = ξ(x(t),m(t)) describes the switching (or discrete) events between continuous

states x ∈ Rn on or around the switching manifold Σ, and m ∈ M = {m1, . . . ,mN} is a discrete state variable associated with

a local continuous dynamic f (x,mi) where the discontinuous change to another f (x,m j) can only take place if we let the

change to the next discrete state ξ : mi 7→ m j (notation m+ means the next state of m). Therefore, the local smooth dynamics

associated with discrete state mi is represented by a specific set, which we will call a fuzzy sub-vector field, denoted by Fmi

and described as:

Fmi = ∑
j∈{1,2,...}

µ j(x,mi)(A j(mi)x+B j(mi)u), (7)

where A j(mi) ∈ ℜn×n, B j(mi) ∈ ℜn×m and µ j : ℜn ×M → [0 1], i ∈ IN = {1,2, . . . ,N}, are continuous weighting functions

satisfying ∑lm
j=1 µ j(x,m) = 1 and lm is the number of fuzzy rules.

Remark 1: In order to describe rapid switching of sliding dynamics in (6), the function ξ is substituted by a number of

switch sets as

Si,k = {x ∈ ℜn| mk = ξ(x,mi)}, i, k ∈ {1,2, . . . ,N}, (8)

The switch sets simply describe where in the continuous state space a fuzzy sub-vector field Fmi switches to another Fmk

provided that mi ̸= mk �

In the model (6), sliding dynamics can be described if two switch sets Si,k and Sk,i coincide and form a sliding manifold

which, in our case, resides on switching manifold Σ itself. This means that the two fuzzy sub-vector fields Fmk and Fmi

approach very close to Σ and slide along it. However, this scenario results in an uncertainty of infinite number of rapid

switches between the discrete states mi and mk where it is very difficult to ascertain the value of discrete states at any time

in the sliding mode. To resolve such an uncertainty problem, a new discrete state like mz is introduced in ξ(x,m) to define

the sliding dynamics as the infinite number of switching between mi and mk occurs. In this case, the switching (sliding)

manifold can be readily represented by switch sets Si,z and Si,k. More importantly, the existence and uniqueness of solution

near the sliding manifold can be held. As a result, the sliding dynamics along the switching manifold can be reformulated in

the model (6) using the classical methods of Filippov’s convex combination or Utkin’s equivalent control [28].



A fuzzy sub-vector field Fm (7) basically represents smooth dynamics in the same way as model (4) approximates a

smooth dynamical system. Hence, we can adopt a linearisation transformation approach [23] for the approximation of

continuous part of dynamics in a non-smooth system of the form (6). However, we replace the operating regions of fuzzy

sub-systems in (7) with flexible regions defined as Ωx, mi, j
q ⊂ F (F denotes the whole state space comprised of discrete and

continuous fuzzy states) to represent Fmi in △ flexible regions. In this way, the regions can be defined as a support set of

continuous fuzzy states:

[µ]0 = {x ∈ Ωx,mi
q | µ j(x,mi)> 0}, (9)

where each region Ωx,mi, j
q is designated to [µ]0 and defines to what degree the local terms A j(mi)x+B j(mi)u are a part of

Fmi and hence, the overall dynamics. With [µ]0, a non-smooth model (6) is obtained by letting the fuzzy variables zi(x) to be

defined as a convex combination of flexible region boundaries

zi(x) = M(zi(x)) ·min
x
[w]0 +(1−M(zi(x))) ·max

x
[w]0, (10)

where minx[w]0 and maxx[w]0 are respectively the lower boundary and the upper boundary of flexible regions Ωx, mi, j
q . It will

be shown in the next section that the existence of such flexible regions is essential for the structural stability analysis.

To construct a non-smooth model of the oscillator motion (2) with the nonlinear Coulomb friction law (3) based on the

formalism (6), (7) and (8), we define x1 = u and x2 = u̇, and two fuzzy set supports [w1]0 and [w2]0 for the state variable

x2, with the respective boundaries of x2 ∈ [−0.5,1] and x2 ∈ [1.001,2.5]. We also define two fuzzy variable z1 and z2 for the

nonlinear term α1+2α2+α2(x2
2+2x2), respectively, based on [w1]0 and [w2]0. Using the definition (10), the fuzzy variables

are calculated as z1(t) = M1(z1(t))× 2.9625+M2(z1(t))× 3.7500, and z2(t) = M3(z2(t))× 3.7518+M4(z2(t))× 7.4625

where M1, M2, M3 and M4 are fuzzy sets or membership functions, which are obtained as

M1(z1(t)) = (z1(t)−3.7500)/0.7875, M2(z1(t)) = (2.9625− z1(t))/0.7875,

M3(z2(t)) = (z2(t)−7.4625)/3.7107, M4(z2(t)) = (3.7518− z2(t))/3.7107.

and ξ(x,m) is described by switch sets (8):

S1,2 = {x ∈ Rn| 1− x2(t)> 0}, S2,1 = {x ∈ Rn| 1− x2(t)< 0}, (11)



which explains the interaction between the fuzzy sub-vector fields Fm1 and Fm2 , where they are composed of the following

sub-systems respectively:

A1(m1) =

 0 1

−1 2.9625

 , A2(m1) =

 0 1

−1 3.7500

 , A3(m1) =

 0 1

−1 3.7518

 , A4(m1) =

 0 1

−1 7.4625

 ,

B j(m1) =

 0

α0 −α1 +α2 +F cos(ϖt)

 , j = 1,2,3,4,

and

A1(m2) =

 0 1

−1 2.9625

 , A2(m2) =

 0 1

−1 3.7500

 , A3(m2) =

 0 1

−1 3.7518

 , A4(m2) =

 0 1

−1 7.4625

 ,

B j(m2) =

 0

−α0 −α1 +α2 +F cos(ϖt)

 , j = 1,2,3,4.

Hence, the model rules for dry-friction oscillator are expressed as follows:

Model Rule j: IF x2(t) is Γ j THEN

 ẋ(t) = A j(mi)x(t)+B j(mi)u(t), j = 1,2,3,4, i = 1,2,

m+ = ξ(x,m),
(12)

To better understand the model above and the interaction of fuzzy sub-vector fields when trajectories graze and slide near the

switching manifold, we describe the TS fuzzy model (12) in the form of differential inclusions as follows:

ẋ = f =


{Fm1 = ∑4

j µ j(x,m1)(A j(m1)x+B j(m1)u)}, if x ∈ S1,2,

{Fm2 = ∑4
j µ j(x,m2)(A j(m2)x+B j(m2)u)}, if x ∈ S2,1,

{µFm1 +(1−µ)Fm2 | 0 < µ < 1}, if x ∈ ∂S1
∩

∂S2.

The third term of f means that the interaction of the fuzzy sub-vector fields Fm1 and Fm2 (based on (11)) near the switching

manifold (x ∈ ∂S1
∩

∂S2) is described as the convex combination of Fm1 and Fm2 , which naturally holds for TS fuzzy models

as a poly-topic system. Furthermore, the third term of f describes the familiar equivalent sliding dynamics according to
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Fig. 5. Bifurcation diagram obtained from the direct simulation of the non-smooth TS fuzzy model (11),(12) shows the grazing-sliding DIB at
ϖ = 1.70778. Small figures show steady-state time responses.

Filippov [1] close to switching manifold. The equivalent dynamics can be alternatively formulated by Utkin’s method as

explained immediately below.

Fuzzy sub-vector fields Fm1 and Fm2 represent the solution trajectories with opposite directions in the close vicinity of

the switch sets (11); hence, coinciding the two switch sets forms an attractive sliding region Ŝ. As mentioned, by introducing

a new discrete state mz, the sliding dynamics can be described with Utkin’s equivalent control if we assume that the manifold

S = {x ∈ Rn | 1−x2(t) = 0} is formed by coinciding S1,2 and S2,1 as Fm1, m2 = {(Fm1 +Fm2)/2}+{(Fm1 +Fm2)/2}Ueq where

Fm1, m2 = Fmz denotes a sliding fuzzy sub-vector field and the equivalent sliding dynamics Ueq is formulated as:

Ueq =−∇S ·Fm1 +∇S ·Fm2

∇S ·Fm2 −∇S ·Fm1

=−Fm1 +Fm2

Fm2 −Fm1

,

where Ueq ∈ [−1,1], ∇S = ∂S/∂x and the sliding region Ŝ is defined as Ŝ = {x ∈ S : −1 ≤Ueq ≤ 1}.

Comparing the bifurcation diagrams of the non-smooth TS fuzzy model (11), (12) with that of a physical model of the

forced oscillator (see Figs. 5 and 3) validates the ability of the new formalism to model the non-smooth sliding dynamics

and the resulting sliding-grazing DIB. The accuracy of modelling is also visible in the steady-state time responses of the

stable periodic orbit at forcing function frequency ϖ = 1.70781 (see small Figs. 5a and 5b where the solid lines represents

the oscillator response and blue-coloured dotted-line represents TS fuzzy model) and when the periodic orbit undergoes a

DIB at ϖ = 1.70778 and becomes chaotic (see small Figs. 5c and 5d).

3 Structural stability analysis

A Lyapunov framework is proposed in this section for the analysis of the sliding-grazing bifurcation in a dry-friction

oscillator. The proposed approach is based on the constructed TS fuzzy model (12), and the employment of non-smooth

Lyapunov functions where the energy functions are piecewise continuous in △ detached but flexible regions of fuzzy state



space F . This is an essential step to deal with the complex scenarios of the sliding-grazing periodic orbit with respect to

the switching manifold and to avoid the conservative formulation when recasting the stability theorems into Linear Matrix

Inequalities (LMI) conditions. If we let a region Ω be defined as a support set as described in (9), then we can define the

subsets Ωx = {x ∈ ℜ2 | (x,m) ∈ Ω} including continuous fuzzy states, Ωx,mi = {x ∈ ℜ2 | (x,m) ∈ Ω} including continuous

fuzzy states and Ωm = {m ∈ M | (x,m) ∈ Ω} including discrete fuzzy states. We further let Ω ⊆ F be partitioned such

that Ω1 ∪ . . .∪Ω∆ = Ω, Ωq ∩Ωr = /0,q ̸= r, q,r ∈ I∆ where I∆ is a set containing the number of ∆ detached regions. For

hyperplanes, or boundaries of a region, we define region Λqr, q,r ∈ I∆, q ̸= r as a set of fuzzy states for which the solution

trajectory satisfies (11), (12), with initial states (x0,m0) ∈ F0, and passes from Ωq to Ωr, i.e. Λqr = {(x,m) ∈ Ω | ∃t <

t0, such that (x(t−),m(t−)) ∈ Ωq, (x(t),m(t)) ∈ Ωr}. In order to allow the solution trajectories to move through from one

region onto another we define a set of tuples IΛ = {(q,r) | Λqr ̸= /0} which indicates there is at least one point for which the

solution trajectory can move through from Ωq to Ωr. Considering the region partitions, the non-smooth Lyapunov function

candidate is defined as:

V (x) =Vq(x) when (x,m) ∈ Ωq (13)

where V (x) is a non-smooth Lyapunov function at the boundary regions Λqr, (q,r)∈ IΛ and Vq : clΩx
q →ℜ,q∈ I∆ representing

the system’s (abstract) energy in each local region Ωq (cl. denotes the closure of a set, which is the smallest closed set

containing the set). V (x) is also considered piecewise continuous as a function of time. To formulate the stability problem

as LMI, Vq(x) in (13) is defined as piecewise quadratic matrices Vq(x) = πq + 2pT
q x+ xT Pqx, (x,m) ∈ Ωq, q ∈ I∆, πq ∈ ℜ,

pq ∈ ℜn and Pq = PT
q ∈ ℜn ×ℜn. For ease of formulation we can rewrite Vq(x) = x̃T P̃qx̃ where the matrices x̃ = [x 1]T

and P̃q = [Pq pq; pT
q πq]. Since all the stability conditions presented in the subsequent theorem 1 must be confined to local

regions Ωx
q, Ωx,mi

q , Ωm
q and the boundary regions Λx

q,r, the regions are formulated as quadratic inequalities recastable to LMI

conditions. This is possible if the confined regions are defined as quadratic functions and then transformed to unconfined

conditions using the well-known S-procedure technique [29]. Therefore, if we define a region as a confined inequality

condition Q0(x) ≥ 0, ∀x ∈ Ω where Q0(x) : ℜn → ℜ is a function with unknown variables to be determined, the condition

can be substituted with an unconfined condition Q0(x)≥ ∑s
k=1 λkQk(x), ∀x ∈ ℜn, ∃λk ≥ 0, k ∈ Is (see Lemma in [29]). Then

by defining

Qk(x)= xT Zkx+2(ck)T x+dk = x̃T Z̃kx̃, ( k= 0, . . . ,s), x̃=

x

1

 , Z̃k =

 Zk ck

(ck)T dk

 , Zk =(Zk)T ∈ℜn×ℜn, ck ∈ℜn, dk ∈ℜ,

we transform the unconfined condition to LMI as Z̃0 ≥ ∑s
k=1 λkZ̃k, λk ≥ 0, k ∈ Is.

Note: Boundary regions Λqr can represent the switching manifolds (or switch sets in (11)). This type of regions can



be substituted by quadratic forms Qk(x) = 0, k ∈ Is, making the imposition of constraints on additional parameters such as

λk ≥ 0, k ∈ Is unnecessary since the inequality Q0(x) ≥ ∑s
k=1 λkQk(x) is true regardless of the sign of these parameters. In

this case, matrices Z̃k replacing the regions Λqr can be denoted as Z̃k
q,r.

With having a method for LMI formulation of regions, the fundamental theorem for the structural stability analysis can

be presented as a LMI stabilization problem as follows:

Theorem 1. If there exist piecewise quadratic matrices P̃q,q ∈ I∆, constants ηqr
k and if there is a solution to min β subject

to

1. α > 0, µk
q ≥ 0, µ̂k

q ≥ 0, νk
qi j > 0,

2.

α 0

0 0

+
sq

∑
k=1

µk
q

 Zk
q ck

q

(ck
q)

T dk
q

≤ P̃q,

3. P̃q ≤

β 0

0 0

+
sq

∑
k=1

µ̂k
q

 Zk
q ck

q

(ck
q)

T dk
q

 , q ∈ I∆,

4.

(A j(mi))
T Pq +PqA j(mi) PqB j(m)+(A j(mi))

T pq

(B j(mi))
T Pq + pT

q A j(mi) (B j(mi))
T pq + pT

q B j(mi)

+
sqi j

∑
k=1

νk
qi j

 Zk
q ck

q

(ck
q)

T dk
q

≤−Ĩ, q ∈ I∆, mi ∈ Ωm
q ,

5. P̃r ≤ P̃q −
sqr

∑
k=1

ηqr
k

 Zk
qr ck

qr

(ck
qr)

T dk
qr

 , (q,r) ∈ IΛ,

then the invariant set is structurally stable in the sense of Lyapunov (i.e. the periodic solution exponentially converges to the

stable fixed point of the Poincaré map). 3

Remark 2: Theorem 1 links the idea of asymptotic (exponential) Lyapunov stability with the novel notion of structural

stability. As we deal with the stability of more complex scenarios of periodic orbits, we assume that the system states (x,m)

must converge to the stable fixed point, the intersection of the stable periodic orbit of interest with the Poincaré map [9]. In

this way, the structural stability, can be verified by the exponential (asymptotic) stability of the fixed point in the sense of

Lyapunov �

Remark 3: To derive the rate of exponential convergence, the conditions are first scaled by 1/γ and then the LMI

optimization problem can be solved when β is minimized. If we search for the maximal value of α when trying to minimize

β, the computational effort will be minimized. The maximal value of α is the smallest eigenvalue of all matrices Pq, should

all regions contain the origin as an interior point. This is mainly due to λmin
q xT x ≤ xT Pqx [30] where λmin

q is the smallest

eigenvalue of Pq �

In theorem 1, the search for V (x) in (13) is formulated in flexible regions (except for boundary regions Λqr representing

switch sets). Determining the size of the regions Ωq is important since if a region are substituted by quadratic inequalities

covering too large a region, the LMI stabilization problem will be found infeasible due to the conservative formulation. As

3The essential part of the proof is similar to the proof presented for non-sliding Filippov systems [21] (DoS of 1). The extended detail of the proof for
sliding dynamics including the existence and uniqueness of the solution when there is a rapid switching of sliding motion near the switching manifold is
omitted here due to insufficient space.



will be shown later finer region partitions are needed in the close neighbourhood of the switching manifold to verify structural

stability. However, the sliding-grazing event occurs in such a narrow domain of parameter variation, that the use of trial and

error approach for the selection of size and number of partitions would be, at best, an exhaustive process. An extension to

theorem 1 is needed to automate the region partitioning process by finding finer regions close to the sliding region.

As pointed out, in substituting the regions Ωq with quadratic inequalities, the inequality Qk(x) ≥ 0 shall not cover a

larger region than Ωq. Even though the whole state space Ω ⊆ F is naturally partitioned by switch sets Si, j (then replaced

by Λqr) according to the definition of V (x) in (13), this partitioning will not suffice the feasibility conditions since in the

neighbourhood of sliding-grazing orbit, boundary regions Λqr take an arbitrary form. Therefore, before the substitution by

the terms Qk(x) ≥ 0, region Ω must be restricted by more hyperplanes to achieve arbitrary region partitioning with more

exact coverage. To describe the automation procedure, first, we have to describe how the hyperplanes, i.e. the boundary

region Λqr, is represented by quadratic inequalities. If Λqr is substituted by a set of states fulfilling quadratic equalities of

the form f T x+g = 0, f = [ f 1 . . . f n]T ∈ ℜn, g ∈ ℜ, the quadratic form becomes equivalent to the quadratic equalities

x̃T

 λ

λn+1

 [ f T g]x̃+ x̃T

 f

g

 [λT λn+1]x̃ =
n+1

∑
k=1

λkx̃T Z̃kx̃ = 0,

where Z̃k = ek[ f T g]+ [ f T g]T (ek)T , x̃ = [x 1]T , λ = [λ1, . . . ,λn]T ∈ ℜn, λn+1 ∈ ℜ are arbitrary additional parameters and ek

is a column vector with n elements such that ek(i) = 1, i = k and ek(i) = 0, i ̸= k (i means the ith element of ek). The search

for arbitrary region partitions is presented in the following routine:

Routine 1. If there exist piecewise quadratic matrices P̃q, q ∈ I∆, constants ηqr
k , and if there is a solution to min β subject

to the following routine

1. ξ0 = 1, a = 0,δ0 = 0,

2. ga ≤ g0 +δa, g0 +δa ≤ ga,

3. 2(λT x+λn+1)T ( f T +ga) = 0,

4. Stability conditions 1, 2, 3, 4 & 5 of Theorem 1,

5. If not feasible continue otherwise stop

6. a = a+1, δa = δa + c ·ξa, ξa = ξa · ε,

7. Goto 2

then the sliding-grazing invariant set is structurally stable in the sense of Lyapunov.

As previously mentioned, the switching manifold Σ = {x ∈ ℜn | 1− x2(t) = 0} is an intrinsic hyper-plane partitioning

the fuzzy state space F to regions Ω1 and Ω2 where on the boundary Λ12 the switch sets S1,2 and S2,1 coincides and form

the sliding region Ŝ. Therefore, we initiate Routine 1 with the selection f = [0 − 1] and g = 1. We can set the value for

c and initial value for ξa as any value; nonetheless, as the distribution of partitions need to be formed closer to Ŝ, we set



the initial values c = 0.1 and ξa = 0.01 to achieve the result with less computational effort. Varying the forcing function

frequency ϖ as the bifurcation parameter while running Routine 1 results in a feasible solution exactly at the bifurcation

point of ϖ = 1.70779 (see Fig. 2 and 5), with the following piecewise quadratic matrices and 8 region partitions (see the

region distribution in Fig. 6):

P̃1 =


19.442 2.354 24.076

2.354 0.631 3.336

24.076 3.336 999.939

 , P̃2 =


9.663 2.065 51.176

2.065 1.381 20.344

51.176 20.334 999.939

 , P̃3 =


11.206 2.153 67.411

2.153 1.148 20.118

67.411 20.118 999.939

 ,

P̃4 =


11.209 2.153 67.448

2.153 1.148 20.117

67.448 20.117 999.939

 , P̃5 =


9.663 2.065 51.176

2.065 1.381 20.344

51.176 20.344 999.851

 , P̃6 =


11.206 2.153 67.411

2.153 1.148 20.118

67.411 20.118 999.939

 ,

P̃7 =


11.209 2.153 67.448

2.153 1.148 20.117

67.448 20.117 999.851

 , P̃8 =


19.440 2.354 141.477

2.354 0.628 19.601

141.477 19.601 999.939

 .

The exponential convergence to the fixed point is optimized with the value of β = 36.295. This means that the sliding orbit

is exponentially stable in the sense of Lyapunov (see Remark 2). For any frequency less than ϖ = 1.70779, Routine 1 would

result in infeasibility of the solution, which is the analytical confirmation of the instability of the 4T periodic orbit which

grazes the sliding region and undergoes the sliding-grazing bifurcation (see Fig. 2). Thus the onset of the sudden chaotic

attractor can be analytically predicted using Routine 1 (along with Theorem 1). As can be noticed in Fig. 6, the hyperplanes

resulting from Routine 1 introduce progressively narrower regions close to the first boundary region

Λqr = 2(λT x+λn+1)T ([0 −1]T x+1) = 0, (14)

where the parameters λ is determined by solving the quadratic inequalities as described.

4 Conclusions

The stability of the complex sliding-grazing scenario in a forced dry-friction oscillator is investigated in this paper. A TS

fuzzy model-based approach is suggested to analytically predict the onset of such a unique non-smooth bifurcation leading

to an abrupt chaotic orbit. It is shown that using the proposed non-smooth TS fuzzy formalism, the sliding dynamics formed

by discontinuous switching can be modelled to exhibit all the observed non-linearities in the physical model. Structural

stability of a local grazing-sliding orbit is formulated as LMI stability conditions where the non-smooth Lyapunov (energy)

function is searched in flexible but detached regions of fuzzy state space. It has been emphasized that such flexibility is
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Fig. 6. An illustration of region partitioning and estimated energy levels of the non-smooth Lyapunov function candidate in the local regions
(dot-dashed curves) when sliding (local) orbit grazes the switching manifold.

critical in avoiding the conservative LMI formulation should the problem be solved by interior-point convex optimization

methods. A routine is further proposed for the automatic distribution of regions. Using this routine, the sliding-grazing

bifurcation point can be accurately predicted. The method presented in this paper is a strong candidate for stability analysis

and model-based control of the oscillator. By avoiding the complexity of discontinuity mapping, the direct numerical analysis

of sliding-grazing flow and its bifurcation is now possible through low-order algorithms and existing smooth solvers.
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List of Figures

Fig. 1. Model of a forced oscillator with dry friction.

Fig. 2. (a)4T (8π/ϖ) periodic orbit grazes the boundary of sliding region (grazing-sliding event) at ϖ = 1.7077997 and turns

to a (b) chaotic orbit. Dot-dashed line in (a) shows a stable, non-sliding periodic orbit for ϖ = 1.7082 before sliding-grazing

event, and the solid line in (a) shows the sliding orbit near the tangency of attracting switching manifold.

Fig. 3. The bifurcation diagram shows the grazing-sliding bifurcation where there is a sudden transition to a chaotic attractor.

Fig. 4. With small parameter variation, periodic (sliding) orbit a → b, touches the switching manifold Σ at x∗ undergoing a

sliding-grazing bifurcation, and b → c. In fact, periodic orbits a and c might exist for the same parameters values.

Fig. 5. Bifurcation diagram obtained from the direct simulation of the non-smooth TS fuzzy model (11),(12) shows the

grazing-sliding DIB at ϖ = 1.70778. Small figures show steady-state time responses.

Fig. 6. An illustration of region partitioning and estimated energy levels of the non-smooth Lyapunov function candidate in

the local regions (dot-dashed curves) when sliding (local) orbit grazes the switching manifold.


