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We consider the local bifurcations that can happen to a quasiperiodic orbit in a 3-dimensional
map: (a) a torus doubling resulting in two disjoint loops, (b) a torus doubling resulting in a
single closed curve with two loops, (c) the appearance of a third frequency, and (d) the birth of
a stable torus and an unstable torus. We analyze these bifurcations in terms of the stability of
the point at which the closed invariant curve intersects a “second Poincaré section”. We show
that these bifurcations can be classified depending on where the eigenvalues of this fixed point
cross the unit circle.
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1. Introduction

We investigate the local bifurcations that can happen to a quasiperiodic orbit (or an ergodic torus) in a
3-dimensional map. In various studies on physical and engineering systems, four different types of orbits
resulting from such bifurcations have been reported. These are schematically depicted in Fig. 1, where the
black firm lines represent the stable orbits and the red dashed lines represent the unstable invariant closed
curves resulting from the bifurcation.

Fig. 1(a) and (b) are said to be torus doublings [Kaneko, 1983], but with the difference that in the
first case there are two disjoint loops (and the iterates successively toggle between the two) while in the
second case there is a single closed curve with two loops. Such disjoint closed loops have been reported in
studies on mechanical vibro-impacting systems [Ding et al., 2004; Luo, 2006], in experiments on molten
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Fig. 1. The four types of behaviors possible in a 3D map, resulting from the local bifurcation of an ergodic torus.

gallium [McKell et al., 1990], and in coupled Chua’s circuits [Zhong et al., 1998]. The occurrence of a
single closed invarient curve with two loops was reported as early as 1983 [Arneodo et al., 1983], and
later in the experiments on vibrating strings [Molteno & Tufillaro, 1990], a circuit with hysteresis element
[Sekikawa et al., 2001], 3D Lotka-Volterra model [Bischi & Tramontana, 2010], in a resonant circuit with
two saturable inductors [Schilder et al., 2005], in a bimode laser system [Letellier et al., 2007] and in the
food chain models used in ecological studies [Osipenko, 2007].

In the case of Fig. 1(c), a third frequency appears and the orbit in discrete-time takes the shape
of a torus. Following the work of [Ruelle & Takens, 1971; Newhouse et al., 1978], it was believed that
such three-frequency quasiperiodic orbits are structurally unstable and should not be expected to occur
in nature. But [Grebogi et al., 1983] showed that this behavior can indeed occur in typical dynamical
systems, which was subsequently experimentally verified by [Cumming & Linsay, 1988]. Such behavior
has also been observed in a vibro-impacting system [Luo et al., 2006]. In this paper we demonstrate the
occurrence of stable three-frequency quasiperiodicity in a common power electronic circuit — the current
mode controlled boost converter.

In the fourth case (Fig. 1(d)), a stable torus and an unstable torus appear out of nothing, or if the
parameter is varied in the opposite direction, they merge and disappear. Such torus-torus collisions have
been reported in the quasiperiodically driven logistic map [Heagy & Hammel, 1994] and circle map [Feudel
et al., 1995; Kuznetsov et al., 2000, 1998], which give rise to strange nonchaotic attractors.

The purpose of this paper is to relate these observations coming from different branches of science
into a single theoretical structure that explains the creation of the orbits shown in Fig. 1 from a stable
quasiperiodic orbit. With that purpose, we adopt the approach where a “second Poincaré section” is placed
in the discrete-time state space, and we observe the nature of the point at which the closed invariant curve
intersects this plane. This approach was earlier proposed by [Kaas-Petersen, 1985, 1987] as a numerical
technique to locate the invariant tori, but apparently has not been used by many researchers afterwards.
Technically the approach is similar to approximation of the map by an averaged vector field [Schilder
et al., 2005; Yoshinaga & Kawakami, 1995; Krauskopf, 2001], and placing a Poincaré section to intersect
the continuous trajectory. We apply this approach to analyze the local bifurcation of tori. We report
techniques to overcome the problem posed by the fact that there are discrete points filling the drift ring
which, in general, do not fall on the second Poincaré section. We report methods to calculate the eigenvalues
of the fixed point thus obtained. Using examples from ecological models and power electronics, we show
that these bifurcations can be classified depending on where the eigenvalues cross the unit circle.
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2. The method of the second Poincaré section

First we consider the mechanisms of the creation of orbits shown in Fig. 1(b), (c), and (d). We shall consider
the orbit shown in Fig. 1(a) later in Section 3, because it can be created through local bifurcation of a
fixed point.

We start by considering a stable fixed point which undergoes a Neimark-Sacker bifurcation at some
parameter value, creating a torus on which the orbit lies. The orbit occurring on the torus could be a
mode-locked periodic orbit or a quasiperiodic orbit. In the first case the closed invariant curve is formed by
the union of the nodes and the unstable manifolds of the saddle. In the second case the drift ring forms the
closed invariant curve. In this paper we consider the second case, where the torus is ergodic in nature, and
investigate the possible types of local bifurcations such an orbit could undergo as the parameter is varied
further.

As a method of investigation, we place a plane transversal to the curve at any arbitrary point (Fig. 2).
Let us call it a “second Poincaré section” in the sense that the “first” Poincaré section was used in the
continuous-time system to produce the discrete-time map.

Fig. 2. The “second Poincaré section”.

It intersects the continuous curve passing through the points of the orbit at a point. This continuous
curve can be viewed as the trajectory of an averaged vector field. Now we can talk about the stability
of this point of intersection. Since it is a point in the 2D “second Poincaré section”, it will have two
eigenvalues. Thus it can lose stability in three possible ways, and our proposition regarding the outcome
of these bifurcations is as follows.

(1) A complex conjugate pair of eigenvalues may go out of the unit circle. This will create a closed invariant
curve around that point. Thus, we have the situation depicted in Fig. 1(c).

(2) An eigenvalue may reach +1. This would be like a saddle-node bifurcation of tori, and there must be an
unstable closed invariant curve associated with this bifurcation. At this bifurcation they would merge
and would go out of existence. If we consider an opposite direction of variation of the parameter, a stable
torus and an unstable torus would spontaneously come into existence together at such a bifurcation
point. This is the situation depicted in Fig. 1(d).

(3) An eigenvalue goes out of the unit circle through −1 which would lead to period doubling. A period-2
fixed point develops on this second Poincaré section, and the iterates must flip between the points.
This gives rise to the situation depicted in Fig. 1(b).

Now we give examples of the three situations.

2.1. Example of the situation depicted in Fig. 1(c)

We illustrate the first route using a power electronic circuit—the current mode controlled boost converter,
shown in Fig. 3, studied by the authors in [Giaouris et al., 2012]. It is a step-up dc to dc converter commonly
used in regulated power supplies. In the power circuit, the switch S is turned on by a free running clock.
When the switch S is on, the inductor current iL rises, and it is switched off when iL reaches a reference
value Iref . When the switch is off, the inductor current falls, and the voltage across it adds to the input
voltage Vin, as a result of which a voltage higher than the input voltage appears across the load R (hence
the name boost converter). The capacitor C helps to maintain this output voltage more or less at a constant
level with a small ripple. In order to regulate the output voltage, a reference current signal Iref is generated
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Fig. 3. The schematic circuit diagram of a current mode controlled boost converter.

through output voltage feedback, using a proportional-integral controller and a periodic ramp signal Vp.
The duty ratio is defined as the duration of the on period in each clock cycle divided by the duration of the
full clock period. The control of the output voltage is exercised by changing the duty ratio in each cycle
through the above control logic.

Considering the state vector x = [iL vc va]
T , the mathematical model is given by [Chen et al., 2007,

2008]:

ẋ =

{
A1x+B, for S = ON and D = OFF

A2x+B, for S = OFF and D = ON
(1)

with

A1 =

−
rL+rT
L 0 0

0 − 1
τm(1+kc)

0

0 g
τa(1+kc)

0

 , B =

 1
L
0

gkdVref
τaVin



A2 =

−
rL+rD
L − rc

L(1+kc)
− 1
L(1+kc)

0
1

C(1+kc)
− 1
τm(1+kc)

0
g

τa(1+kc)
g

τa(1+kc)
0


and kc = rc/R, kd = Ra/R1, τm = RC, τa = RaCa. The nominal parameter values taken in this study
are R = 26Ω, L = 165µH, rL = 0.04Ω, C = 150µF, rC = 0.03Ω, rT = 0.055Ω, rD = 0.01Ω, T = 40µs,
Vref = 2.5V , R1 = 47kΩ, R2 = 6.8kΩ, Ra = 10kΩ, Ca = 2.2nF, Vp = 0.445V, M = 0.3V/A. We use the
input voltage as the variable parameter.

In the normal operating condition of a commercially used converter, the state variables follow a period-
1 orbit. But, with the variation of the external parameters like the input voltage or the load resistance, this
orbit may become unstable, and other dynamical modes may come into operation. In order to investigate
these changes, we fix the load resistance at R = 25.1Ω, and the input voltage is reduced from 3.29V to
obtain the bifurcation diagram in Fig. 4. At Vin ≈ 3.28V, the period-1 behavior undergoes a period doubling
bifurcation, followed by a Neimark-Sacker bifurcation occurring on the period-2 orbit. Thus, a two-loop
torus is created. As the input voltage is further reduced, at around Vin = 3.268V, the torus loses stability,
and a third frequency is generated in the system.

Looking at the T -sampled trajectories (Fig. 5) we see that at Vin = 3.268V there are two loops around
the two points of the unstable period-2 orbit. When the parameter is reduced to Vin = 3.266V , the discrete-
time picture itself takes the shape of a torus. The spectrum reveals that at this point a third frequency
component is added, and hence the behavior is a three-frequency quasiperiodicity with two loops.
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Fig. 4. Bifurcation diagram of the boost converter with the load resistance fixed at R = 25.1Ω, and the input voltage varied
as the bifurcation parameter [Giaouris et al., 2012].

Fig. 5. Trajectories for Vin = 3.268V (in black) and Vin = 3.266V (in grey) sampled every T seconds.

Now we proceed to analyze this event using the method of second Poincaré section. This is a time-
driven system with period T , and the object under study in this case is a two-loop torus. In order to
concentrate on one of the loops, we sample the trajectory at every 2T seconds, thus obtain points on the
first Poincaré section that form one loop. Our intention is to study the stability and bifurcation of this
quasiperiodic behavior.

Now we place a “second Poincaré section” (say, at iL = 5.5A) to intersect the closed curve on which
the points of the 2T -sampled quasiperiodic orbit lie (Fig. 6). Since the points in general would not fall on
this plane, we take three points before and three points after the crossing, and use a spline interpolation to
obtain the continuous-time orbit of the averaged vector field. We thus obtain the point where the continuous
curve passing through the discrete-time trajectory intersects the second Poincaré section. For the stable
quasiperiodic orbit, this procedure yields a fixed point in steady state.

Now we assume that the dynamics on this second Poincaré section, in the neighborhood of the fixed
point, is given by a linear equation of the form

xn+1 = Axn,

where x represents the deviation from the fixed point. In order to assess the stability of the quasiperiodic
orbit, we need to evaluate the Jacobian matrix A at the fixed point.
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Fig. 6. The twice sampled state space, once at 2T and once when il = 5.5A. Top: when the torus is stable, for Vin = 3.268V ,
bottom: when the 3-frequency torus develops, for Vin = 3.267V .

In order to do that, we give a perturbation to the initial condition, and observe the subsequent piercings
of the second Poinacré section (shown in Fig. 7). Using the positions of three such piercing points, one
can obtain the matrix A, and its eigenvalues. The eigenvalues thus obtained (averaged over a number of
such triplets) are listed in Table 1. It is clearly seen that the eigenvalues are complex conjugate, and the
magnitude approaches unity as the parameter value of Vin = 3.268V is approached.

a b

Fig. 7. Second Poincaré points. a) Vin = 2.271V , b) Vin = 2.269V .

Vin Eigenvalues Absolute Value
3.271 0.98146048460± 0.12448292910i 0.989323345769270
3.270 0.98444607862± 0.12490543431i 0.992338374368223
3.269 0.98770540187± 0.12340583755i 0.995384830925260
3.268 0.99119492775± 0.11975828709i 0.998403441570462

The eigenvalues can also be obtained by another method. If we place the second Poincaré section on a
point of the quasiperiodic drift ring, the iterates starting from that point go around the loop and cross the
same point 83 iterates later. In order to calculate the stability of the whole quasiperiodic orbit, we have to
multiply the state transition matrices across each of these 83 clock cycles.

The system under consideration is nonsmooth, i.e., an orbit would go through multiple operating
modes (on and off states of the switch) between consecutive observations of the first Poincaré section.
The technique to determine the Floquet multipliers (the eigenvalues of the Jacobian matrix calculated at
the fixed point) of such an orbit has been developed recently [Giaouris et al., 2008, 2009, 2007]. The state
transition matrix across a whole clock cycle is called a “monodromy matrix” which is the product of the
exponential matrices for the on and off periods and the saltation matrices across the switching events
[Giaouris et al., 2008, 2009] occurring in that cycle. We calculated the time durations spent in the on and
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off phase in each cycle, and thus calculated the monodromy matrix in each cycle. The product of the 83
monodromy matrices gives the local linear approximation around the fixed point on the second Poincaré
section. The eigenvalues of this Jacobian matrix gives the stability of the fixed point.

We show in Table 2 the eigenvalues thus obtained, as the parameter is reduced to the bifurcation
value. These values are very close to the ones given in Table 1. This shows that even though the procedure
is somewhat approximate (since the crossing actually happened somewhere between the 83rd and 84th
iterates), it yields reliable results. This happens because in this system the frequencies are different by a
few orders of magnitude.

Vin Eigenvalues Absolute Value
3.271 0.9822015± 0.1133319i 0.9887184
3.270 0.9830253± 0.1449007i 0.9936473
3.269 0.9848370± 0.1431570i 0.9951873
3.268 0.9931656± 0.1123643i 0.9995017

Fig. 6 shows that before the onset of this instability, the second Poincaré section could see one point.
After the onset of this instability a loop develops. Fig. 7 and Table 2 show that a Neimark-Sacker type
bifurcation took place on the already existing torus.

2.2. Example of the situation depicted in Fig. 1(d)

The torus-torus collision is also illustrated using the same dc-dc converter system. The bifurcation diagram
obtained for a slightly different value of the load resistance is shown in Fig. 8.

Fig. 8. Bifurcation diagram of the boost converter for R = 26Ω, [Giaouris et al., 2012].

It shows that in the range Vin = [3.3, 3.2371] there are two stable orbits—a period-2 orbit, and a
two-loop torus. In fact, there is another attracting behavior where the system “saturates,” i.e., the switch
remains on. In addition there is an unstable period-1 fixed point, and two unstable tori—one that separates
the stable period-2 orbit from the stable torus and one that separates the stable torus from the saturation
attractor. These orbits and the basins of attraction are shown in Fig. 9(a).

An interesting event unfolds as the parameter is reduced further, to around Vin ≈ 3.2371V, when the
orbit diverges to the saturation attractor. Our investigation revealed that as the parameter approaches
this value, the second stable torus and the unstable torus approach each other and at that parameter value
they merge and disappear. After this event, any initial condition outside the first unstable torus diverges
to the saturation attractor.

In analyzing this event, we applied the method of second Poincaré section. In this case there is no
rotation observed on the second Poincaré section, and the iterates starting from a perturbed initial condition
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Fig. 9. The basins of attraction observed in the 2T -return maps. left: Vin = 3.26: a stable fixed point, a stable torus, the
saturation attractor and two unstable tori dividing the basins of attraction; Right: Vin = 3.2371: the same orbits just before
the torus-torus collision.

Vin Eigenvalues
3.28 0.95028922971, 0.94403283208, −0.95822348419
3.26 0.98728655092, 0.96036314168, −0.94614257837
3.25 0.99165802082, 0.97522880046, −0.92296425403
3.24 0.99965802082, 0.98107914455, −0.84362481946

approach the fixed point along a linear path (which indicates that the eigenvalues should be real and
positive). However, close to the bifurcation point, the path on the second Poincaré section becomes wobbly
as it approaches the fixed point. This is expected, since the bifurcation occurs not at a single parameter
value but over a range of parameter values [Krauskopf, 2001; Schilder et al., 2005].

Starting from a point on the second Poincaré plane, it was observed that the orbit goes through 84
iterations to complete a cycle around the loop. The Jacobian matrix A was again calculated as a product
of 84 monodromy matrices, and the resulting evolution of the eigenvalues is tabulated in Table 3.

From this table it is clear that one eigenvalue approaches +1 as the parameter approaches the bifur-
cation value. Thus, this bifurcation is torus equivalent of the saddle-node bifurcation, at which a node and
a saddle on the second Poincaré section merge and disappear. In the state space we observe the merging
of a stable torus and an unstable torus, and the disappearance of both.

2.3. Example of the situation depicted in Fig. 1(b)

The scenario depicted in Fig. 1(b) has not been observed in the power electronic circuit that we have been
considering so far. So we consider the 3D Lotka-Volterra model [Gardini et al., 1987; Osipenko, 2007] which
is known to exhibit this phenomenon:

x 7→ x+Rx(1− x− ay − bz)
y 7→ y +Ry(1− bx− y − az)
z 7→ z +Rz(1− ax− by − z)

For fixed R = 1, a = 0.5, it gives a quasiperiodic orbit at b = −0.65 (Fig. 10).
We place the second Poincaré section transversal to the curve passing through the drift ring, located

at one of the points of the quasiperiodic orbit. In this system, however, the stability of the torus cannot be
calculated following the procedure given in the earlier cases because the frequencies involved are not widely
different. Since the consecutive iterates on the loop are widely separated, one cannot use spline algorithms
to obtain a continuous curve as a close approximation to the drift ring. Moreover, starting from a point on
the second Poincaré section, an iterate may not land close to the section after traversing once around the
loop. In this case we adopt a slightly different approach to obtain a close approximation of the Jacobian
matrix.

We define a tolerance of ε around the second Poincaré section. Then, starting from a point on that
plane, we continue to iterate the map until a point falls within that tolerance range of the second Poincaré
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Fig. 10. The quasiperiodic orbit in the 3D Lotka-Volterra system at b = −0.65. The second Poincaré secion was placed at
the point shown by the red dot. (color online)

section. Suppose the orbit goes through n number of iterations before it crosses this plane again, and the
orbit goes around the loop k times before an iterate falls within a distance ε of the Poincaré plane. Since
in this case the map is given explicitly, we can evaluate the Jacobian matrix at each of these points. We
obtain the product of nk Jacobian matrices, obtain the eigenvalues of the resulting matrix, and then take
their 1/kth power to obtain the eigenvalues of the fixed point on the second Poincaré section.

For b = −0.65 we obtained the quasiperiodic orbit by simulation, and located the second Poincaré
section transversal to the loop at the point [1.29463267 1.19172558 0.82794044]T . We found that the
iterates starting from that point go around the loop 9 times before falling close to the second Poincaré
section. The procedure outlined above gives:

J =

−0.0013509647 0.1249247884 0.0077209463
0.6561635554 −0.3919617065 −0.6805223291
−0.5800070664 0.2129218475 0.5947387092


Its eigenvalues are 0.52038750, −0.31896146, and 0. Hence the eigenvalues of the fixed point on the second
Poincaré section are 0.520387501/9 = 0.9299953, and −0.318961461/9 = −0.88076450 (ignoring the zero
eigenvalue).

Table 4 gives the eigenvalues calculated this way, as the parameter b is varied. It shows that, as
the parameter is reduced, the second eigenvalue approaches −1, and subsequently we observe the “loop-
doubling,” as shown in Fig. 11. Note that the calculation of the eigenvalues by the above method is prone
to numerical errors which tend to build up with the number of cycles around the loop. So one should give
more weightage to the trend rather than the exact value of the eigenvalues as calculated from the above
procedure. Note also that we could proceed only up to b = −0.657 at which one eigenvalue was −0.9828. As
the bifurcation value is approached, the torus began to break up and the calculation became increasingly
unreliable.

b λ1 λ2
−0.65 0.9299953 −0.8807645
−0.653 0.9814073 −0.9181398
−0.657 0.9450149 −0.9828535

Even though a close approach to the bifurcation point was not possible, the trend is clear from Table 4:
the torus-doubling occurs when an eigenvalue of the fixed point on the second Poincaré section crosses the
unit circle on the negative real line. At this point we must point out that the term “torus doubling,” as has
been used somewhat sloppily in the earlier literature, should exclude a parameter range, say [µ1, µ2], where
the orbit loses hyperbolicity [Schilder et al., 2005]. Our calculation above shows that an eigenvalue of the
fixed point on the second Poincaré section for the stable torus approaches −1 as the parameter approaches
µ1, and we see a stable two-loop torus for µ > µ2.
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Fig. 11. The two-loop quasiperiodic orbit in the 3D Lotka-Volterra system at b = −0.658.

Note that there is an unstable fixed point located at(
1

a+ b+ 1
,

1

a+ b+ 1
,

1

a+ b+ 1

)
inside the torus. For b = −0.65, its eigenvalues are 0 and −0.2647058823 ± 1.1716814286i (|λ| =
1.2012104621). For b = −0.657, when the torus has doubled, the eigenvalues are 0 and −0.2793594306 ±
1.1886018887i (|λ| = 1.2209898203). Thus there is no movement of the eigenvalues across the unit circle.
This implies that the torus doubling is not a local behavior of the fixed point, and is not reflected by its
eigenvalues.

3. Mechanisms of creation of the disjoint loops

In contrast with the cases discussed so far, the situation depicted in Fig. 1(a) can be understood in terms
of bifurcations of fixed points (we include this case for the sake of completeness). Ding et al. [Ding et al.,
2004] has shown that this situation can come about in two possible ways. Consider the stable fixed point
as the starting status.

Route 1: Suppose that the period-1 fixed point has undergone a Neimark-Sacker bifurcation and an
invariant closed loop has been created. The unstable fixed point is now located inside the closed invariant
curve. It has three eigenvalues. Two are complex conjugate, with magnitude greater than one. The fixed
point is stable in the other direction, i.e., the eigenvalue has magnitude less than one. Now suppose this
eigenvalue goes out of the unit circle through −1. As a result, the centre of the closed invariant curve will
split into two points, which must result in the closed invariant curve also splitting into two disjoint closed
curves. This pathway is illustrated in Fig. 12.
Route 2: The fixed point period doubles, i.e., one of the eigenvalues becomes −1. A stable period-2 cycle
is created. Each of these period-2 points has three eigenvalues. Suppose that two of the eigenvalues are
complex conjugate, thus there is incoming spiralling motion around the two points. Now consider the
situation where these complex eigenvalues go out of the unit circle. The Neimark-Sacker bifurcation of the
already period-doubled orbit would create a pair of disjoint closed loops (see Fig. 13).

Thus, the creation of two disjoint loops can occur through two sequences: (a) period doubling followed
by Neimark-Sacker bifurcation, and (b) Neimark-Sacker bifurcation followed by period doubling.

In fact, an example of the period-doubling–Neimark-Sacker route can be seen in the boost converter
example considered in this paper. In the bifurcation diagram of Fig. 8, as the input voltage parameter is
reduced, there is a period doubling bifurcation at Vin = 3.3105V, followed by a Neimark-Sacker bifurcation
of the period 2 orbit at Vin = 3.3058V. We find that at the first bifurcation point the duty ratio is 0.8575
and the eigenvalues are −1.0000 and 0.9983 ± 0.0384i. At the second bifurcation point (Vin = 3.3058V),
the duty ratios of the two cycles in a period are 0.9715 and 0.7441, and the eigenvalues of the period-2
orbit are 0.9969, and 0.9996± 0.0754i with modulus 1.0000.
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Fig. 12. Illustration of Neimark-Sacker – period-doubling mechanism of creating disjoint closed curves. For each stage, the
positions of the eigenvalues of the period-1 fixed point are shown schematically in relation to the unit circle.

Fig. 13. Illustration of period-doubling – Neimark-Sacker mechanism of creating disjoint closed curves. For the first two
stages, the positions of the eigenvalues of the period-1 fixed point are shown schematically in relation to the unit circle, while
in last stage the eigenvalues of the period-2 fixed point are shown.

Following the latter bifurcation, the situation in the discrete-time state space is as follows. There
is an unstable period-1 fixed point with a stable 2-dimensional manifold and an unstable 1-dimensional
manifold. The unstable manifold reaches out to the two unstable period-2 points. Each of these points has
a stable 1-dimensional manifold and an unstable 2-dimensional manifold on which the stable quasiperiodic
behavior lies. Thus, each point of the period-2 orbit is surrounded by a closed loop representing the torus.
The situation is depicted in Fig. 14, obtained by placing an initial condition very close to the stable
2-dimensional manifold of the unstable period-1 fixed point, and observing the iterates.

4. Conclusions

The creation of two disjoint closed curves is the product of local bifurcation of fixed points. There can be
two routes: (a) period-doubling followed by Neimark-Sacker bifurcation of the period-2 orbit, (b) Neimark-
Sacker bifurcation followed by period-doubling of the unstable period-1 orbit. The other three cases are
not result of local bifurcation of fixed point. They result from bifurcation of tori.

The local bifurcation of tori can be probed through the method of second Poincaré section, which
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Fig. 14. System’s response at Vin = 3.3032V , R = 26Ω starting from an initial condition close to the stable manifold of the
period-1 fixed point.

reduces the problem of the stability of a closed invariant curve to the stability of a fixed point. There are
three possible routes by which the eigenvalues of such a fixed point can go out of the unit circle.

(1) If an eigenvalue becomes −1, it results in torus doubling producing a single closed invariant curve with
two loops;

(2) If an eigenvalue becomes +1, it results in the collision between stable and unstable tori, and the
disappearance of both;

(3) If a complex conjugate pair of eigenvalues has magnitude 1, it results in the birth of 3-frequency
quasiperiodicity.
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