
 

 

Abstract—This paper proposed the estimation of the 

magnetizing inductance and rotor resistance of the induction 

motors (IM) based on the extended Kalman-filter (EKF) in a real 

time emulator. So far, the performance of estimation for EKF in 

real time emulator has not been researched in case of motor 

parameters variation. Furthermore, inaccurate state space model 

of IM are applied within EKF in the published literature. This 

paper proposed the on-line estimation of the IM parameters with 

helping of the modified state space model minimizing the 

dependency of the state matrix indexes to state vector. To analyze 

the process of algorithm in F28377D emulator, the induction 

machine is modeled and solved by applying the numerical 

solutions. The analytically analyzation of the EKF algorithm and 

the real time emulator results are presented in this paper.  

Keywords— On-line estimation, extended Kalman-filter, 

induction motors parameters, induction motor derives 

I. INTRODUCTION 

In induction motor derives based on the field-oriented 

control FOC, the rotor flux 𝜆𝑟 of the IM needs to be aligned 

with d-axis of synchronize frame. This is achieved by 

applying the correct slip angle 𝜃𝑠𝑙. The accuracy of the 

calculation for 𝜃𝑠𝑙 depends on the applied magnetizing 

inductance 𝐿𝑚 and rotor resistance 𝑟𝑟  [1]. The accurate slip 

calculation helps the FOC to have the best performance in 

controlling the air gap flux. The inaccurate 𝑟𝑟  and 𝐿𝑚  causes 

the non-zero flux in q axis 𝜆𝑞𝑟
𝑒  which reduce the output torque 

of the IM. Therefore, the appropriate estimation algorithm that 

could apply the correct 𝐿𝑚 and 𝑟𝑟  within the slip calculation 

mechanism, is the trend subject for tractions applications [2]. 

The EKF can be selected as one of accurate method for motor 

parameters estimation as the result of considering the effect of 

measured and process noises [3].      

 To apply the actual motor parameters in each interrupt 

service routine of microcontroller, the estimation of parameter 

is required [4]. These parameters are effected by variation of 

motor temperature, fundamental frequency and desired d-q 

axis currents [5]. The modification in desired current causes 

the variation in magnetizing current which is responsible for 

inductance saturation. Therefore, the motor parameters needs 

to be determined by using the data sheet of the machine, on-

line estimation or offline determination techniques and the 

high frequency signal injection methods. The online 

estimation technique is considered as the more effective 

solution in parameter extraction methods because the motor 

parameters becomes update as the drive is operating. It should 

be noticed that the accuracy in online estimation and offline 

determination depends on the sample rate and the resolution of 

measurement devices [6, 7].    

 The online estimation of 𝑟𝑟  based on the EKF has been 

presented in [4, 8]. However, the deviation of 𝐿𝑚 has not been 

considered. So, the variation of 𝐿𝑚 is reflected on estimated 

𝑟𝑟  which causes the inaccurate estimation. This problem tried 

to be solved with applying the offline determined 𝐿𝑚 in EKF 

used to estimate𝑟𝑟  [6]. Although this improves the 

performance of the estimation algorithm, however the perfect 

estimation is not guaranteed. In [9], the adjusted EKF loops 

are achieved based on the quadratic programming techniques 

to constraint the estimated parameters in case of high transient 

variation in estimation process. The other approach of 

parameter estimation is unscented Kalman filter (UKF) where 

the minimal selected samples of non-linear system is used 

[10]. So, the single point linearization of the non-linear system 

with helping of Jacobean matrix is not required and the 

continues non-linear dynamic equations are directly utilized in 

the algorithm. This causes that the accurate mean and 

covariance are achieved in UKF by analyzing the Guassian 

random variables which are close to second order of Taylor 

series. However, as described in [11], the accuracy of the 

estimated parameters and processing time is not significantly 

improved by applying UKF as the alternative of EKF. In [11], 

the initialization of covariance matrixes are improved at cost 

of long computation process. This leads to add the 

computation time to conventional EKF which already has long 
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processing time. As the alternative approach of designing the 

covariance matrixes, the process and measurements noise 

covariance matrixes are defined by helping of filtering 

methods [12].In this method, the average of three captured 

voltage and current signals is defined as the main signal where 

the difference with captured signals is considered as the noise. 

This noise is tried to be filtered by the low pass filter which is 

not the suitable option for the white Gaussian noise included 

of all low and high frequencies. 

   In [7], the parameters added to the state space model of IM 

as the new states are not defined accurately. This means that 

some indexes in the Jacobian matrix are not constant when the 

new states (estimated parameters) are changing. However, 

those indexes are considered as the fixed value in [7]. In this 

paper, the new states of 
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟  are considered as the 

estimated parameters. This selection of parameters not only 

helps to estimate 𝐿𝑚 and 𝑟𝑟  but also keep some index variables 

constant in Jacobian matrix irrespective to variations in 

estimated parameters. Based on the defined state space matrix 

of the IM, the performance of the algorithm on the real time 

experimenter board F28377D has been analyzed. This is 

achieved by modeling the IM in CPU2 of the microcontroller 

and solving the differential equations of the model based on 

the numerical solutions. The paper is organized as follow. The 

mathematical model of IM based on the sate space is 

developed in section II. Section III describes the 

implementation of EKF and IM model in F28377D. Section 

IV presents the real time result of the applied algorithm on the 

IM modeled in CPU2. Finally, the work is concluded in 

section V.   

 

II. MATHEMATICAL MODEL DEVELOPMENT  

 

A. State Space Model of Induction Machine  

   In stationary frame, the state space model of IM can be 

described as:  
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In (1), 𝑖𝑑𝑞
𝑠 , 𝜆𝑑𝑞

𝑠   and 𝑉𝑑𝑞𝑟
𝑠  are description of stator current , 

rotor flux and stator voltage in the d-q axis of the stationary 

frame respectively. As described in (2), the stator currents are 

considered as the output signal which can be measured by the 

current sensors.  The discrete time varying model of the IM in 

sampling interval of 𝑡𝑠 and discrete sequence of 𝑘 can be 

described as: 
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The process noise 𝑤(𝑘) and measurement noise 𝑣(𝑘) with 

constant scaler variance of 𝑄 and 𝑅 needs to be added to the 

discrete model. This helps to make the IM model more close 

to practical nature. This stochastic state space model is solved 

by applying the Gaussian distribution where the state error 

covariance matrix 𝑃(𝑘) and the output error covariance matrix 

𝑆(𝑘) needs to be calculated. The answers of Gaussian 

distribution is defined based on the distribution mean vectors 

of state and output (𝑥̂ , 𝑦̂) depended on the probability of the 

below distribution: 
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B. Kalman-Filter  

 

   The estimated parameters in Kalman filter algorithem are 

defined by (𝑥̂ , 𝑦̂). So, the state prediction of Kalman-filter 

algorithm can be calculated by: 
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and the state correction equations are: 
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   As shown in (9), the Kalmn gain is defined by 𝑘(𝑘). It 

should be noticed that 𝑥̂(𝑘/𝑘) and 𝑥̂(𝑘 + 1/𝑘) are the 

estimation of the state in discrete sequence of 𝑘 which is based 

on data available up to and including 𝑘 and 𝑘 + 1 sequence 

respectively. It should be noticed that the state estimation in 

state correction equations are based on general SISO linear 

difference equations. 
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As shown in (12), the model parameters, outputs and inputs 

vectors are defined by 𝜃𝑇 , 𝑦(𝑘) and ∅(𝑘) respectetively. By 



 

assuming that the output parameters and input variables can be 

measured, then the model parameters can be estimated by: 
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The gain matrix which is computed in each iteration is 

defined by 𝐿(𝑘). So this method of the system parameters 

identification is used in Kalman-filter by reformulate the 

parameters as states to estimate the unmeasurable states of 

Induction machine. As explained before, the measurement 

noise covariance matrix is considered as result of uncertainty 

of stator current measurement. Selection of aforementioned 

value for R matrix in (9) is the result of the measurement 

error. To find the accurate value of 𝑄 matrix in practical 

experiment is based on trial and error and check the captured 

data.     

 

C. Extended Kalman-filter (EKF) 

 

The parameters, that needs to be estimated, are added to the 

state vector in (1). In order to estimate the value of the 𝑟𝑟   and 

𝐿𝑚 , the argumenta state of 
1

𝐿𝑚
  and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟  are added to the 

state vector in this paper. The reason of adding these time 

varying states is that the all indexes in Jacobian matrix can be 

defined by these parameters and the constant variables such as 

𝜎𝐿𝑠, (
−1+𝜎

𝜎𝐿𝑚
) and 

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
 when 𝑟𝑟   and 𝐿𝑚 varying. The new state 

space model is the non-linear model because of existing the 

multiplication of new states in the state matrix. The non-linear 

state space model is solved by the EKF algorithm as the 

nonlinear state estimator. The new state vector should be 

defined as: 
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𝑛(𝑘) is defined as the random disturbance in (16). Then, the 

extended state space model can be derived as follow: 

             1 , ,     (15)x k F k k x k G k k u k w k    

  

 By considering the parameters as the added state, the 

modified state vector cab be expressed as:  
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Therefore, the augmented state model is presented as: 
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   The output vector, which is not depend on 𝜃(𝑘) can be 

explained as follow: 

 (19)( ) ( ) ( )                   y k Hz k v k    

In KF and EKF, the mean value of the white Gaussian noise 

is assumed to be zero. So, the covariance of the measurement 

and process noises are as follow: 
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   The covariance of natural state uncertainty and covariance of 

parameters disturbance vector are symbolled by 𝑄𝑤𝑤 and 𝑄𝑛𝑛. 

As the result of no correlation between the natural and 

parameters states, 𝑄𝑛𝑤 = 𝑄𝑤𝑛 = 0. The initial state error 

covariance matrix can be defined as follow: 
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The quality of the prior information of the states, 𝑃𝑤𝑤  and 

𝑃𝑛𝑛needs to be defined correctly.  

 

D. State predication and state correction in EKF  

 

To solve the EKF estimating the states and parameters of 

IM, the state prediction and state correction equations need to 

be implemented.  The sate prediction equation of EKF can be 

calculated by: 
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The variables used in (23) are defined as follow: 
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In above equation, the 
1

𝐿𝑚
  and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟  are considered as fifth 

and sixth states for state space model of Induction machine. 

𝑤𝑟is the electrical speed which depends on the mechanical 

speed and number of motor poles. The state error covariance 

vector in state prediction and state prediction equations can be 

defined based on the partial derivation or Jacobian matrix as 

follow: 
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The defined variables in (24) are described as follow: 
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Substituting (24) in (9) to (12) helps to estimates the states and 

parameters in EKF.  The initial state matrix has been 

considered as: 
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Also, the measurement and process noise covariance has 

been defined as follow: 
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III.  IMPLIMENTATION of EKF and IM MODEL in 

F28377D 

 

As can be seen in (23), the stator voltage needs to be 

applied as the input signals. As shown in Fig. 1, the input 

voltage of the Space vector modulation SVM with the 

coefficient of 
2𝑉𝑑𝑐

 

3
 is considered to produce[

𝑉𝑑𝑠
𝑠

𝑉𝑑𝑠
𝑠 ]. The reason 

of considering this coefficient is that the compensation terms 

such as coupling and back EMF has not been added to the 

output of the PI controllers. So, the output of the current 

controllers are P.U. values and those can be modified in terms 

of the DC link voltage by having this coefficient. The other 

inputs of the EKF are 𝑖𝑑𝑠
𝑠 , 𝑖𝑞𝑠

𝑠  and 𝑤𝑟. These signals are 

created in real time machine model which is consisted of five 

states including d-q axis of stator-rotor currents in stationary 

frame and speed crated from torque model. As shown in Fig. 

2, the three phase voltage of the machine is created based on 

the calculated modulation indexes (m𝑇[0], m𝑇[1] and m𝑇[3]) 
in Cpu1.Cla. The differential equations of IM model in real 

time processor is solved with Runge-Kutta (RK4) analysis 

which solves state space IM model with using the numerical 

solution method.         

 Fig.1. Imputes and outputs of proposed augmented states for EXF   
 



 

  

IV. REAL TIME EMULATION RESULTS 
 

To validate the performance of the EKF, the PWM cycle 

period is selected at 10 KHz. This provides 100 microsecond 

(us) interrupt which is suitable to run the EKF algorithm in 

cpu2. It should be noticed that the maximum modulation index 

calculated by SVM is 5000 for 10 KHz sampling frequency in 

F28377D with specified clock frequency. So, the input voltage 

of space vector modulation need to multiplied by the scale 

factor of  
2∗𝑉𝑑𝑐

3∗5000
. In this test the mechanical speed of the 

machine is kept to 100 rad/sec. To keep the running time of 

solving the RK4 and EKF in Cpu2 within 100 us, the RK4 is 

solved for one time. To improve the accuracy of the numerical 

solver (RK4), two times of solving need to be considered. 

However, as the running time for EKF is already long, so it 

has been used for one time in this test. As sown in Fig. 3, the 

running time of EKF and RK4 in Cpu2 is 79us which is in 

range of 100us for 10KHz switching frequency.  

To test the performance of the EKF, the machine model in 

cpu2 has been changed based on the half of the magnetizing 

inductance in especial time. It should be noticed to keep the 

field oriented algorithm, the slip speed needs to redefined 

based on the new magnetizing inductance. Otherwise, the 

value of produced torque goes unexpected as the d-axis of the 

rotor flux does not sit on the d-axis of synchronous frame.  

Then, the q-axis of rotor flux is not zero and it cause 

incorrect results in torque calculation. As shown in Fig. 4 and 

5, the data are captured for 1000 samples. As each samples 

takes 100 us, so the timing period for captured data is 100 

millisecond. As shown in Fig.4 a and b, the stator currents in 

stationary frame has 90 degree phase shift and the magnitude 

of rotor flux in Fig 4. c and d,  are based on the applied 

reference currents 𝑖𝑑𝑠
𝑒∗ = 2.3𝐴 , 𝑖𝑞𝑠

𝑒∗ = 3.98𝐴 and the specification 

of test IM in Table. 1 described in Appendix. The estimated 

parameters are also captured in Fig. 4 d which validate the 

performance of algorithm with proposed state space model.   
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Fig.2. Implementation of extended Kalman-filter and induction motor emulator in F28377d 

 
Fig. 3. Running time of RK4 and EKF implemented in Cpu2 of F28377D 



 

 

 

 

 
 

 

 

 

 

 

In experimental board, the induction machine models is 

changed based on the new magnetizing inductance which is 

half of the initial value. The captured transient results are 

shown in Fig. 5. As demonstrated in Fig.5a, b, the d-q axis of 

stator currents are not changing as the result of following the 

desired stator currents. The d-q axis of rotor flux (Fig. 5c) start 

to decrease as the result of reduction in magnetizing 

inductance. The steady state results of rotor flux also are 

shown in Fig. 5d.  As shown in Fig. 5e and f, the estimated 

parameters (
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟) are close to expected values which 

validate the calculated results, real time implementation of 

EKF algorithm and IM model.  
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(b) 

(c) 

(d) 

Fig. 4. Results of Estimated states in real-time emulator F28377D (a) d-

axis stator current (b) q-axis stator current (c) d-q axis rotor flux (d) q-

axis (d) (
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟). 

(a) 

(b) 

(c) 

(d) 

(e) 



 

 
 

 

 

 

 

 

V. CONCLUSION 

 

In this pepper, the extended Kalman-filter based on the novel  

non-linear states space model of induction machine, included 

essential motor parameters, is implemented in real time 

emulator. To solve the proposed algorithm in F28377d 

experimental board, the induction machine is modeled and 

numerically solved. The performance of the estimation 

algorithm has been analyzed and validated in real time 

emulator where the magnetizing inductance modified to half 

of the initial value. The results confirm the reasonable degree 

of the accuracy for estimated states and parameters of IM. 

Furthermore, the results of estimation algorithm proves the 

feasibility of proposed algorithm in real time environments. 

 

VI. APPENDIX 

 
The specification of 4 Poles Induction machine is as follow: 

 
Table I. Specification of Induction machine (1.1 kW)  

 
 

𝑟𝑠 
 

𝑟𝑟 
 

𝑉𝐷𝐶 
 

Current 

          (peak) 
 

2.291 Ω 
 

2.5067 Ω 
 

350 V 
 

4.6 A 
 

𝐿𝑠 

 

𝐿𝑚 

 

𝐿𝑟 

 
Base Speed  

 

0.2842 H 
 

0.2709 H 
 

0.2842 H 
 

1500 rpm 
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Fig. 5. Results of Estimated states in real-time emulator F28377D 
(a) d-axis stator current (b) q-axis stator current (c) transient rotor 

flux in d-q axis (d)  steady state rotor flux in d-q axis (e) estimated  

(
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟) in transient operation (f) estimated  (

1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟) 

in steady state operation 
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