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Abstract— Power electronic dc-dc converters widely used in S&\ r*nL'p Ai v
industry are known to exhibit undesirable subharmonic and Vi 4 ‘
chaotic behaviour beyond certain parameter ranges. In this el D CT Rz i%l/k
paper we propose methods of controlling the bifurcation to —T T B
extend the range of desirable period-1 operation, by taking —— 1/k1§

advantage of the switching nature of such circuits. At the
switching events, the evolution of perturbation is given bythe
so-called "saltation matrix” and hence it is possible to infuence
the Floquet exponents by manipulating this matrix. In phystal
terms this implies controlling the triangular wave used in the
pulse-width modulator, or using a control logic that uses vtiage
as well as current feedback. We demonstrate the resulting carol
of the bifurcation both by simulation and by experiment.
Index Terms— Bifurcation control, dc-dc converters, saltation capacitorC, and a load resistancB. The switching of the
matrix, monodromy matrix. MOSFET is controlled by feedback logic known as pulse
width modulation of type-2 (PWM-2). This is achieved by
. INTRODUCTION obtaining a control voltage.., as a linear combination of
Power electronic circuits are variable structure systents athe output capacitor voltage, and a reference signdf.; in
give rise to a great variety of nonlinear behaviors, e.gioge the form
doubling route to chaos [1], border collision bifurcatiat, [ Veon = a(Viet — v/k1), (1)

grazing phenomena [2] and quasi-periodicity [3], [4]. Bexa . . . .

of these apparently unpredictable and often undesiraluig osmhggaclsoahgf%ﬁg cc;f tthet egﬁ; amKIrl]flzr taerriﬁails thz;:f;?é d
latory behaviors, their control has become a topic of irgere uet utput voltage. X y gene

in the recent past [5]. The ability to avoid chaos and Othggvx_/-tooth voltagelramp = Vi + (Vu — Vi)F'(t/T), of time
eriod T" and upper and lower threshold voltagiés and V;

nonlinear behaviors is almost a basic feature of all exgsti . . . oI
g respectively, is used to determine the switching instatése

practical control strategies. Various control technighese .
: . ) denotes the fractional part of : {F(z) = 2 mod 1}.
been proposed by means of feedback control actions ame(ﬁéﬁwmz’ the controlled voltage,.,, is then compared with

changing the system dynamics over the entire region ofester . o
[6], [7], [8]- Other non-feedback control methods [9] havéhe periodic saw-tooth wavetamp, (0 generate the switching

also been proposed, which are highly suitable for supmgss?'gnalq(t) € [1, 0] described by
chaos and bifurcation in periodically driven systems [19], If Viamp > Veon; p(t) =1,

In this paper, we con_5|der a new non-feedback parametric If Viamp < Veon; p(t) = 0.
perturbation for controlling bifurcation in a PWM voltage- ) ) ) o _
mode controlled buck converter based on suitably changih§j€ inductor current increases while switgtis oni.e. p(t) =
the slope of the switching manifold. In general, parametric @hd falls while switchS' is off i.e. p(t) = 0. The buck
perturbation can make a system chaotic, but applying GPnverter can be rggarded as a S(_econd—order nonautonomous
at appropriate frequencies and magnitudes can induce §g@tinuous dynamical system, which can be described by a
system to stay in periodic regimes [11]. We also show tféate equation of the form
effect of perturbed signal on system’s stability usingggbv x = f(x,t) 2)
solution [12].

W
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Fig. 1. \oltage-mode controlled buck converter.

wherex = [i v]T is the state vector anfl(x, t) is the vector
Il. MATHEMATICAL MODEL OF THE CONVERTER field. Under normal operation, the system is nonautonomous

We consider a voltage-mode controlled buck converter B§cause the vector fiefix, ¢) is a function of time. Moreover,
shown in Fig.1. It consists of a controlled swit¢h(MOS- the system is periodic with peridl sincef (x, ¢) = f(x,t+7)

FET), an uncontrolled switctD (diode), an inductor, a foranyt. When the system assumes a specific circuit topology,
the corresponding vector field is linear and continuous. How
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Thus the overall vector field is discontinuous and the syseemSincen™f_.nTf, > 0, the vector fields transversely intersect
a piecewise-smooth dynamical system. Specifically, the vector the switching manifold:.
field f(x,t) can be defined as Assuming a periodic orbit starts at= ¢, in subsystem

V_, intersect the switching surface at= tx, (or t = dT),
d - JL— : — ) o "
1 { Vin/L=a/ L o(Vaer =22/ k1) > Veamp, (3) goes over to subsysteii, and return to initial condition at

dt —w2/L; - alVier=22/k1) < Veamp- t = to + T. Before the intersection with the switching surface
@ = x1/C—z2/RC. 4 % the system is smooth and therefore the fundamental matrix
dt before and after the intersection can be defined as [12]

The switching event occurs whenever the vector field of each

_ As(ti—to).
circuit topology reaches the border functibfx, ¢) defined by Wit to,x0) = 1705 Vit € (to, 1),
(V V)t W(tg,tz,XZ) = eAS(tz_tZ); Viy € (tz,T).
u— Vi
h(x,t):O[(‘/rCf—IQ/kl)—T—‘/l:O; ®)  where
0 —1/L
Subsequently the evolution of is governed by (3) and (4). As = { 1/C _1/{30 }7
Therefore, the two dimensional state-space can be divided i
three parts: The state transition matri¥ (¢, + T, to, x(to)) calculated
x_UYUx; = R2 (6) overa complete cycle (th®lonodromy Matrix) is defined as
where W(T +t07 tO? X(to)) :W(T +t07 tEv XE)SW(tzv tOv XO) (9)
Vo:x. = {xeR?:h(x1t) <0} The saltation matrix S defines the solution on the hyper-
Vi:xi = {x€R :h(x,t)> 0}, surface at = ¢y, and is given by
. . T
¥ = {X S %2 : h(X, t) = 0}- S=1+ [hmtj;?f er(X, t}_(hil)t:_t%h (f (z()a' t)} n (10)
Hence, (6) can be written as B ot B 1T op U0 Pl
wherety_ andtsy denote the time instant just before and
. f;(x’ t); xe V- after the switching event. The time derivative of the swiitgh
X = f(x7 t) = co{f, (Xa t), er (Xv t)}; xeX (7) hyper-surface is
fr(x,t); xeVy
N Oh(x.t) _ O [, Ik Vi+(Vu=Wt] . Vu—V
In the sense of Filippov’s convex method, (3) and (4) canm g = 57 | Vet —T2/M1 oT =TT

be written as an upper semi-continuof(,t) and (7) has o _ _
a solution if the vector fields enter the hyper-surfage Substituting (7) into (10), the saltation mati$<becomes

instantaneously. Since there is only one discontinuityhat t 1 Vin/L
switching hyper-surface as shown in Fig.2 the convex hall is S = [ z1(t2)/C—a2(te)/RO~(Vu=Vi)/aT ]
defined as 0 1
_ co{(Vin — x2)/L, —x2/L} So, if S is known it is possible to find out the eigenvalues of
co{f_(x,t),f1(x,t)}= ) : .
x1/C — x3/RC monodr(_)my matribW (to+7, to,_x(to)). For st_able period-one
_ {(1 = )(Vin/L — 22/L) — qza/L} vae 0] :‘gsesdtﬁglr?ti the absolute magnitude of the eigenvalues maist b
:vl/C — I'Q/RC ’ ’ :

The normal to switching hyper-surfaceis . STABILITY ANALYSIS

Oh(x,t)  On(x,t)]" T Due to the transcendental form of the equation in PWM-
n = Vh{x,?) = { O, O =0 =1kl ®) , voltage controlled buck converters [2], it impossible to

calculate the exact switching instant within the periodicle.
The state vector at the switching instanttat ts can be
obtained semi-analytically as

Therefore, the projections df andf, on > are given by

daT
x(dT)=®1 (dT)x(0) + / AT Bdr  (11)
0

where B, = [Vi,/L 0]7 and the duty ratial = t,,/T =

(T —tx)/T. For normal period-1 operation, the value of the
state vector at the next clock instar{l’) = x(0) can be easily
V- Vi evaluated as:

x(0)
. x(O)=[L — T [T AT L AR (12)
Fig. 2. Switching surface. which satisfy the hyper-surface
VL + (Vu - W)d .
nTf_ = —2,/C+29/RC, n"f, = —2,/C + x3/RC Vet — [ 0 1Jet*Tx(0) (13)



The solution gives the steady state period-one duty ratio. T can be claimed that by appropriately changing them we
analyse the effect of parametric perturbation on the dtabilcan avoid smooth and nonsmooth bifurcation by keeping the
of the buck converter (Fig.1), we use the following parameteigenvalues fixed. The monodromy matrix depends heavily on
values:L = 20mH, R =580 C = 47uF, a = 10, V,=0.4V, the saltation matrix and hence by influencing that we candavoi
Vu=5.8V, T = 350usec, Vier=11.3V, andVi, is taken as fast-scale instabilities. To do that we can either chadg&t
the bifurcation parameter. Fdr, = 30.4 V 2, numerically or we can change the slope of the switching manifold. One
we obtaind = 0.3646, x(0) = [0.1293 11.0608]7, and way to achieve that is to add a time varying signal to the

x(dT) = [0.2529 11.0631]T. The saltation matrix and demanded voltage. This can be a sinusoidal signdh wt
monodromy matrix are calculated as: with amplitudea and frequency,. However, depending on
the relationship between the switching frequencynd w;,
1 —0.5306 —0.4294 —0.5052 . . . . e
S:{O 1 ], W(T,O,x(O))z[ 05167 —1.4405 different window lengths of intermittent subharmonics may

_ _ appear[11]. In the following subsections alternative rodth
The eigenvalues of the monodromy matrix ar8.9349 & are propose that are easy to implement and guaranteetstabili

0.0735; implying that at the above parameter values thgyer a wide range of the bifurcation variable.
system is stable. This is in agreement with both numerical

(Fig.3a) and experimental observations (Fig.4a). A. Ramp slope change

5 1 /H—% To overcome these difficulties we choose a different ap-
- / /:1 proach to influence the saltation matrix. This is based on the
g \ 2 f slope of the ramp voltage: = (V,, — V;)/T as the perturbed
& o 3 fb {Vin=30.4 Il parameter and is achieved by changing either the upper tip of
§ E (—1,%\ , 00379 ramp voltageV.,, or lower tip of ramp signal;, where the

\ strength of the perturbed signal amplitud¥ is decided by
o the ripple magnitude of any state vector. Hence, changiag th
T 30 3 = =D It time derivative of the switching surface to
(a) Input Voltage (V) (b) Real Axis

oh(x,t)  —(Vy — Vi +6V) 14
Fig. 3. (a) Bifurcation diagram of duty cycle and (b) eigdnes loci for ot o oT ( )

Vin € (29,82) Vfor oV = OV. To study the effect of increased amplitude perturbatidh
we plot the calculated Floquet multipliers of the monodromy
matrix for V4, € (29 — 32)V and 6V = 0.4V as shown in
vy =5.8V V=04V Vu=5.8v R Fig.5a. Throughout the voltage variation, the absolutee/alf
the eigenvalues; , = 0.9378 < 1. Based on these results we
/‘ (\ can propose a new control scheme that will optimally choose
iy the strength ofV, to keep the magnitude of the eigenvalues
exactly the same as that for the stable period-1 orbit obthin
Z i for a nominal value od4;. This is obtained by solving the the
TEH0U sec (b) =350y Sec equation:|eig(W (T, 0,x(0))| — 0.9378 = 0. The results of
this algorithm for various values df,, are shown in Fig?b.

(a

Fig. 4. Experimental results showing (a) normal period-g&rafion atV;,, ~
33V, (b) a period 2 operation foV;, ~ 41.6 V.

. 7 | 70

To confirm the result obtained by Filippov solution methods, v ::\ 2 /
we calculated the Floquet multipliers (eigenvalues of the L. / \\ §6_:
monodromy matrix) forV;, ranging from 29 V to 32 V. < \\f 2
The locus of the eigenvalues shown in Fig.3b. It shows that 8’0 10~ r%73%0) Z
eigenvalues first become real at parameter value 30.4 V, then \ ] Z 6-0/
one of the eigenvalues goes through the negative real adis an \ / 'gL
later it makes the system unstable through a smooth period 1 \\// 5,304 BE :
doubling bifurcation. ) -15 realiuis K (b) “ Input Voltage (v) :

IV. BIFURCATION CONTROL Fig. 5. (a) Eigenvalues loci foVi, € (29,32) V for §V = 0.4V and (b)

. . . .__.optimum values ofV/,, for varying Vi,.
It has been shown that the previous analysis gives simifar ying

resqlts as the Jacobian of _the P0|_ncare map and is mucI:|-O further validate these results, experimental tests have

casier FO pe u§ed. But more lnterestlng!y this method Oﬁersoeen carried out as shown in Fig.6. Results presented ib-ig.

further mgght into the converter's ope_rgtmn. It can bersthat show through the experimentally obtained bifurcation chag

the stability depends on the 3 transition matrices and herﬁ:ledt is possible to push the first period doubling to 42V by
2During experimental results we used 33V, this discreparcydie to @dding a small perturbatiofl” = 0.7V. To fl.”the.r _enhanse

mismatches between the ideal and real values of variousnedees the stable area of the system the pertubation is increased to



0V = 1.2V and it is clear that the system remains stable for ! ~ OIS
the entire operating region. The results are in total ages¢m “ / =i
with the theoretical prediction as explained earlier. < “1 [ (\1 o)
9 ' 9 - £ i L\ F£0.962 }
e W e L \
\éé j < -1
>UI' e S -15 ReaIOAxis 1t
5 VU VOO0 SOV SUPNF SOPO0S SO SOUDF N SO SO SO O DN OO SO O Fig. 8. The eigenvalues loci after positive current fee&baith gain ko =
-3 : -3l : 0.1. Vi, € (29 — 32)V.
(@ 2 Vin(v) 45 (b) 29 Vin (V) 48
Fig. 6. Experimental bifurcation diagram for (8" = 0V and (b)6V =  constant, and the input voltadgé, was further increased. At
0.7V Vin &~ 41V (see Fig.9) the system again undergoes a smooth
period doubling. Now, ifks is increased to a value 6314,
T, 9 : ; |t_|s (Lbserved that system again becomes stable as shown in
j ) R S o Fig.9b.
b2) TS YOS N S
§ et Ll k2=0.0743 k2=0.314
5% T N A
-3 Sl Venn | bt Vcon)

con

(a T=3%0usec (b) 29 Vin (V) 45 \ . /\
. . . . / VOV A
Fig. 7. Experimental results fafV’ = 1.2V (a) period 1 operation and (b) i Vin =41V i

. . . Vin=41v
bifurcation diagram - -
Time (msec) (a) Time (msec) (b)

Fig. 9. Experimental observations showing the currentbfaek for enhanc-
B. Manifold h ing the stability region: The control voltage and the inducaturrent for (a)
- Manito ope change the birth of period-2 orbit al;,=41V, k2 = 0.0743 and (a) stable period-1

As the slope of the switching manifold is expressed by igbit atkz = 0.314.
normal vector it is possible to stabilise the system by agldin
current component to the feedback signal. This will foroe th
first coordinate o to be nonzero and hence we change the V. CONCLUSION
slope ofh. In this case the modified switching hyper-surface

can be expressed as Using Filippov’s approach, we have analysed the stability

of periodic limit cycles of the voltage mode controlled buck
h(x,t) = Viet+21/ka—22/k1 — Viamp/a=0, a # 0 (15) converter. The method does not depend on the determination
of the Poincaré map, and hence is quite suitable for stabili
analysis of the vast majority of power electronic systems
n=Vh(x,t)=[1/ky —1/ki]" (16) Whose Poincaré map cannot be determined in closed form. In
) N this method the fundamental solution matrix over a complete
Hence in addition to voltage feedbadk (= 1), the current cycle is determined by using the state transition matrices
feedback loop changes the system dynamics. The sysigjpthe segments of the orbit lying in the individual matrix
becomes stable for a larger parameter range for approprigioss the switching boundary. Based on the insight that thi
feedback gain. To ensure that, it is necessary to calcut@te fnethod offered we are able to propose various strategies to
eigenvalues for a wide range 6f, and to prove that the yyoid fast scale instabilities. The methods that were dgsly
period-1 orbit will remain stable._The_represent_atlve paeter analysed proposed a small change at the upper value of the
space fork; = 0.1 is shown in Fig.8 keeping all othergay.tooth signal and an addition of a value to the feedback
parameters same as mentioned before. Through out the &oltggntro| law that is proportional to the inductor current.tBo
rangeVi, € (29—32)V, the eigenvalues are complex conjugatgethods changed the saltation matrix and hence forced the
with absolute magnitudg\; »| = 0.9628 < 1. system to become stable without changing the shape and

As it can be seen by the addition & the bifurcation |gcation of the orbit. Results have been analytically prove
pattern did not change but is delayed. This can be deducedfjy experimentally validated.

the fact that the eigenvalues follow a similar path as before
(Figs. 8 and 5a). This is very important because it undesline
the basic concept of the proposed method. That the system
is stabilised without greatly changing the overall dynanic The work was partially supported by the Department
i.e. the unstable period-1 becomes stable but does not ehaafj Atomic Energy, Government of India under project no.
chape or location! To further justify this statemégntwas kept 2003/37/11/BRNS

The normal to switching hyper-surfaceis
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