Stability Analysis of the Continuous Conduction Mode Buck Converter via Filippov’s Method

Damian Giouris, Member, IEEE, Soumitro Banerjee, Senior Member, IEEE, Bashar Zahawi, Senior Member, IEEE, and Volker Pickert, Member, IEEE

Abstract—To study the stability of a nominal cyclic steady state in power electronic converters, it is necessary to obtain a linearization around the periodic orbit. In many past studies, this was achieved by explicitly deriving the Poincaré map that describes the evolution of the state from one clock instant to the next, and then locally linearizing the map at the fixed point. However, in many converters the map cannot be derived in closed form, and therefore this approach cannot directly be applied. Alternatively, the orbital stability can be worked out by studying the evolution of perturbations about a nominal periodic orbit, and some studies along this line have also been reported. In this paper we show that Filippov’s method—which has commonly been applied to mechanical switching systems—can be used fruitfully in power electronic circuits to achieve the same end by describing the behavior of the system during the switchings. By combining this and the Floquet theory it is possible to describe the stability of power electronic converters. We demonstrate the method using the example of a voltage mode controlled buck converter operating in continuous conduction mode. We find that the stability of a converter is strongly dependent upon the so-called saltation matrix—the state transition matrix relating the state just after the switching to that just before. We show that the Filippov approach, especially the structure of the saltation matrix, offers some additional insights on issues related to the stability of the orbit, like the recent observation that coupling with spurious signals coming from the environment causes intermittent subharmonic windows. Based on this approach, we also propose a new controller that can significantly extend the parameter range for nominal period-1 operation.

Index Terms—Power electronics, buck converter, bifurcation, differential inclusions, discontinuous systems, Filippov systems.

I. INTRODUCTION

POWER ELECTRONIC circuits are switching dynamical systems characterized by discrete switching events that make the system toggle between two or more sets of differential equations. Because of this switching nature, the study of the stability of power electronic circuits requires special techniques. Firstly, one has to obtain the stability of a periodic orbit rather than that of an equilibrium point for which most tools in control theory are developed. Secondly, the periodic orbit contains passage through more than one subsystem. One obviously has to locate the periodic orbit, before the problem of its stability can be addressed.

Traditionally, power electronics practitioners use the technique of averaging [1], [2] for obtaining some information about the stability and dynamic behavior of power electronic converters. However, it has been shown that while the averaging method can capture the instabilities that occur on slow time scales, it effectively acts as a low-pass filter and ignores all phenomena that take place at clock frequency [3], [4]. It is known that the fast-scale instabilities that may develop in the voltage and current waveforms at clock frequency, result in subharmonic and chaotic behavior [5]–[7]. It is therefore a matter of great importance to be able to analyze and predict such instabilities.

The method of sampled-data modeling was developed in the early 1980s and was systematically put forward by Verghese et al. in [8], [9]. In the early 1990s, taking cue from the method of Poincaré section used in the study of nonlinear dynamics, Deane and Hamill [10] put forward the equivalent concept of the iterated map as a model of power converters (for details, see [3], [11]). In this method, the states of the converter are sampled in synchronism with the clock (called stroboscopic sampling) to obtain the discrete-time map in the form \(x_{n+1} = f(x_n) \). The iteration of the map represents the evolution of the state in discrete time, and the fixed point of the map represents the periodic orbit in continuous time. Once the nonlinear map is obtained, one can locally linearize it at the fixed point, and the eigenvalues of the Jacobian matrix determine the stability of the fixed point to small perturbations.

This method has been successful in analyzing the stability of periodic orbits especially in those systems where linearization of the map can be obtained in closed form. For example in [12], [13] the expressions for the nonlinear map in current mode controlled converters were obtained—whose local linearization at the fixed point reflected the stability of the orbit. However, in many other control schemes—notably in the common voltage mode controlled converters—the map cannot be obtained in closed form because of the transcendental form of the equations involved. In such systems, though it is possible to obtain the map numerically and thus it is possible to obtain bifurcation diagram etc. by iterating the map, studying the stability of specific periodic orbits poses a problem. Methods have been developed to study the stability of such systems, as outlined in Section II.

In an unconnected line of development occurring in the erstwhile Soviet Union, scientists like Aizerman, Gantmakher, Filippov etc. [14], [15] developed a mathematical formalism...
In this section we briefly review existing methods of stabil-
y stability analysis of periodic orbits. A. Smooth systems
A system is said to be smooth if its mathematical model
be described by a set of differential equations

\[
\frac{dx(t)}{dt} = f(x, t, \rho)
\]

where \(f \) is differentiable everywhere in a given domain and \(\rho \)
is a system parameter. The stability analysis of a periodic orbit in
such a system is based on the idea that if a small perturba-
tion is added and the solution converges back to the orbit, then
the orbit is stable. There are three general approaches where
this concept is used: 1) the trajectory sensitivity analysis, 2) the
Poincaré map and 3) the Floquet theory. All of these methods
describe the stability of a limit cycle and hence there are many
similarities between all three. In all cases one needs to consider
three factors: a local approximation, a solution of a matrix
differential equation and the use of a stability criterion.

1) Trajectory sensitivity approach: The method of trajec-
tory sensitivity can generally be applied to any orbit which
may not necessary be closed. The main concept here is
to investigate how the solution (or trajectory) under study
behaves in response to small changes in the initial conditions
or other parameters [23].

Assuming a general nonautonomous system

\[
\dot{x} = f(x, t), \quad x(t_0) = x_0.
\]

the solution, according to the fundamental theorem of calculus,
must satisfy

\[
\varphi(t, t_0, x_0) = x_0 + \int_{t_0}^{t} f(\varphi(\tau, t_0, x_0), \tau) d\tau.
\]

By taking the partial derivative with respect to the initial
condition, we get

\[
\frac{\partial \varphi(t, t_0, x_0)}{\partial x_0} = I + \int_{t_0}^{t} \frac{\partial f(\varphi(\tau, t_0, x_0), t)}{\partial x} \bigg|_{x=x_0} d\tau
\]

where

\[
A(t, x_0) = \frac{\partial f(\varphi(t, t_0, x_0), t)}{\partial x} \bigg|_{x=x_0}
\]

By differentiating (4) with respect to time we get:

\[
\frac{d}{dt} \left(\frac{\partial \varphi(t, t_0, x_0)}{\partial x_0} \right) = A(t, x_0) \frac{\partial \varphi(t, t_0, x_0)}{\partial x_0}
\]

The solution of the matrix differential equation (6) is called
the sensitivity function [23] or trajectory sensitivity [24]. The
sensitivity of the flow to initial condition can be obtained by
the Taylor series expansion [24]:

\[
\Delta \varphi(t, t_0, x_0) = \frac{\partial \varphi(t, t_0, x_0)}{\partial x_0} \Delta \varphi(t_0, t_0, x_0).
\]
2) The Poincaré map approach: Though a much older technique, this is effectively a specific case of the trajectory sensitivity approach for periodic systems. In the Poincaré map approach the continuous orbit is represented by a discrete map. In the case of a nonautonomous system the state is observed every T sec, where T is the period of the forcing function or external clock. If we assume that $t = t_0$ is an observation instant, then the sampled data model is a nonlinear function that will map x_0 to $x_{t_0 + T}$:

$$\varphi(T + t_0, t_0, x_0) = x_0 + \int_{t_0}^{t_0 + T} f(\varphi(\tau, t_0, x_0), \tau)d\tau$$

(8)

The stability of this map can be deduced by taking the linear approximation (the Jacobian matrix) at its fixed point. Since the fixed point is x_0 the linearized map is given by (4) where $t = t_0 + T$, i.e., the Jacobian matrix is the same as the trajectory sensitivity for $t = t_0 + T$. Similarly (6) has to be solved to analyze the stability. The behavior of the perturbations around the fixed point is given by (7), again for $t = t_0 + T$.

3) Floquet theory: With the above two methods one studies how the perturbed trajectory behaves and the stability is then deduced by checking if the perturbations will increase or decrease. Another possible approach is to study the perturbations directly, i.e., if $x_p(t) = \varphi(t, t_0, x_0)$ is the original periodic orbit and $x_p(t)$ is the perturbed trajectory then the perturbation is $\Delta x(t) = x_p(t) - x_p(t)$. By using conventional linearization methods (Taylor series) around the periodic orbit $x_p(t)$ it can easily be shown that the perturbation $\Delta x(t)$ can be modeled by a homogeneous linear time varying model [17]:

$$\frac{d\Delta x(t)}{dt} = \frac{\partial f(x, t)}{\partial x} \bigg|_{x=x_p} \Delta x(t) = A(t, x_p)\Delta x(t)$$

(9)

Unfortunately the eigenvalues of the state matrix cannot be used to determine the stability as it is time varying. This problem may be overcome by using the fundamental solution matrix, which is given by:

$$\Phi(t, t_0, \Delta x_0) = [\varphi_1(t, t_0, \Delta x_0), \varphi_2(t, t_0, \Delta x_0),...]$$

(10)

where $\varphi_i(t, t_0, \Delta x_0)$ are linear independent solutions of the system with the property that any other solution can be written as a linear combination of $\varphi_i(t, t_0, \Delta x_0)$. The state transition matrix is the fundamental solution matrix satisfying the condition $\Phi(t_0, t_0, \Delta x_0) = I$. The state transition matrix can be defined for any homogeneous system and in the case where the state matrix is time invariant it can easily be calculated by using the matrix exponential: $\Phi(t, t_0) = e^{A(t - t_0)}$. However, since $A(t, x_p)$ is time varying, no closed form expression exists for the state transition matrix, and we must solve the matrix differential equation

$$\frac{d\Phi(t, t_0, \Delta x_0)}{dt} = A(t, x_p)\Phi(t, t_0, \Delta x_0).$$

(11)

If the solution of (11) (i.e. the state transition matrix) is evaluated for $t = T + t_0$ then the resulting matrix is called the monodromy matrix. One basic property of the monodromy matrix [17] is that:

$$\Delta x(kT) = \Phi^k(T + t_0, t_0, \Delta x_0)\Delta x_0$$

(12)

This implies that if the absolute value of the eigenvalues (also called Floquet multipliers) of the monodromy matrix are all less than 1, then the perturbation Δx will converge to zero and thus the system is stable.

Comparing (6) and (11) it is interesting to note that the monodromy matrix is effectively the trajectory sensitivity at $t = t_0 + T$ which in turn is the Jacobian of the Poincaré map [24], [25]. Thus all three approaches finally yield the same result.

B. Nonsmooth systems

A system is said to be nonsmooth or piecewise smooth if it is described by equations of the form

$$\dot{x} = f(x, t, \rho) = \begin{cases} f_1(x, t, \rho) & \text{for } x \in R_1 \\ f_2(x, t, \rho) & \text{for } x \in R_2 \\ \vdots & \vdots \\ f_n(x, t, \rho) & \text{for } x \in R_n \end{cases}$$

where R_1, R_2 etc. are different regions of the state space, separated by $(n-1)$ dimensional surfaces given by algebraic equations of the form $\Gamma_n(x) = 0$, called “switching manifolds.” Application of the above methods to nonsmooth systems demands some special treatment, because the original and perturbed solutions may not undergo switching at the same time. Thus, in the neighborhood of a switching event, the original periodic solution and the perturbed trajectory are not given by the same vector field.

1) Trajectory sensitivity: Hiskens and Pai [26] addressed the problem of defining (5) in such systems with reference to a general Discrete-Algebraic-Differential (DAD) model. In this section we will briefly describe this method when there is one switching per cycle, as it is closely related to the method proposed by Filippov. The DAD model can be given by:

$$\dot{x}(t) = f(x, y)$$

$$s(x, y) = 0$$

$$g^-(x, y) = 0, \quad s(x, y) < 0$$

$$g^+(x, y) = 0, \quad s(x, y) > 0$$

$$x^+ = D(x, y)$$

(13)

where f defines the vector field, s is a scalar equation that describes the switching surface, g^- is a scalar equation that is satisfied before the switching, and g^+ is a scalar equation that is satisfied after the switching, x are the dynamical states of the system (e.g., inductor current and capacitor voltage) and y are other algebraic variables (like supply and reference voltages), finally D is a vector function that describes how the state will jump just after the switching. Hiskens et al. used this model to find the required jump map. Very briefly, just before the switching the two conditions that must be satisfied are:

$$s(x^-, y^-) = 0$$

$$g^-(x^-, y^-) = 0$$

(14)

where x^- and y^- are the state and algebraic variables immediately before the switching. Furthermore, by using the chain rule the derivative of the state vector just before the switching is given by

$$\frac{dx(t^-)}{dx_0} = \left(\frac{\partial x}{\partial x_0} + \frac{\partial x}{\partial \tau} \frac{d\tau}{dx_0} \right)_{t=t^-}$$

(15)
where τ^- is the instant just before the switching. Also,
\[
\frac{dx}{dt}\bigg|_{t=\tau^-} = f(x^-, y^-) = f^-(16)
\]
By using a Taylor series on s and g just before the switching:
\[
\begin{align*}
s_x \frac{dx^-}{dt} + s_y \frac{dy^-}{dt} &= 0 \\
g_x \frac{dx^-}{dt} + g_y \frac{dy^-}{dt} &= 0
\end{align*}
(17)
\]
where s_x, g_x, s_y, g_y are partial derivatives with respect to x and y respectively. By combining (15), (16) and (17) we can find an expression for $d\tau/d\tau_0$ which will describe how the switching time changes with small changes in initial conditions. This can then be used again in (15) to define how the solution will alter by small changes in initial conditions. A similar approach can be applied for the solution after the trajectory. D can then be used to relate these two and hence define the jump matrix that describes the relation between $dx(\tau^-)/dx_0$ and $dx(\tau^+)/dx_0$. If there is no discontinuity (i.e., $x^- = x^+$), by using the linear approximation given in (7) for both sides of the switching, the map reduces to a simple form similar to the saltation matrix [14] and part of the Jacobian of the Poincaré map [27], [28].

2) Poincaré map: For power electronic circuits, the sampled-data model developed by Verghese et al. (see [8] for an account of its history) and the equivalent Poincaré map approach proposed by Deane and Hamill [10] essentially samples the state variables discretely at the clock instants if the system is nonautonomous (like dc-dc converters under voltage or current control), or at the points of intersection of the trajectory with a Poincaré surface in case of autonomous systems (like dc-dc converters under hysteresis control).

The sampled data model is obtained as follows. In this exposition we assume the system to be nonautonomous, with stroboscopic sampling in synchronism with the clock of period T. It is a reasonable assumption in dc-dc converters that the subsystems are linear time invariant (LTI), and the evolution in each subsystem is defined by a differential equation of the form
\[
\frac{dx_i(t)}{dt} = A_i x(t) + B_i u(t)
\]
for $i = 1, 2, \ldots$. Assuming operation in the nominal period-1 steady state, in which there is only one switching in a clock cycle occurring at the time instant dT where d is the duty ratio, we can derive the following system equations. Before the first switching in a clock cycle, the state evolves as
\[
x(T^+) = e^{A_1 dT} x(0) + \int_0^{dT} e^{A_1 (dT-\tau)} B_1 u(\tau) d\tau
= \Phi_1(T, 0) x(0) + I_1(d).
\]
After the switching and until the end of the clock cycle, the state evolves as
\[
x(T^-) = e^{A_2(T^-dT)} x(T^+) + \int_T^{T+dT} e^{A_2(T^-\tau)} B_2 u(\tau) d\tau
= \Phi_2(T, dT) x(T^+) + I_2(d).
\]
Assuming that there is no discontinuity in the state, one can take the final state before a switching instant to be equal to the initial state after the switching. This gives the sampled-data model of the system
\[
\begin{align*}
x(T) &= f(x_0, d) \\
&= \Phi_2(T, dT) [\Phi_1(T, 0) x(0) + I_1(d)] + I_2(d)
\end{align*}
(18)
For a periodic orbit, $x(T) = x(0)$, this gives
\[
x(0) = [I - \Phi_2(T, dT) \Phi_1(T, 0)]^{-1} \Phi_2(T, dT) I_1(d) + I_2(d)
(19)
\]
The switching events occur when the algebraic equation
\[
h(x(0), d) = 0
(20)
\]
is satisfied. Substituting (19) into this equation, we have an equation involving only one unknown: the duty ratio d. This can be solved easily using any numerical routine. This procedure yields the location of the periodic orbit.

In order to study the stability of the limit cycle, we need to obtain the linearization of the sampled data model given by (18). Differentiating this with respect to $x(0)$ and using the chain rule we get
\[
\frac{\partial x(T)}{\partial x(0)} = \frac{\partial f(x_0, d)}{\partial x(0)} + \frac{\partial f(x_0, d)}{\partial d} \frac{\partial d}{\partial x(0)}
\]
which effectively is a special case of (4). Note that the duty ratio d is a function of $x(0)$.

By a similar procedure, the switching condition (20) yields
\[
\frac{\partial h}{\partial x(0)} + \frac{\partial h}{\partial d} \frac{\partial d}{\partial x(0)} = 0,
\]
where $h = h(x(0), d)$. By rearranging the last equation:
\[
\frac{\partial d}{\partial x(0)} = - \left(\frac{\partial h}{\partial x(0)} \right)^{-1} \frac{\partial h}{\partial x(0)}
\]
Substituting this into (21), we get
\[
\frac{\partial x(T)}{\partial x(0)} = \frac{\partial f(x_0, d)}{\partial x(0)} - \frac{\partial f(x_0, d)}{\partial d} \left(\frac{\partial h}{\partial x(0)} \right)^{-1} \frac{\partial h}{\partial x(0)}
(22)
\]
This gives the expression for the Jacobian matrix, which can then be evaluated depending on the specific converter topology. For example, Fang and Abed [3], [27], [28] showed that for a voltage mode controlled converter, this yields the form
\[
e^{A_2(T-dT)} \left(I - \frac{((A_1 - A_2)x(T)) + (B_1 - B_2) u}{[1 0] (A_1 x(T) + B_1 u) - \frac{\partial h}{\partial x(0)} |_{\tau=0}} \right) e^{A_1 dT}
\]
A different approach was used in [29] where an auxiliary state vector was used to simplify the analysis of the aforementioned Jacobian matrix for a resonant buck converter.

3) Floquet theory: In order to use the Floquet theory in switching systems, it is necessary to take into account the change in the vector field at a switching event. This is the main contribution of this paper and will therefore be presented in the some detail in the following sections.

Before that however, we would like to mention another method developed in the University of Tokushima, Japan [30], which locates the fixed point of the Poincaré map by the Newton-Raphson method, and in the process of convergence, obtains the relevant partial derivatives from which the Jacobian of the Poincaré map can be derived. It thus obtains the fixed
point and its Jacobian by the same numerical procedure. The technique is particularly useful in systems where the subsystems are nonlinear.

III. AN OUTLINE OF FILIPPOV’S METHOD

Filippov showed that in systems with discontinuous right hand side, there can be ambiguity in the definition of solutions. To illustrate, consider the simple one-dimensional system

\[
\dot{x}(t) = \begin{cases}
-1, & \text{if } x(t) > 0, \\
1, & \text{if } x(t) = 0, \\
3, & \text{if } x(t) < 0,
\end{cases}
\]

shown in Fig. 1. If \(x(0) \neq 0 \), it has the solution

\[
x(t) = \begin{cases}
3t + C_1, & \text{if } x(t) < 0, \\
-t + C_2, & \text{if } x(t) > 0,
\end{cases}
\]

which reaches \(x = 0 \) in finite time and stays there forever. This implies that \(x = 0 \) and \(\dot{x} = 0 \) but according to (23) (when \(x = 0 \) \(\dot{x} = 1 \neq 0 \). Therefore (23) cannot have a solution in the classical sense as (1) does.

![Fig. 1. A discontinuous system of Filippov type](image)

To avoid this problem, Filippov suggested that \(f_0(x(t)) \) will not be a single valued function but a set valued function (as shown in Fig. 2) whose limits are the values of \(f(x(t)) \) before and after the switching:

\[
f_0(x(t)) = \left\{ \min(f_+(x), f_-(x)), \max(f_+(x), f_-(x)) \right\},
\]

\[
f_+(x(t)), \text{ often denoted as } f_0(x(t)) = \overline{co}[f_-(x(t)), f_+(x(t))].
\]

Hence (23) can be written as:

\[
\dot{x}(t) \in F(x(t)) = \begin{cases}
\overline{co}(f_-(x(t)), f_+(x(t))), & \text{if } x(t) \neq 0, \\
f_+(x(t)), & \text{if } x(t) = 0,
\end{cases}
\]

The extension of (23) into (24) is known as Filippov’s convex method and the solution of (24) is referred to as Filippov solution [17]. The existence of a Filippov solution is guaranteed if \(F \) is upper semi-continuous (the extension of continuity into set valued functions). Uniqueness of a Filippov solution for every initial condition can be guaranteed if the orbit spends almost zero time on the switching manifold, i.e., if there is a transversal intersection of the orbit with the switching manifold.

In studying the stability of periodic orbits, one has to continuously evaluate the Jacobian that appears in (9) which describes the evolution of the perturbations. As seen earlier, at the switching this breaks down as the perturbed solution will reach the switching after (or before) the original periodic orbit. The Filippov approach considers small perturbations to the initial condition, and studies how the perturbations evolve as the continuous-time trajectory traverses the complete clock period \(T \). As in the trajectory sensitivity approach, we need a map that will relate the perturbation vectors before and after a switching, i.e., from a point where both the periodic orbit and the perturbed orbit have not crossed the switching manifold to a point where both have crossed. It has to be noted that the concept of using maps to relate the perturbations before and after the switching has also been applied in discontinuous mechanical systems [31], [32]. This map \(S \), referred to as the saltation matrix [17], is given by:

\[
\Delta x(t_\Sigma^+) = S\Delta x(t_\Sigma^-)
\]

Suppose an orbit is passing from subsystem-1 given by the vector field \(f_-(x(t)) \) to subsystem-2 given by the vector field \(f_+(x(t)) \) at a switching manifold \(\Sigma \) defined by the algebraic equation \(h(x(t), t) = 0 \). It has been shown [15], [17] that when there is a transversal intersection, the saltation matrix is given by

\[
S = I + \frac{(f_- - f_+)n^T}{n^T f_+ + \frac{\partial h}{\partial t}|_{t=t_\Sigma}}
\]

where \(t_\Sigma \) is the time at which the orbit crosses the manifold, and \(n \) is a vector normal to the switching surface. The vector field evaluated on one side of the switching manifold, i.e., \(\lim_{t \to t_\Sigma^+} f_-(x(t)) \), is abbreviated as \(f_- \), and that in the other side, i.e., \(\lim_{t \to t_\Sigma^-} f_+(x(t)) \), is abbreviated as \(f_+ \). The form of the saltation matrix is derived using a local approximation of the perturbed and original solutions, and the scalar function that defines the switching manifold. In that sense the procedure is similar to that in the trajectory sensitivity approach using the DAD model, but now the scalar function of algebraic variables \(q \) is included in the scalar function \(h \) that defines the location the switching manifold.

Suppose a periodic orbit starts at \(t_0 \) in subsystem-1, intersects the switching manifold at \(t_{\Sigma_2} \) and goes over to subsystem-2, and finally the periodic orbit closes at \(t = T \). Then \(\Phi(t_0 + T, t_0, x(t_0)) \), is the monodromy matrix for the piecewise system. Once the transition matrices in each subsystem
and the saltation matrix corresponding to the switching are obtained, one can compose the monodromy matrix as:

\[
\Phi(t_0 + T, t_0, x(t_0)) = \Phi(t_0 + T, t_{\Sigma+}, x(t_{\Sigma+})) \cdot S \cdot \Phi(t_{\Sigma-}, t_0, x(t_0)) \tag{27}
\]

where \(t_{\Sigma-} \) is the time instant just before crossing the switching manifold and \(t_{\Sigma+} \) is that just after crossing it. If each subsystem is linear time invariant, the state transition matrix for the travel through each system can be obtained using the matrix exponential.

Note that the form of the monodromy matrix is sufficiently general. If the orbit contains passage through more number of subsystems with a number of crossings (as, for example, in a high-period orbit), one just has to compose the monodromy matrix out of the state transition matrices for the passage through each subsystem, and the saltation matrices related to the crossings. This will greatly simplify the analysis as each crossing can be treated separately. Furthermore, the Filippov approach can be used to study systems that exhibit sliding modes [17] and hence it can be applied to discontinuous conduction modes also.

The monodromy matrix essentially represents the linearized system integrated around a periodic orbit, and hence its eigenvalues represent the Floquet multipliers. If they lie within the unit circle, the orbit is stable. The Filippov method thus gives the same result as the other methods outlined in Section II, though by a different route. Note that for the nominal period-1 operation of the buck converter, Fang and Abed [27], [28] derived the same form by differentiating the Poincaré map (see the expression at the end of Section II).

IV. THE BUCK CONVERTER AND ITS MATHEMATICAL MODEL

The voltage mode controlled buck converter circuit shown in Fig. 3 is a piecewise affine system described by (28) and (29):

\[
\frac{di(t)}{dt} = \begin{cases}
\frac{v_{\text{in}} - v(t)}{L}, & S \text{ is conducting} \\
-\frac{v(t)}{L}, & S \text{ is blocking.}
\end{cases} \tag{28}
\]

\[
\frac{dv(t)}{dt} = \frac{i(t) - v(t)}{C} \tag{29}
\]

It is obvious from (28) and (29) that there is a discontinuity in the right hand side when the main switching element \(S \) passes from conduction to blocking mode and vice versa.

Generally there is some closed loop scheme to control the switching so that the output voltage is kept constant. In the present paper we consider the voltage mode control in which the output voltage is compared with a reference voltage to generate a control voltage signal \(v_{\text{con}} = A(v(t) - V_{\text{ref}}) \) where \(A \) is the gain of the feedback loop. The error voltage is then compared with a periodic sawtooth signal \(v_{\text{ramp}} \) to generate the switching signal as:

- if \(v_{\text{con}} < v_{\text{ramp}}(t) \), \(S \) is turned on,
- if \(v_{\text{con}} > v_{\text{ramp}}(t) \), \(S \) is turned off.

Fig. 4. The nominal period-1 operation of the buck converter: (a) the control and ramp signals, (b) the output voltage, and (c) the output current. The parameter values are \(V_{\text{in}} = 24\text{V}, V_{\text{ref}} = 11.3\text{V}, L = 20\text{mH}, R = 22\Omega, C = 47\mu\text{F}, A = 8.4, T = 1/2500\text{s}, \) the ramp signal varies from 3.8V to 8.2V.

Under normal conditions, the output of the converter will be a dc voltage with a periodic ripple, with a mean value close to the desired voltage and a period that is equal to the period of the PWM ramp signal (referred to as period-1 waveform), as shown in Fig. 4. In Fig. 5, the same orbit is shown in the \(v - i \) state space, with nine points on the orbit marked. The beginning of the ramp period coincides with the time-point marked 1. As the orbit progresses in time (as shown by the arrow), the ramp voltage sweeps from left to right, and at time point 5, they intersect. The switch turns on, and remains in that state till the end of the ramp period (time point 9). The orbit is periodic if the state at time point 9 coincides with that at time point 1. It has been shown that as a parameter (say, the input voltage) is varied, the orbit may lose stability and high-periodic or chaotic orbits may occur [6], [7], [10]. Our concern here is to determine the stability of this orbit.

1In many applications, a PI controller is used. But in this paper we consider a proportional controller for two reasons. Firstly, the additional capacitor in the feedback loop increases the system dimension to three. Our focus here is to develop a new method for analyzing stability — not to study a particular high-dimensional system. Secondly, we have deliberately chosen an example system that has been studied by others [6], [7], [10], [27] so that the reader can easily cross-examine the results.
V. APPLICATION OF THE FILIPPOV APPROACH TO THE BUCK CONVERTER

By defining \(x_1(t) = v(t) \) and \(x_2(t) = i(t) \), (28) and (29) may be written as:

\[
\dot{x} = \begin{cases}
A_s x + Bu, & A(x_1(t) - V_{ref}) < v_{ramp}(t), \\
A_s x, & A(x_1(t) - V_{ref}) > v_{ramp}(t).
\end{cases}
\]

Where,

\[
A_s = \begin{bmatrix} -1/RC & 1/C \\ -1/L & 0 \end{bmatrix}, \quad Bu = \begin{bmatrix} 0 \\ 1/L \end{bmatrix} V_{in}
\]

The switching hypersurface \((h) \) is given by

\[
h(x(t), t) = x_1(t) - V_{ref} - \frac{v_{ramp}(t)}{A} = 0, \quad A \neq 0.
\]

\[
v_{ramp}(t) = V_L + (V_U - V_L) \left(\frac{t}{T} \mod 1 \right)
\]

The two-dimensional state space is divided into three parts:

\[
P_- \cup \Sigma \cup P_+ = \mathbb{R}^2
\]

where

\[
P_- = \{ x \in \mathbb{R}^2 : h(x(t), t) < 0 \},
\]

\[
P_+ = \{ x \in \mathbb{R}^2 : h(x(t), t) > 0 \},
\]

\[
\Sigma = \{ x \in \mathbb{R}^2 : h(x(t), t) = 0 \}
\]

Equation (30) can be written as an upper semi-continuous Filippov inclusion

\[
\dot{x} \in F(x(t)) = \begin{cases}
\overline{co}\{f_-(x(t))\}, & \text{if } x(t) \in P_-, \\
\overline{co}\{f_-(x(t)), f_+(x(t))\}, & \text{if } x(t) \in \Sigma, \\
f_+(x(t)), & \text{if } x(t) \in P_+.
\end{cases}
\]

where

\[
f_-(x(t)) = \begin{bmatrix} x_2(t)/C - x_1(t)/RC \\ V_{in} - x_1(t)/L \end{bmatrix},
\]

\[
f_+(x(t)) = \begin{bmatrix} x_2(t)/C - x_1(t)/RC \\ -x_1(t)/L \end{bmatrix}.
\]

At the two sides of the switching hypersurface, \(f_-(x(t)) \neq f_+(x(t)) \), and therefore the system has discontinuous vector field. The convex hull is defined as:

\[
\overline{co}\{f_-(x(t)), f_+(x(t))\} = \begin{bmatrix} x_2(t)/C - x_1(t)/RC \\ V_{in} - x_1(t)/L \end{bmatrix}.
\]

The normal to the hypersurface is:

\[
n = \nabla h(x(t), t) = \begin{bmatrix} \frac{\partial h(x(t), t)}{\partial x_1(t)} \\ \frac{\partial h(x(t), t)}{\partial x_2(t)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

Now, if we consider the period-1 orbit as shown in Fig. 4 and Fig. 5, the solution intersects the switching manifold transversally and the orbit spends infinitely small time on the switching manifold. Therefore, Filippov’s method of obtaining the salination matrix and the monodromy matrix can be applied.\(^2\)

The components of the salination matrix (26) are obtained as

\[
\lim_{t \in \Sigma} f_-(x(t)) - \lim_{t \in \Sigma} f_+(x(t)) = \begin{bmatrix} 0 \\ V_{in}/L \end{bmatrix},
\]

\[
\left(\lim_{t \in \Sigma} f_-(x(t)) - \lim_{t \in \Sigma} f_+(x(t)) \right) n^T = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]

where \(t_\Sigma \) is the switching instant.

Thus

\[
\lim_{t \in \Sigma} f_-(x(t)) - \lim_{t \in \Sigma} f_+(x(t)) = \begin{bmatrix} 0 \\ V_{in}/L \end{bmatrix} - x_1(t_\Sigma)/C
\]

Since we are considering a period-1 orbit, it suffices to consider \(t \) varying from 0 to \(T \) in (32), which gives

\[
\frac{\partial h(x(t), t)}{\partial t} = \frac{\partial}{\partial t} \left(x_1(t) - V_{ref} - TV_L + (V_U - V_L)t \right) = \frac{V_U - V_L}{AT}.
\]

\(^2\)On this point some caution has to be exercised when considering specific periodic orbits, because di Bernardo et al. [33] have shown that in this system there can be orbits that slide along the switching surface. To use the concept of the salination matrix to such orbits care must be taken for the correct definition of the vector field after the switching. The case of discontinuous conduction mode falls in this category and that analysis will be presented in a later publication.
Hence (26) is calculated as

\[S = \begin{bmatrix} 1 & 0 \\ \frac{1}{x_2(t_\Sigma) - x_1(t_\Sigma)/R} \frac{V_{L} - V_{L}}{C} & 1 \end{bmatrix} \] (36)

Now we need the state transition matrices for the two subsystems. The state transition matrix during the first time interval (i.e., when the switch is blocking) is given by \(\Phi_1(t_\Sigma, 0) = e^{A_s t_\Sigma} \). The state transition matrix for the second interval is given by \(\Phi_2(T, t_\Sigma) = e^{A_s (T - t_\Sigma)} \), as the subsystems are linear time invariant.

Knowing \(S \), it is thus possible to calculate the monodromy matrix \(\Phi(t_0 + T, t_0, x_0) \) using the composition (27). At this point it has to be noted that there is one more switching at \(t = T \) at the end of the clock cycle, which will need another saltation matrix. It happens to be the identity matrix since at this point \(h \) is discontinuous and hence \(dh/dt = \infty \). Furthermore at this point there is a forced switching, i.e., both the original and the perturbed orbits are forced to cross the switching manifold at the same time, and hence there is no need for a saltation matrix to describe the switching at \(t = T \).

Finally, we need to substitute the numerical values of the state vector at the switching instant. Because of the transcendental form of the equations involved, the switching instant within the periodic cycle cannot be obtained explicitly. Following [8], it can however be obtained semi-analytically as follows.

Let the duty ratio be \(d = t_{on}/T = (T - t_\Sigma)/T \). For our convenience we define the ratio \(d' = 1 - d = (T - t_{on})/T \), \(\Phi_1(d'T) = \Phi_1(d'T, 0) \) and \(\Phi_2(T) = \Phi_2(T, d'T) \). The value of the state vector at \(t = t_\Sigma \) is

\[x(d'T) = \Phi_1(d'T)x(0) \] (37)

The state vector when \(t = T \) is given by

\[x(T) = x(0) = \Phi_2(T)x(d'T) + \int_{d'T}^{T} e^{A_s (T - \tau)} \begin{bmatrix} 0 \\ \frac{V_{in}}{L} \end{bmatrix} d\tau \] (38)

By eliminating \(x(d'T) \) from (38) with (37), we get

\[x(0) = \Phi_2(T)\Phi_1(d'T)x(0) + \int_{d'T}^{T} e^{A_s (T - \tau)} \begin{bmatrix} 0 \\ \frac{V_{in}}{L} \end{bmatrix} d\tau \]

\[= [I - e^{A_s T}]^{-1} \int_{d'T}^{T} e^{A_s (T - \tau)} \begin{bmatrix} 0 \\ \frac{V_{in}}{L} \end{bmatrix} d\tau \] (39)

From the hypersurface:

\[x_1(d'T) = V_{ref} + \frac{V_L + (V_U - V_L)d'}{A} \]

And from (37):

\[x_1(d'T) = \begin{bmatrix} 1 & 0 \end{bmatrix} e^{A_s d'T}x(0) \] (40)

Hence,

\[\begin{bmatrix} 1 & 0 \end{bmatrix} e^{A_s d'T}x(0) - V_{ref} - \frac{V_L + (V_U - V_L)d'}{A} = 0 \] (41)

After substituting \(x(0) \) from (39), equation (41) can be solved numerically with the Newton-Raphson method to obtain the value of \(d' \) for the periodic orbit.

VI. STABILITY ANALYSIS OF THE BUCK CONVERTER

For \(V_{in} = 24V \) and \(V_{ref} = 11.3V \), Newton-Raphson solution obtained \(d' = 0.4993 \). Then, from (39) and (40) we get

\[x(0) = \begin{bmatrix} 12.0222 \\ 0.6065 \end{bmatrix} \quad \text{and} \quad x(d'T) = \begin{bmatrix} 12.0139 \\ 0.4861 \end{bmatrix} \].

The saltation matrix is calculated as

\[S = \begin{bmatrix} 1 & 0 \\ -0.4639 & 1 \end{bmatrix} \] (42)

The state matrix (which is the same before and after the jump for the buck converter) is given by:

\[A_s = \begin{bmatrix} 967.12 & 21276.6 \\ -50 & 0 \end{bmatrix} \]

The state transition matrices for the two pieces of the orbit are:

\[\Phi(d'T, 0) = e^{A_s d'T} = \begin{bmatrix} 0.8058 & 3.8366 \\ -0.0090 & 0.9802 \end{bmatrix} \]

and

\[\Phi(T, d'T) = e^{A_s d'T} = \begin{bmatrix} 0.8052 & 3.8468 \\ -0.0090 & 0.9800 \end{bmatrix} \]

respectively. Hence the monodromy matrix is

\[\Phi(T, 0, x(0)) = \begin{bmatrix} -0.8238 & 0.0131 \\ -0.3825 & -0.8184 \end{bmatrix} \] (43)

Fig. 6. Eigenvalue loci for \(V_{in} \in [14V, 25V] \). Squares indicate unstable system, solid circles stable system.

The eigenvalues of (43) are \(-0.8211 \pm 0.0708j\) implying that at the above parameter values the system is stable. This is in agreement with the experimental and numerical observations of the system behavior, reported in the next section, as well as with those reported in earlier studies of the same system [7]. To further confirm the results obtained with the new method of analysis, the Floquet multipliers (or the eigenvalues of the monodromy matrix) were calculated for values of the input voltage \(V_{in} \) ranging from 14 to 25 volts. Table I shows the calculated values of the saltation matrix, the monodromy matrix and its Floquet multipliers. The locus of
these eigenvalues is shown in Fig. 6. It shows that eigenvalues first became real for a specific parameter value, and then one of the eigenvalues went out of the unit circle through the negative real line, marking the onset of instability through a period-doubling bifurcation.

It is interesting to point out that the change in the value of d' for V_{in} varied from 24 V to 25 V is approximately -0.0195, which will only slightly change the matrices $\Phi_2(T)$, $\Phi_1(d'T)$ and yet the system becomes unstable. The answer to this surprising circuit behavior lies in the corresponding change of the saltation matrix, given by:

$$
\begin{bmatrix}
0 & 0 \\
0.0105 & 0
\end{bmatrix}
$$

which causes an eigenvalue of the monodromy matrix to go out of the unit circle.

This provides a simple way for the circuit designer to choose the parameters. Given certain specifications of the input and output voltages and power throughput, the designer would first roughly set a range of parameters in the conventional way, based on the averaged model to get the desired slow time scale stability and transient performance. But this will not guarantee that the system will be stable on a fast time scale when variable parameters like input voltage and load resistance fluctuate. In order to ensure that, it will be necessary to calculate the range of the variable parameters like V_{in} and R for which the period-1 orbit will remain stable. A representative parameter space diagram, with other parameters fixed at values given in the caption of Fig. 4, is shown in Fig. 7. The designer will have to ensure that the external parameters remain within the shaded region of the parameter space.

VII. EXPERIMENTAL RESULTS

To further validate these results, experimental tests were carried out. Results are presented in Fig. 8 which shows that an instability does occur in the period-1 orbit before $V_{in} = 25$ V, which results in the birth of the period-2 orbit. The results are in total agreement with the theoretical predictions presented in Fig. 6 and Table I.

One particular strength of the method developed in this paper is that the solution of (41) does not distinguish between a stable orbit and an unstable orbit. Therefore, unstable periodic orbits can be detected and their Floquet exponents can be calculated. An example of this is presented in Fig. 9, where the unstable period-1 orbit coexisting with the stable period-2 orbit for $V_{in} = 25$ V is shown. It is known that such unstable periodic orbits, though invisible as far as asymptotic behavior is concerned, can influence the bifurcation sequence through border collision bifurcation or interior crisis.

![Fig. 7](image7.png)
Fig. 7. The region of stability of the period-1 orbit in the V_{in}-R parameter space. The contour is obtained using the condition that the lower eigenvalue of the monodromy matrix is equal to -1.

![Fig. 8](image8.png)
Fig. 8. Experimental waveforms for the capacitor voltage and inductor current (a) for $V_{in} = 20$ V and (b) for $V_{in} = 25$ V.

![Fig. 9](image9.png)
Fig. 9. Stable and unstable periodic orbits of the buck converter for $V_{in} = 25$ V.
TABLE I
THE SALTATION AND MONODROMY MATRICES FOR VARIOUS INPUT VOLTAGES

<table>
<thead>
<tr>
<th>V_{in}, V</th>
<th>d'</th>
<th>Salutation matrix</th>
<th>Monodromy matrix</th>
<th>Floquet multipliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.1559</td>
<td>1 0</td>
<td>-1.6832 3.7123</td>
<td>-0.6265 ± 0.5354j</td>
</tr>
<tr>
<td>20</td>
<td>0.4024</td>
<td>1 0</td>
<td>-1.0020 0.8115</td>
<td>-0.6919 ± 0.4477j</td>
</tr>
<tr>
<td>24</td>
<td>0.4993</td>
<td>1 0</td>
<td>-0.8238 0.0131</td>
<td>-0.8211 ± 0.0708j</td>
</tr>
<tr>
<td>25</td>
<td>0.5187</td>
<td>1 0</td>
<td>-0.7919 -0.1323</td>
<td>-0.6214 ± 0.0020</td>
</tr>
</tbody>
</table>

Fig. 10. The bifurcation diagram of the system.

VIII. FURTHER APPLICATIONS

In this section we will apply the methodology developed in this paper to explain some empirical observations reported recently, and to propose a new controller that delays the bifurcation and can allow the nominal period-1 orbit to continue for a larger parameter range.

A. Explanation of intermittent subharmonic windows

There have been some recent reports [21], based on empirical observations from simulation as well as experiments, that the system exhibits some peculiar intermittent subharmonic behavior when the reference signal is coupled with a small-amplitude time varying signal. Such spurious additive signal may represent coupling with the environment, and so it is a matter of great importance to understand why they occur.

Let us first consider sinusoidal additive signal, so that \(V_{ref}(t) = V_{ref}(1 + a \sin \omega_s t) \), where \(\omega_s \) may be different from \(\omega = 2\pi/T \). It has been shown [21] that in that case intermittent subharmonic windows appear. If we assume \(\omega_s = \omega \), the length of the specific subharmonic window is extended to infinity, and so it becomes a steady state behavior. Then we use the eigenvalues of the monodromy matrix to predict the change of stability properties.

Assuming \(\omega_s = \omega \), the scalar equation \(h(x(t), t) = 0 \) that describes the hypersurface is:

\[
x_1 - V_{ref} - V_{ref}a \sin \omega t - \frac{TV_L + (V_U - V_L)t}{AT} = 0, \quad t \in (0, T)
\]

\[(44)\]

In this case the equation (41) takes the form

\[
\begin{bmatrix} 1 & 0 \end{bmatrix} e^{A_s d'T} \left[\left[I - e^{A_s T} \right]^{-1} \times \int_{d'T}^{T} e^{A_s (T-\tau)} \left[\begin{bmatrix} 0 \\ V_{in}/L \end{bmatrix} \right] d\tau \right] = 0
\]

\[-V_{ref} - V_{ref} a \sin(\omega d'T) - \frac{V_L + (V_U - V_L)d'}{A} = 0 \quad (45)\]

The duty cycles and the corresponding values of the state vector at \(t = 0 \) and \(t = d'T \) (for the period 1 cycle) are shown in Table II.

TABLE II
THE VALUES OF d' AND THE STATE VECTOR FOR V_{in} = 24 V AND VARIOUS VALUES OF a.

<table>
<thead>
<tr>
<th>a</th>
<th>d'</th>
<th>x(0)</th>
<th>x(d'T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.4993</td>
<td>12.0222</td>
<td>0.6065</td>
</tr>
<tr>
<td>0.0002</td>
<td>0.4993</td>
<td>12.0222</td>
<td>0.6065</td>
</tr>
<tr>
<td>0.0003</td>
<td>0.4993</td>
<td>12.0222</td>
<td>0.6065</td>
</tr>
</tbody>
</table>

TABLE III
THE EIGENVALUES OF THE MONODROMY MATRIX FOR INCREASING VALUES OF a.

<table>
<thead>
<tr>
<th>a</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.8211 ± 0.0708j</td>
</tr>
<tr>
<td>0.0001</td>
<td>-0.9468 -0.7174</td>
</tr>
<tr>
<td>0.0002</td>
<td>-1.0216 -0.6648</td>
</tr>
<tr>
<td>0.0003</td>
<td>-1.0804 -0.6286</td>
</tr>
</tbody>
</table>

In this case the equation (41) takes the form

\[
\]

The duty cycles and the corresponding values of the state vector at \(t = 0 \) and \(t = d'T \) (for the period 1 cycle) are shown in Table II.

Studying the results presented in Table II it can be seen that the duty cycle and hence the vector fields at \(t = 0 \) and \(t = d'T \) remain almost unchanged. Furthermore \(h(x(d'T), d'T) \) does not change much since the value of \(V_{ref} a \sin(\omega d'T) \) is almost zero. This could lead to the wrong conclusion that the additive signal makes no change in the stability status, which contradicts the results reported in [21]. The underlying situation becomes clear only when we obtain the eigenvalues of the monodromy matrix, as given in Table III. It shows that for the amplitude of the additive signal as low as \(a = 0.0002 \), the monodromy matrix has an eigenvalue outside the unit circle and hence the period-1 orbit is unstable (a stable period-2 orbit is born out of a flip bifurcation).
To understand why a flip bifurcation takes place for that value, while the duty cycle remains constant, it is necessary to study the saltation matrix. We reproduce the expression here:

\[S = I + \left(\lim_{t \to t_c} (f(x(t))) - \lim_{t \to t_c} (f(x(t))) \right) n^T \]

where \(n^T \) is the matrix of the system. The only component that changed with the addition of \(V_{ref} a \sin(\omega t) \) is the last term in the denominator, since the duty cycle remained practically unchanged. This term is defined as:

\[\frac{\partial h}{\partial t}(x(t), t) = -V_{ref} a \cos(\omega t) - \frac{V_U - V_L}{AT} \]

which is obviously different from that without the additive signal. Add to this the observation that the value of \(V_{ref} a \sin(\omega dT) \) is very small, which implies that the value of \(-V_{ref} a \omega \cos(\omega t) \) will be large at \(t = t_c \). Therefore there will be a large influence on the value of \(\partial h/\partial t(x(t), t_c) \) and therefore on the saltation matrix. This greatly influences the monodromy matrix as it can be seen in Table III, and renders the orbit unstable.

B. Development of a control strategy

Based on the observation in [21], a chaos control scheme has been recently proposed in [22]. With the approach proposed in this paper, we are now in a position to understand why this chaos controlling scheme works.

Since a positive value of \(a \) pushes one eigenvalue of the monodromy matrix towards \(-1\), a negative value of \(a \) (i.e., a phase shift of \(180^\circ \)) is expected to have a reverse effect. Hence if we have an uncoupled buck converter which exhibits a period doubling at a specific parameter value, a small time varying signal added to \(V_{ref} \) will force the period-1 limit cycle to become stable once again. This is feasible since the period doubling did not destroy the period-1 orbit but simply changed its stability properties.

Our approach has more to offer than just explanation of empirical observations. We can now "optimally" choose the strength of the additive sine wave. One strategy may be to keep the magnitude of the eigenvalues exactly the same as that for the stable periodic orbit obtained for low values of \(V_{in} \). It can be seen in Fig. 6 that for low values of \(V_{in} \), the eigenvalues lie on a circle of radius 0.8241. To obtain the value of \(a \), we used a Newton Raphson method to place the eigenvalues of the monodromy matrix on that circle, by solving the equation:

\[\text{eig}(\Phi(T, 0, x(0))) - 0.8242 = 0. \]

The results of this algorithm, for various values of \(V_{in} \) are shown in Fig. 11. Based on these values we created a third order polynomial expression

\[a = -2.2 \times 10^{-6} V_{in}^3 + 1.5 \times 10^{-4} V_{in}^2 - 3.7 \times 10^{-3} V_{in} + 3.3^2 \]

that matches the graph of Fig. 11 over a large range of the input voltage.

By using this equation we propose an improvement of the chaos controlling scheme that appears in [22]. We create a supervising controller whose task is to change the value of \(a \), then another controller adds the signal \(aV_{ref} \sin(\omega t) \) to the reference input value (see Fig. 12).

The output voltage response to a step change in input voltage (24 V to 30 V) is shown in Fig. 13. Without the supervising controller, it would have resulted in a period-2 subharmonic oscillatory mode. Note that following the transient, the system briefly goes into period-2 mode, but is quickly corrected by the supervising controller to re-establish the period-1 operation. We have found that this controller is robust to load resistance changes also. Further research is underway to avoid the offline calculation of the values of \(a \)
by using artificial intelligence methods like adaptive critical control. It has to be noted that the sinusoidal signal used here has zero phase at the clock instant, which works quite well if the duty cycle is close to 50%. In a general case we will choose the zero-crossing of the imposed sinusoid to coincide approximately with the switching instant, which can be done if an approximate value of the duty ratio is known. This will ensure that the switching instant (and hence the duty ratio) is not affected by the sinusoidal signal but the derivative of the switching manifold with respect to time will be maximum in magnitude at the switching instant.

IX. CONCLUSIONS

Following Filippov’s approach, we have developed a powerful technique to determine the stability of periodic limit cycles in power electronic circuits. The method is quite suitable for stability analysis of the vast majority of power electronic systems whose Poincaré map cannot be determined in closed form.

In this method the fundamental solution matrix over a complete cycle—called the monodromy matrix—is determined by using the state transition matrices for the segments of the orbit lying in the individual subsystems, and the transition matrix across the switching boundaries—called the saltation matrix. We have illustrated the method by applying it to the voltage mode controlled buck converter, yielding valuable insights into issues related to the stability of the nominal period-1 orbit. The saltation matrix concept can also be fruitfully used to model the evolution of perturbations in case of situations like thyristor switch off and diode switch on, where the system dimension changes [3] across the switching manifold. We have shown that the saltation matrix is principally responsible in the determination of the system’s stability. By this method one can calculate the range of the variable parameters like the input voltage and load resistance for which the period-1 orbit will be stable.

We have then used this approach to explain the recent observation that spurious sinusoidal additive signals cause intermittent subharmonic behavior in such converters. Finally we have proposed a supervising controller that can extend the parameter range over which the period-1 operation of the converter remains stable.

ACKNOWLEDGMENT

The authors would like to thank Dr. Remco I. Leine (Centre of Mechanics, Institute of Mechanical Systems, ETH Zurich) for his valuable and highly appreciated advices and comments during the preparation of this paper.

REFERENCES

Biographies

Damian Giaouris was born in Munich, Germany, in 1976. He received the diploma of Automation Engineering from the Automation Department, Technological Educational Institute of Thessaloniki, Greece, in 2000, the MSc degree in Automation and Control from Newcastle University in 2001 and the PhD degree in the area of control and stability of Induction Machine drives in 2004. His research interests involve advanced nonlinear control, estimation, digital signal processing methods applied to electric drives and nonlinear phenomena in power electronic converters. He is currently a lecturer in Control Systems at Newcastle University, UK.

Soumitro Banerjee [tbh!] (born 1960) did his B.E. from the Bengal Engineering College (Calcutta University) in 1981, M.Tech. from IIT Delhi in 1983, and Ph.D. from the same Institute in 1987. He has been in the faculty of the Department of Electrical Engineering, IIT Kharagpur, since 1986. Dr. Banerjee’s areas of interest are the nonlinear dynamics of power electronic circuits and systems, and bifurcation theory for nonsmooth systems. He has published three books: “Nonlinear Phenomena in Power Electronics” (Ed: Banerjee and Verghese, IEEE Press, 2001), “Dynamics for Engineers” (Wiley, London, 2005), and “Wind Electrical Systems” (Oxford University Press, New Delhi, 2005). Dr. Banerjee served as Associate Editor of the IEEE Transactions on Circuits and Systems II (2003-05), and is currently serving as Associate Editor of the IEEE Transactions on Circuits and Systems I. He is a recipient of the S. S. Bhatnagar Prize (2003), and the Citation Laureate Award (2004). He is a Fellow of the Indian Academy of Sciences, the Indian National Academy of Engineering, and the Indian National Science Academy.

Bashar Zahawi received his BSc and PhD degrees in electrical and electronic engineering from the Newcastle University, England, in 1983 and 1988, respectively. From 1988 to 1993 he was a design engineer at Cortina Electric Company Ltd, a UK manufacturer of large ac variable speed drives and other power conversion equipment. In 1994, he was appointed as a Lecturer in Electrical Engineering at the University of Manchester and in 2003 he joined the School of Electrical, Electronic and Computer Engineering at Newcastle University, where he is currently the Director of Postgraduate Studies. His research interests include power conversion, variable speed drives and the application of nonlinear dynamical methods to transformer and power electronic circuits. Dr. Zahawi is a senior member of the IEEE and a chartered electrical engineer.

Volker Pickert studied Electrical and Electronic Engineering at the RWTH Aachen and the University of Cambridge (Dipl.-Ing. 1994). He received his PhD (1997) from Newcastle University in the area of Power Electronics. After his PhD he worked for 2 years as an application engineer for Semikron International and for 5 years as project manger for Volkswagen where he was responsible for power electronic systems and electric drives for electric and hybrid electric vehicles. Since 2003 Dr. Pickert is Senior Lecturer at Newcastle University. His research interests are: power electronics in automotive applications, thermal management, fault tolerant power converters and non-linear controllers.