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Metric Spaces 
The Euclidean distance is: 
• 1 dimensional: ( )( ) yxyxd −=,1  

• 2 dimensional: ( )( ) ( ) ( )222
2

11
2 , yxyxd −+−=yx  

• n dimensional: ( )( ) ( ) ( ) ( )22
22

2
11, nn

n yxyxyxd −+−+−= Lyx  
 
All these metrics satisfy three conditions (x, y can also be vectors in Rn): 

1. ( ) 0, >yx  if yd x ≠  and ( ) 0, =yxd  if yx =  
2. )xyd  yx,∀  ( ) (yxd ,, =
3.  ( ) ( ) ( zydzxdyxd ,,, +≤ )
 
Other functions can also be defined that satisfy these three properties: 
Taxi-cab metric:  ( ) 22111 , yxyxe −+−=yx   

Discrete metric:       ( )
⎩⎨
⎧

≠
== yx

yxyxd ,1
,0,0

Cantor metric:   Used for infinite sequences of zeros and ones 
Max metric on C[0, 1] (all continuous functions defined on [0, 1]):  

( ) ( ) ( ) [ ]{ }1,0:max,max ∈−= xxfxggfd  
…. 

 
Now, we can combine a set X (like ) with a metric d to have a metric space: mR
 
A set X (could be Rn) along with a metric d is a metric space (X, d) 

 
Thus we can define metric spaces more generic than the Euclidean metric space 

( )( )mm d,R  like [ ]( max,1,0 dC ) ] the space of all continuous functions on  with the 
 metric. 

[ 1,0C

maxd
 
Obviously we can define more than one metric on the same space X. Then if we can 
find m, M for all  Xyx ∈, : ( ) ( ) ( )yxMdyxdyxmd ,,, 121 ≤≤  then the metrics  and 

 are called metrically equivalent.  
1d

2d
 
We can also define a metric subspace ( )AdA,  when XA⊂  and Ad  is the same as  
but is defined on A. 

d

 
Finally we can use the concept of a generic metric to define an open ball: 

( ) ( ){ rxadxraBd <= ,:,

( ) ( ) ( )2,01,11 =
d

B

}, i.e. all the points x that are at a distance less than r from the 
point a. The concept of distance of course depends on the metric d. For example 

 while ( ) R=1,10dB . 



Open sets (1) 
In a Euclidian metric space like ( )( )11, dR  we can define an open set such as ( ) . 
The main property of this set is that we can always define another open set in any of 
each points. On the other hand we cannot take an open set around 2 for . 

3,2

[ )3,2
 
In a more general case, in any metric space ( )dX , , we can take an open ball as 

. And in any point ( raBd , ) ( )raBx d ,∈  we can take another open ball . We 
call this property the fried egg property: 

( sxBd , )

 

( )raBd ,

( )sxBd ,

 
 
We can use that fried egg property to define an open set as a set where every point has 
the fried egg property. Of course the idea of the open ball is directly connected with 
the metric that we use (as in the idea of the open ball). For example in  with the 
normal Euclidian metric an open ball will look just like the above figure. But if we 
use the discrete metric then if the radius is greater than 1 the open ball will cover the 
whole set . 

1R

1R
 
Thus we have to say which metric we use when we define/mention an open set: 
d-open set if we are in ( ). dX ,
 
Also if we have metrically equivalent metrics then they define the same open sets, i.e. 
a subset of X is open wrt both metrics. 
 
Using the above definition of an open set we have three main properties: 
1. The union of any number of open sets is also an open set. 
2. The intersection of a finite number of open sets is also an open set (if we have an 

intersection of infinite number of open sets then we could end up with a single 
point). 

3. In a metric space ( )dX ,  the sets ∅,X  are open. 
 
These 3 properties are effectively the corner stone of topology!!! 
 
 
 
 
 
 



Continuity in metric spaces 
The classical δε −  definition of continuity of a function is: 

mnf RR →:  is continuous at Xa∈  iff: 
( ) ( ) ( )( ) ( )( ) δεδε <<>∃>∀ ax,a,x nm dwheneverffd:00  

I.e. for any given ε  I need to find a range of x such that the range of f(x) will be 
smaller than ε2  or from a different point of view I need to find a range of x around a 
point a such that f(x) will be in (or just) a predetermined range around f(a): 

( )af

a

ε2

δ−a δ+a

 
For example in 1D ( ): 0=a

 
 

( ) ( ) ( )( ) ( ) ( ) ( ) 3001 +=−= xffxffxfd ,  

Hence if 8=ε : ( ) ( ) ( ) 51183883 <<−⇔<+<−⇔<+ xfxfxf   
Hence I need to find a range of x around 0 such that f(x) will get values only into the 
interval . If ( )5,11− 1=δ  then ( ) [ ] ( ]5,43,4 ∪−−∈xf . 
On the other hand if 5=ε  then ( ) ( ) ( 2853553 <<−⇔<+<−⇔<+ xfxfxf )  
Now whatever the value of x when x>0 then  f(x)>4 and hence f is not continuous. 



We can use this definition for more generic metric spaces: 
Let (X, d) and (Y, e) be 2 metric spaces  is continuous at  iff: YXf →: Xa∈

( ) ( )( ) ( ) δεδε <<>∃>∀ axdwheneverafxfe ,,:00 . 
 
As we use metrics to define the conditions ( ) ( ) δε << yxdyxe ,, &  the continuity 
depends on the specific metric that we use.  
 
For example if we have the previous function: 

 
 
and in its domain we use the discrete metric (i.e. 0dd = ) then for 5=ε  (or for any 

0>ε ): ( ) ( ) ( ) ( ) 2<x85350 <−⇔<+⇔<− fxffxf  . Hence we are looking for 
a nonzero value of δ  such as ( ) 28 << xf  when ( ) δ<0,0 xd . But if we choose 

5.0=δ (or any other number less than 1) the only point that satisfies  is 
 and thus . 

( ) 5.00 <,0 xd
0=x ( )x 28 << f

 
If we have 2 metrics on the same set that are metrically equivalent then if a function is 
continuous wrt one it is also wrt the other. 
 
Another way to see this is to see the expressions ( ) 0<yxd ,  and ( ) 0<yxe ,  as open 
balls (around a and f(a) respectively): 
Let (X, d) and (Y, e) be 2 metric spaces  is continuous at  iff: YXf →: Xa∈

( ) ( )( ) ( )δεδε ,,:00 aBxwheneverafBxf de ∈∈>∃>∀ : 
 
Using the previous example we see that if 5=ε  then for every 0>δ  

( ) ( ) ( )( )εδ ,:, afBxfaBx ed ∉∈∃  
 
Hence now we can define continuity in more abstract spaces like [ ]( )max,1,0 dC . 
 
We can also define the continuity using the inverse images of functions: 
Let (X, d) and (Y, e) be 2 metric spaces  is continuous at  iff: YXf →: Xa∈

( ) ( )( )( )εδδε ,,:00 1 afBfaB ed
−⊆>∃>∀ : 



( )af
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( )( )ε,afBe

( )δ,aBd

( )( )( )ε,1 afBf e
−

( ) (( )( )εδ ,, 1 afBfaB ed
−⊆ )

)

 
 
 
Finally we can define continuity in terms of open sets. The main property here is that 
if we take the inverse image of an open ball then we have an open set (it could be a 
ball or a union of balls). Hence, let (X, d) and (Y, e) be 2 metric spaces s 
continuous at  iff:  is d-open subset of X when U is an e-open set of Y. 

YXf →:  i
Xa∈ ( )Uf 1−

 
For example if we have  ( ) and we take an open set  in the 
co-domain which will result to 

( ) xxf 5.0= 11 RR → ( 4,2
( ) ( )8,44, =21−f , i.e. another open set. On the other 

hand if we have something like this: 

 
Then if we take the open set ( )5.0,1 −−=U  we have that ( ) ∅=− Uf 1  which is open! 
But if  we have that ( 2,4 −−=U ) ( ) [ )1,01 −=− Uf  which is not open!  

 



Topological Spaces 
 
We have seen that a Metric Space (MS) is a set X with a metric d (X, d). Into that MS 
we define the concept of Open Sets (OS) using the metric d and the idea of the “fried 
egg property”. We have also seen there that the OS have three important properties.  
 
Now, let’s try to expand/generalise the concept of the MS. In order to do that we 
abolish the use of a metric, thus the concept of the “fried egg property” is meaningless 
now. In our underlying set X we take a collection of subsets T that have the property 
that if we take the union of any number of subsets from that collection the result will 
be another subset in that collection and if we take the intersection of a finite number 
of subsets then again the result will belong to this collection T. We also need to take 
the set X (as the union may result in X) and the empty set (for the intersection of 2 
disjoint sets) to be in T. Now, these subsets as called open wrt T for obvious reasons. 
It is important to note that these OS are very different that the OS of a metric space. 
These sets are simply elements of T that satisfy a couple of specific properties. For 
example it is likely that the same subset may be open in T1 while it is not open in T2, 
i.e. it belongs to T1 but not in T2.  
 
The set X with the collection T define a topological space (X, TX) and T is called a 
topology on X. 
 
A special type of a topology in X is formed if we do not take all the sets but we take 
only those that satisfy the "fried egg property" i.e. those that are d-open. If the 
underline set X is  then this topology is called the Euclidean Topology. nR
 
Finally it does not make sense to talk about OS before we define a topology. The OS 
that we have learned in high school are effectively based on the Euclidean topology 
on .  nR
 
Obviously there are many examples of topologies. 
 
As the continuity was previously defined in terms of open sets (i.e. sets in a Euclidean 
space that have the fried egg property) we can define continuity in more general 
topological spaces: 
Let (X,TX) and (Y,TY) be topological spaces, a function  is continuous if YXf →:

( ) XTUf ∈−1  when . YTU ∈
 
A homeomorphism between 2 topological spaces (X,TX) and (Y,TY)  is an onto and 
one-one function such as  and  are continuous. Then the 
topological spaces (X,TX) and (Y,TY) are called homeomorphic. Effectively this means 
that 

YXf →: XYf →− :1

( ) XY TUfTU ∈∈∀ −1,  and ( ) YX TVf ∈−1,T∈V∀ , i.e. there is a one-one 
correspondence between the 2 topological spaces. Then we say that (X,TX) and (Y,TY)  
are topologically equivalent, i.e. we can study (X,TX)  for some specific properties of 
each TX-open sets and export these results to sets in TY. 
 
 
 



Closed Sets 
 
Let (  be a topological space then a set D is called closed (wrt to T) if )TX , TDC ∈ . 
 
A neighbourhood of a point x in X is an T-open set U that contains x. Of course the 
neighbourhood depends on the topology used! 
 
A closure point Xx∈  of a set A is a point where all of its neighbourhoods intersect 
A. This effectively means that if we have a A in X and a generic point x in X then I 
take all the possible open sets around that point x. If all of them intersect A then this 
point is a closure point. Note that an “internal” point is also a closure point: 

 

 
 

The closure of a set A is the collection of all of its closure points. I.e. the closure of A 
is the smallest possible closed set that contains A. Again the closure depends on the 
topology. 
 
A set A is called dense in X if its closure is X, i.e. all points in x have all of their 
neighbourhoods intersecting A. If we can find a point x in X that has just one 
neighbourhood which does not intersect A then A is called “nowhere dense”. 
 
If I have a set x in A (not in X) and I take a neighbourhood around it and this does not 
have contain any other element of A then this point is called isolated point. 
 
A point x in A is an interior point of A if it has a (even just one) neighbourhood U 
such as . AU ⊆
A point x in A is an exterior point of A if it has a (even just one) neighbourhood U 
such as . ∅=∩ AU
A point x in A is a boundary point of A if all of its neighbourhoods intersect both A 
and Ac. 
 
 
 
 
 
 
 
 
 



Properties of Topological Spaces 
 
If we have a topological space (X, T) and we can find 2 sets U & V in T such as 

 then (X, T) is called disconnected. XVU =∪
The Euclidean space  is connected and more specificly a subset in  is connected 
if it is an interval. 

nR R

 
The component of x in X is the largest connected subset of X that is connect (wrt T). 
 
A topological space is path connected if it is connected and there is a path that 
connects each point x in X with each point y in X. A path is a continuous function 
from [  (wrt Euclidean topology) to X. ]1,0
Note: in most cases (but not always a connected space is also a path connected). 
 
Assume the set A=[0, 1] and a collection ( ) ( ) ( ]{ }5,5.0,8.0,0,1.0,1−=S  then 
obviously [ ]1,0⊇

∈
U

SU
U . This collection S is called a cover of the set [0, 1]. If the sets 

in S are open then we have an open cover. It is possible to have infinite sets in S to 
cover the same set A: ( ) [ ]{ }1,0:1.0,1.0 xxxS +−= . 
As there is an overlapping to the above cover we can take a subcover, i.e. a collection 
of sets that cover A that has some elements of S. If this subcover has a finite number 
of sets then it is called a finite subcover. 
 
Also, wrt the Euclidean topology every open cover of [0, 1] has a finite subcover. 
The finite subcover property (wrt Euclidean topology) applies only to closed and 
bounded sets.  
 
Using the property of the finite subcover we can prove that a continuous function 

 is bounded and attains its least upper and greatest lower bounds. This 
means that the image of [  under f is closed and bounded: Extreme value 
theorem.  

[ ] R→baf ,:
]ba,

 
We have seen that the finite subcover property (wrt Euclidean topology) applies only 
to closed and bounded sets. These sets are called compact and can be extended to 
more generic topologies: A topological space is called compact if each open cover of 
X contains a finite subcover of X. Note that the concept that compact sets are closed 
and bounded sets does not hold for topologies other than the Euclidean.  
Also, every closed subset of a compact set is also compact. 
 
A Hausdorff space is a topological space with some specific properties where the 
compact sets have some nice properties. More specifically a Hausdorff space is a 
topological space where each pair of distinct points x, y in X can have disjoint 
neighbourhoods. For example every metric space is a Hausdorff space. Also in a 
Hausdorff space every set {x} is closed. Previously we said that in the Euclidean 
topologies the compact sets are those that are closed and bounded. In order to have 
this connection for a topological space then the space must be Hausdorff, i.e. in a 
Hausdorff space a compact set is closed and bounded and vice versa. 
 
 



Sequences in Topological Spaces 
 
A sequence (an) converges to l in R if (an-l) is null, i.e. for each ε>0 there exists N 

such as ( )( ) lallalalad nnnn +<<−⇔<−<−⇔<−⇔< εεεεεε,1  when n>N. 
I.e. there is an open set ( )εε +− ll ,  where (an) is when n>N.  
 
Now we can expand this definition to any topological space (T, X): a sequence (an) 
converges to a in X if for each neighbourhood U of a there is an N such as an is in U 
when n>N.  
The interesting property here is that a sequence may converge to two or more 
points if these points have the same neighbourhoods. For example if we use the 
indiscrete topology then all points have only X as a neighbourhood and hence each 
sequence converges to all points in X. 
Of course if we go back to a metric space then again we need a null sequence to 
define a convergence.  
 
An interesting property is that a point a is a closure of iff there is a sequence 
(an) in A that converges to a. 

XA⊆

 
We can also define a sequence of functions , for example 

. Then we say that the sequence  converges to the function f if 
for each  then 

R→Afn :
( ) [ 1,0, ∈= xxxf nn

Ax∈
] nf

( ) ( )xfxfn =  as ∞→n . This is the concept of pointwise 
convergences. We can have a more conservative definition if we impose the function 
that the function f is continuous. Then we have the concept of uniform convergence.   
 
It is very important to know when a sequence converges in a metric space. This comes 
out to be that a sequence converges when its terms become arbitrary close for large n. 
Hence we have that a sequence converges when for each 0>ε  there exits a  
such 

N∈N
( ) ε<mn aad ,  when . These sequences are called Cauchy Sequences. 

I.e. every convergent sequence in a metric space is a Cauchy sequence. If we also 
have the inverse i.e. every Cauchy sequence converges then this metric space is called 
complete.  

Nmn >,

The metric spaces ( )( )mm d,R  are complete. Also every compact space is complete. 
But the inverse does not hold as ( )( )mm d,R  is complete but is not compact (not closed 
and bounded). 
 

Contraction mapping 
In a metric space ( )dX ,

X
 a function  is called a contraction mapping if 

for all points 
XXf →:

yx ∈,  there exist [ )1,0∈λ  such as ( ) ( )( ) ( yxdyfxfd ,, )λ≤ , i.e. f is 
Lipschitz function (map) with a Lipschitz constant strictly less than 1. Every 
contraction map has at least one fixed point. In order to ensure that we have exactly 
one point we must impose that the given metric space is complete. Then every 
sequence  converges to the fixed point: ( )xf ( )(, xff ) ...,,x ( )( ) 0→, FP

n xxfd  as 
. ∞→n

 
 


