ZDM

(Another Taylor Series’ Heaven!)

The system is described by:

x=F(x), whenH(x)>0

X — R(x), whenH(x)=0

> ={x:H(x)=0}

T

dt dx dt

()= 2P0 _ (1 (0F (), F ()

dt?

At the grazing point:
H(X«)=0, V(X«)=0,a(X«)=a. >0

Let’s assume an orbit that (near) grazes a switching manifold:

We can define the Poincare map as:

X1 = P(Xg) = ®(Xe, T +1g,t5 )JD(Xo, b5, tg) 1)



To study the stability of this orbit we follow the classical Lyapunov method. This

means that we add a perturbation and we see how the perturbations behave:

% = D(R(x )ty +T,f5)

Then if we use the same map as in (1) there is obviously an error as the new orbit is

different than the original one.

Thus we need a map that will overcome this problem. This map, that will be applied
at a neighbourhood around the grazing point, and will take into account the possibility

of crossing the switching manifold. So | expect something like this:

@)

. X, if the orbit that starts in x does not cross X or grazes =
—
ZDM(x) if the orbit that starts in x crosses  or grazes =



So lets zoom in an orbit that just grazes X (all the previous symbols are re-initialised).

Before we do that let’s assume that the switching manifold is h(x)= x,, in that case

V(X)= X,

A HK

v(x)
>
( /
X
= D(Xg,ty,typ) \\\ 1// X, = D(Xg,t + 5.ty + 5y — )
% = D(Xy,tg + 8y, tg + g + 5) I = D(x3,ty +o,to)
= D(xy,to + o, ty)

The time needed to go from X, to Xg is the same as X4 to xg, i.e. by ignoring the impact.

From the above diagram we have that:

V(x)=0, H(x,)=0, H(xs)=0 3)
| define as:
Hmin (%o ) = min{CD(xo,t,to)}: min{®(xy,ty + 8,tg )} = H(x,) = —y? (6)




For a generic point x near X. (like X1, X2, X3 and x4) we have:
F(x)= F(x«)+ F, (X« )AX + HOT 7)

As F(x*) IS not zero we can say that this term dominates the RHS of (7) and thus

all other terms can be neglected:
F(x)=F(x) 8)
So from now on we will use F(x.) instead of F(x,), F(x,), F(x3), &F(x,).

Similarly for a(x.)= a. instead of a(x, ), a(x, ), a(x;), &a(x,)

A point near x; is given by: @(x;,t,,t,; +t). Using a TS wrt time around t=0:

2 2
Dttty +1)= Dttt )t 8(D(xl,t§,txl+t)| L0 CD(Xl,at;i,txl—i-t)| S
t=0

o

Now this flow can be evaluated for t = -5 to get to X, and for t =—¢; to get to Xo.

This will allow us to connect X, with x; using a simple expression:

D(Xg, by, b +1) = X + F (X))t (8b)
and by setting t =—4&: | have x, = % — F(x )& (9)
And using (8) X, = X, — F(x«)d (10)
Similarly: x, = X, — F(x«)d, (11)
Similarly: xy = X, — F(x«)d, (12)




Now using the jump map I can relate x, with Xs:
X3 = R(X; )= X, +W (%, V(x;) (13)
Hence Using (12):

Xg = R(Xy) = Xg + F(%«) Sy + W (Xg + F (%« )5 W(%o + F (X)) (14)

A point near xz is given by: ®(xs,t,,,t,, +1).
Using a TS wrt time around t=0:

0D (X3, tyo, typ +1))

D(Xg,typ, typ +1)= D(Xg, typ, tep )+ o |t:Ot +HOT <

D(Xg, 0, tyn +1)= X3 + F (X3 )t + HOT

Evaluating this at t = —J,: X, = X3 — F(X3)5, + HOT (15)
And by neglecting HOT and using (8): X, = X3 — F(x*)d0 (16)
Hence combining (16) and (14):

X4 = %o +W (%o + F (%) 5o (%o + F (%)) (17a)

Or X, = Xg +W (%, )V(x,) (17b)




In (17b) we have 2 unknown factors: W (x, ) and v(x, ). As the point x, is near x»

we can replace W (xy + F (x«), ) with W (x.). Thus I simply need to find v(x, ).

Using (10): X, = % — F(x.)d

Thus v(x,)=Vv(x, — F(x«)&) (18)
Using a TS on (18) wrt x at X, :

V(% — F (%)) = V(% )= Vy (% JF (% )& + HOT

Originally we have seen that v(x,)=0, hence:

V(X )= —Vv, (X, JF (X« )8 =

V(X )=V, (X« JF (%4 )8 = V(X, ) = —ax & (19)
a(xx)




Thus my only unknown now is & . To find that | will use (8b) and I will evaluate

2
the function H on that general point: H [xl + F(x )t + Fx(xl)F(xl)t?j

Now, by taking the TS wrt x around x;

2

H(xl +F(x )t+F, (xl)F(xl)%J =H(x, )+ Hx(xl)(F(xl)t +F, (xl)F(x1)§j+

(F(xl)t VE, (xl)F(xl)t;] .

+Hxx(Xl) 2
1
= H min (X0 )+ H (% JF (x )t + H, (% )F, (%0 )F (%)
%’—/ 4

v(x1)=0
2
# o (0 F () F ()1 + HOT

~ =y 4+ (H, (X )F, (X )F (% )+ H o () JF (X, )F (%)

2 t?
=—y°+ a(xl)? SN

2

By evaluating (20) at t =—o | have that

2
H(D(x, bty —6))=0=-y* + a*% =5= iy (21)
Thus using (17b), (19) and (21):

2
X, =X ~W(Xe)ax [—y <
X4 = Xg =W (X« ) /28,y (22)




Thus we have the ZDM map:

ZDM (x)= x —W (x«)/2a.y

It is interesting to point that the Jacobian of that map is singular at the point of

grazing as:

0ZDM (x) oy

- =1 * X T 2
> | —W (x.),/2a ~ (23)
OX OX OX OX  2\—H(x

And as x — x. | have H(x;) — 0 and thus: ?» +00
X




Now let’s see how we can use this map.

The overall map is X,,; = P,(ZDM (R,(,))), in the case where x, = x, | have:

Xn1 = Po| ZDM Pl(xp) =X, I.e. indeed x =X, is a fixed point of our map.

H,_/
X*

X*
Going back to the definition of the map:
Xns1 = P2(ZDM(Ry(x,))) (25)

In order to simplify the analysis I will semi-linearise that expression. We will still not
get an analytic form which we can use to find eigenvalues but it will give us an easier

form.

aP1(Xn )
Xn

P(x,)= Pl(xp)+ (xn - xp): X + Nl(xn - xp) (26)

Now let’s apply the ZDM on that point:

ZDM (% + Ny (x, — xp))z Xe + Ny (X, - xp)—W(x*)\/Za* = Hinin 06+ Ny (%, =)

Now the map P5:



P, (x* + Ny (x, - xp)—W(x*)\/Za* = Hinin (e + Ny (x, — xp))) (27)

And using a TS wrt x around Xx:

P, (X« )+ 0P, (x)
X |yoxe

=P, (%« )+ NZ(Nl(Xn - Xp)—W(X*)\/Zél*\/— H min (X* + Nl(xn - Xp)))
=X, + N2N1(Xn —Xp)— NZW(X*)\/Zii*\/— Hmin(x* + Nl(xn _Xp»

(Nl(xn - xp)—W(x*)\/Za* = Hinin 06+ Ny (6, =%, )))

We can simplify this expression even more by using a TS on H i (%« + Ny (x, —x, )):

oH min (X)

Hmin(x* + Nl(xn - Xp)): Hmin(x*)+—

o Nl(xn - xp)

X=X*

)

= HXmin (X*)Nl(xn —X
= Hx(X*)Nl(Xn - Xp)

The TS expansion of (25) wrt x, around X, will give:

oP,(ZDM (P, (x
o = PolzDM ()« PeLZOMEO ) s
Xn Xn:Xp
oP,(ZDM (P,
Xy = Xp + 2( aX( 1(Xn )))| (Xn _ Xp) (26)
n Xn=Xp

The Jacobian of this map:
PZDM(R(x))  _P@EDM(R(x,))  9ZDM(R(x.)|  R(x,)

X, \Xn:xp 0ZDM (R(x,)) \Xn:xp P (x,) \Xn:xp X, \Xn:xp
Now 1Y) =N, and if x, = x, | have that P,(x, )= x. and thus

Xn Xn:Xp

0P, (ZDM (Py(x )))| _P,(%) =N,

ZDM (X« ) = %«. Hence d =—2
M@l | R

10



sty ZOME) ]y,
) (x,,) ‘Xn:xp oP,\X ioxp
Thus: 72 (ZD;'((Pl(X” D - N,y (27)

n
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