ZDM

(Another Taylor Series' Heaven!)

The system is described by:

$$\dot{\mathbf{x}} = F(\mathbf{x}), \quad when \ H(\mathbf{x}) > 0$$

$$\mathbf{x} \to R(\mathbf{x}), \quad when \ H(\mathbf{x}) = 0$$

$$\Sigma = \{x : H(\mathbf{x}) = 0\}$$

$$v(\mathbf{x}) = \frac{dH(\mathbf{x})}{dt} = \frac{dH(\mathbf{x})}{d\mathbf{x}} \frac{d\mathbf{x}}{dt} = H_x(\mathbf{x})F(\mathbf{x})$$

$$a(\mathbf{x}) = \frac{d^2H(\mathbf{x})}{dt^2} = (H_x(\mathbf{x})F(\mathbf{x}))_x F(\mathbf{x})$$

At the grazing point:

$$H(\mathbf{x}_*) = 0, v(\mathbf{x}_*) = 0, a(\mathbf{x}_*) = a_* > 0$$

Let's assume an orbit that (near) grazes a switching manifold:

We can define the Poincare map as:

$$x_1 = P(x_0) = \Phi(x_*, T + t_0, t_{\Sigma}) \Phi(x_0, t_{\Sigma}, t_0)$$
(1)

To study the stability of this orbit we follow the classical Lyapunov method. This means that we add a perturbation and we see how the perturbations behave:

Then if we use the same map as in (1) there is obviously an error as the new orbit is different than the original one.

Thus we need a map that will overcome this problem. This map, that will be applied at a neighbourhood around the grazing point, and will take into account the possibility of crossing the switching manifold. So I expect something like this:

$$x \mapsto \begin{cases} x, & \text{if the orbit that starts in } x \text{ does not cross } \Sigma \text{ or grazes } \Sigma \\ ZDM(x) & \text{if the orbit that starts in } x \text{ crosses } \Sigma \text{ or grazes } \Sigma \end{cases}$$
 (2)

So lets zoom in an orbit that just grazes Σ (all the previous symbols are re-initialised). Before we do that let's assume that the switching manifold is $h(\mathbf{x}) = x_1$, in that case $v(\mathbf{x}) = x_2$:

The time needed to go from x_0 to x_6 is the same as x_4 to x_6 , i.e. by ignoring the impact.

From the above diagram we have that:

$$V(x_1) = 0, \ H(x_2) = 0, \ H(x_3) = 0$$
 (3)

I define as:

$$H_{\min}(x_0) = \min\{\Phi(x_0, t, t_0)\} = \min\{\Phi(x_0, t_0 + \delta, t_0)\} = H(x_1) \equiv -y^2$$
(6)

For a generic point x near x_* (like x_1, x_2, x_3 and x_4) we have:

$$F(x) = F(x_*) + F_x(x_*) \Delta x + HOT \tag{7}$$

As $F(x_*)$ is not zero we can say that this term dominates the RHS of (7) and thus all other terms can be neglected:

$$F(x) = F(x_*) \tag{8}$$

So from now on we will use $F(x_*)$ instead of $F(x_1)$, $F(x_2)$, $F(x_3)$, & $F(x_4)$.

Similarly for $a(x_*) = a_*$ instead of $a(x_1)$, $a(x_2)$, $a(x_3)$, & $a(x_4)$

A point near x_1 is given by: $\Phi(x_1, t_{x_1}, t_{x_1} + t)$. Using a TS wrt time around t=0:

$$\Phi(x_1, t_{x_1}, t_{x_1} + t) = \Phi(x_1, t_{x_1}, t_{x_1}) + \frac{\partial \Phi(x_1, t_{x_1}, t_{x_1} + t)}{\partial t} \bigg|_{t=0} t + \frac{\partial^2 \Phi(x_1, t_{x_1}, t_{x_1} + t)}{\partial^2 t} \bigg|_{t=0} \frac{t^2}{2} + He$$

Now this flow can be evaluated for $t = -\delta$ to get to x_2 and for $t = -\delta_1$ to get to x_0 .

This will allow us to connect x_0 with x_1 using a simple expression:

$$\Phi(x_1, t_{x1}, t_{x1} + t) \approx x_1 + F(x_1)t$$
(8b)

and by setting
$$t = -\delta$$
: I have $x_2 \approx x_1 - F(x_1)\delta$ (9)

And using (8)
$$x_2 \approx x_1 - F(x_*)\delta$$
 (10)

Similarly:
$$x_0 \approx x_1 - F(x_*)\delta_1$$
 (11)

Similarly:
$$x_0 \approx x_2 - F(x_*)\delta_0$$
 (12)

Now using the jump map I can relate x_2 with x_3 :

$$x_3 = R(x_2) = x_2 + W(x_2)v(x_2)$$
 (13)

Hence Using (12):

$$x_3 = R(x_2) = x_0 + F(x_*)\delta_0 + W(x_0 + F(x_*)\delta_0)v(x_0 + F(x_*)\delta_0)$$
(14)

A point near x_3 is given by: $\Phi(x_3, t_{x_2}, t_{x_2} + t)$.

Using a TS wrt time around *t*=0:

$$\Phi(x_3, t_{x2}, t_{x2} + t) = \Phi(x_3, t_{x2}, t_{x2}) + \frac{\partial \Phi(x_3, t_{x2}, t_{x2} + t)}{\partial t}\Big|_{t=0} t + HOT \Leftrightarrow \Phi(x_3, t_{x2}, t_{x2} + t) = x_3 + F(x_3)t + HOT$$

Evaluating this at
$$t = -\delta_0$$
: $x_4 = x_3 - F(x_3)\delta_0 + HOT$ (15)

And by neglecting HOT and using (8):
$$x_4 = x_3 - F(x_*)\delta_0$$
 (16)

Hence combining (16) and (14):

$$x_4 = x_0 + W(x_0 + F(x_*)\delta_0)v(x_0 + F(x_*)\delta_0)$$
Or $x_4 = x_0 + W(x_2)v(x_2)$ (17b)

Or
$$x_4 = x_0 + W(x_2)v(x_2)$$
 (17b)

In (17b) we have 2 unknown factors: $W(x_2)$ and $v(x_2)$. As the point x_2 is near x_2 we can replace $W(x_0 + F(x_2)\delta_0)$ with $W(x_2)$. Thus I simply need to find $v(x_2)$.

Using (10):
$$x_2 = x_1 - F(x_*)\delta$$

Thus
$$v(x_2) = v(x_1 - F(x_*)\delta)$$
 (18)

Using a TS on (18) wrt x at x_1 :

$$v(x_1 - F(x_*)\delta) = v(x_1) - v_x(x_1)F(x_*)\delta + HOT$$

Originally we have seen that $v(x_1) = 0$, hence:

$$v(x_{2}) \approx -v_{x}(x_{1})F(x_{*})\delta \Leftrightarrow v(x_{2}) = -\underbrace{v_{x}(x_{*})F(x_{*})}_{a(x_{*})}\delta \Leftrightarrow v(x_{2}) = -a_{*}\delta$$

$$(19)$$

Thus my only unknown now is δ . To find that I will use (8b) and I will evaluate

the function
$$H$$
 on that general point: $H\left(x_1 + F(x_1)t + F_x(x_1)F(x_1)\frac{t^2}{2}\right)$

Now, by taking the TS wrt x around x_1

$$H\left(x_{1} + F(x_{1})t + F_{x}(x_{1})F(x_{1})\frac{t^{2}}{2}\right) = H(x_{1}) + H_{x}(x_{1})\left(F(x_{1})t + F_{x}(x_{1})F(x_{1})\frac{t^{2}}{2}\right) + HOT$$

$$+ H_{xx}(x_{1})\frac{\left(F(x_{1})t + F_{x}(x_{1})F(x_{1})\frac{t^{2}}{2}\right)^{2}}{2} + HOT$$

$$= H_{\min}(x_{0}) + \underbrace{H_{x}(x_{1})F(x_{1})t + H_{x}(x_{1})F_{x}(x_{1})F(x_{1})\frac{t^{2}}{2}}_{V(x_{1})=0} + HOT$$

$$+ H_{xx}(x_{1})F(x_{1})F(x_{1})\frac{t^{2}}{2} + HOT$$

$$\approx -y^{2} + (H_{x}(x_{1})F_{x}(x_{1})F(x_{1}) + H_{xx}(x_{1})F(x_{1})F(x_{1})$$

$$= -y^{2} + a(x_{1})\frac{t^{2}}{2} \Leftrightarrow$$

$$H(\Phi(x_{1}, t_{x_{1}}, t_{x_{1}} + t)) = -y^{2} + a_{*}\frac{t^{2}}{2}$$

$$(20)$$

By evaluating (20) at $t = -\delta$ I have that

$$H(\Phi(x_1, t_{x_1}, t_{x_1} - \delta)) = 0 = -y^2 + a_* \frac{\delta^2}{2} \Rightarrow \delta = \sqrt{\frac{2}{a_*}}y$$
 (21)

Thus using (17b), (19) and (21):

$$x_4 = x_0 - W(x_*)a_* \sqrt{\frac{2}{a_*}}y \Leftrightarrow$$
$$x_4 = x_0 - W(x_*)\sqrt{2a_*}y$$

$$x_4 = x_0 - W(x_*)\sqrt{2a_*}y \tag{22}$$

Thus we have the ZDM map:

$$ZDM(x) = x - W(x_*)\sqrt{2a_*}y$$

It is interesting to point that the Jacobian of that map is singular at the point of grazing as:

$$\frac{\partial ZDM(x)}{\partial x} = I - W(x_*) \sqrt{2a_*} \frac{\partial y}{\partial x}$$
 (23)

But
$$\frac{\partial y}{\partial x} = \frac{\partial \sqrt{-H_{\min}(x)}}{\partial x} \approx \frac{\partial \sqrt{-H(x_1)}}{\partial x} = -\frac{\partial H(x_1)}{\partial x} \frac{1}{2\sqrt{-H(x_1)}}$$
 (24)

And as $x \to x_*$ I have $H(x_1) \to 0$ and thus: $\frac{\partial y}{\partial x} \to \pm \infty$

Now let's see how we can use this map.

The overall map is $x_{n+1} = P_2(ZDM(P_1(x_n)))$, in the case where $x_n = x_p$ I have:

$$x_{n+1} = P_2 \underbrace{ZDM \underbrace{P_1(x_p)}_{x^*}} = x_p \text{, i.e. indeed } x = x_p \text{ is a fixed point of our map.}$$

Going back to the definition of the map:

$$x_{n+1} = P_2(ZDM(P_1(x_n)))$$
 (25)

In order to simplify the analysis I will semi-linearise that expression. We will still not get an analytic form which we can use to find eigenvalues but it will give us an easier form.

$$P_{1}(x_{n}) = P_{1}(x_{p}) + \frac{\partial P_{1}(x_{n})}{x_{n}}(x_{n} - x_{p}) = x_{*} + N_{1}(x_{n} - x_{p})$$
(26)

Now let's apply the ZDM on that point:

$$ZDM(x_* + N_1(x_n - x_p)) = x_* + N_1(x_n - x_p) - W(x_*)\sqrt{2a_*}\sqrt{-H_{\min}(x_* + N_1(x_n - x_p))}$$

Now the map P_2 :

$$P_2\left(x_* + N_1(x_n - x_p) - W(x_*)\sqrt{2a_*}\sqrt{-H_{\min}(x_* + N_1(x_n - x_p))}\right)$$
 (27)

And using a TS wrt x around x*:

$$P_{2}(x_{*}) + \frac{\partial P_{2}(x)}{\partial x} \Big|_{x=x_{*}} \left(N_{1}(x_{n} - x_{p}) - W(x_{*}) \sqrt{2a_{*}} \sqrt{-H_{\min}(x_{*} + N_{1}(x_{n} - x_{p}))} \right)$$

$$= P_{2}(x_{*}) + N_{2} \left(N_{1}(x_{n} - x_{p}) - W(x_{*}) \sqrt{2a_{*}} \sqrt{-H_{\min}(x_{*} + N_{1}(x_{n} - x_{p}))} \right)$$

$$= x_{p} + N_{2} N_{1}(x_{n} - x_{p}) - N_{2} W(x_{*}) \sqrt{2a_{*}} \sqrt{-H_{\min}(x_{*} + N_{1}(x_{n} - x_{p}))}$$

We can simplify this expression even more by using a TS on $H_{\min}(x_* + N_1(x_n - x_p))$:

$$H_{\min}(x_* + N_1(x_n - x_p)) = \underbrace{H_{\min}(x_*)}_{0} + \underbrace{\frac{\partial H_{\min}(x)}{\partial x}}_{x=x_*} N_1(x_n - x_p)$$

$$= H_{x\min}(x^*) N_1(x_n - x_p)$$

$$= H_x(x^*) N_1(x_n - x_p)$$

The TS expansion of (25) wrt x_n around x_p will give:

$$x_{n+1} = P_2\left(ZDM\left(P_1\left(x_p\right)\right)\right) + \frac{\partial P_2\left(ZDM\left(P_1\left(x_n\right)\right)\right)}{\partial x_n}\bigg|_{x_n = x_p}\left(x_n - x_p\right) \Leftrightarrow$$

$$x_{n+1} = x_p + \frac{\partial P_2(ZDM(P_1(x_n)))}{\partial x_n} \bigg|_{x_n = x_p} (x_n - x_p)$$
(26)

The Jacobian of this map:

$$\frac{\partial P_2(ZDM(P_1(x_n)))}{\partial x_n}\bigg|_{x_n=x_p} = \frac{\partial P_2(ZDM(P_1(x_n)))}{\partial ZDM(P_1(x_n))}\bigg|_{x_n=x_p} \frac{\partial ZDM(P_1(x_n))}{\partial P_1(x_n)}\bigg|_{x_n=x_p} \frac{P_1(x_n)}{\partial x_n}\bigg|_{x_n=x_p}$$
Now $\frac{P_1(x_n)}{\partial x_n}\bigg|_{x_n=x_p} = N_1$ and if $x_n = x_p$ I have that $P_1(x_n) = x_*$ and thus

$$ZDM(x_*) = x_*$$
. Hence $\frac{\partial P_2(ZDM(P_1(x_n)))}{\partial ZDM(P_1(x_n))}\Big|_{x_n = x_p} = \frac{\partial P_2(\hat{x})}{\partial \hat{x}}\Big|_{\hat{x} = x^*} = N_2$

Similarly,
$$\frac{\partial ZDM(P_1(x_n))}{\partial P_1(x_n)}\Big|_{x_n=x_p} = \frac{\partial ZDM(\hat{x})}{\partial P_1(\hat{x})}\Big|_{\hat{x}=x_p} = N_1$$

Thus:
$$\frac{\partial P_2(ZDM(P_1(x_n)))}{\partial x_n} = N_2 J_{ZDM} N_1$$
 (27)