Active Network Management

Dr. Anurag Sharma

Assistant Professor, Electrical Power Engineering
1. Introduction to Smart Grid
2. Smart grids and real case studies in UK
3. Integration of Energy Storage and DSR
4. Active network management
5. Advanced power flow
6. Integration of Renewable Energy Sources
No accurate definition. What majority of researchers say?

**Active Network Management**

*Active:* Literal meaning: mobile, dynamic, committed. How does the grid become *ACTIVE?*

Inclusion of distributed energy resources such as distributed generation (bi-directional power flow), renewables (uncertainty), electric vehicles (mobile and dynamic), storage (committed)

*Network Management:* Managing the grid

It involves monitoring and control, taking preventive and corrective actions to keep the system stable and safe.

*Active Network Management:*

Managing an active grid which is open to new stochastic generation, flexible, adaptable, autonomous, and intelligent
Functions involved in Active Network Management

- Power flow management
- Generation dispatch
- Voltage control
- Network reconfiguration
- Fault management
- Demand side management

To control and manage network equipment in normal conditions to enhance the utilisation of the network assets and minimise the requirement for their reinforcement
Motivation and Challenges for Active Network Management

**Motivation**
- Increasing power demand from the customers
- Increasing environmental concerns *(promotion of renewable energy sources)*
- Reduction in capital investment
- Making the best use of the existing resources or assets

**Challenges**
- Constraint management *(network as well as commercial)*
- Maintaining security and quality of power supply
- Encourage customer participation *(Ensure customer satisfaction)*
- Communication infrastructure *(Security and increase in capital investment)*
- Data management *(Derive information from the data)*

Source: Smarter Grid Solutions
**Tools for Implementation**

1. Tap changers (Manual as well as automatic)
2. Circuit breakers (network reconfiguration)
3. Distributed generation (Active and reactive power)
4. Controllable loads (Non-critical)
5. Electric vehicles and battery energy storage
6. FACTS devices (SVC or UPFC)

*Control and manage network equipment*

As the number of devices or equipment increases, the task becomes more challenging.
Control Architecture

Centralized architecture

Decentralized architecture

Advantages of centralized architecture:
- Provides optimal decisions
  - Wider view helps to make more informed decisions

Disadvantages of centralized architecture:
- Requires high processing ability.
- Less tolerant to communication failure.
- Higher computation time.

Hybrid or distributed approaches are also proposed and tested for different applications/functions.
Architecture may depend on application
State of the art: Industry

- Look at a wider aspect from communications, optimization, data analysis, security and provide a complete package as a solution
- Provide Software as well as hardware solutions
- Solutions are in the form of real time, autonomous and deterministic control decisions
• Determine which generator to use when, considering network, demand and generation constraints.
• Challenging due to introduction of different power sources: Grid, DG, Storage, EVs, SVC (reactive power) etc.
• Uncertainty of generation and load, criticality of loads, complex network constraints, cost management.

Multi-objective, multi-constraint problem!
Logan will discuss this in detail
Voltage Control

- Distributed energy resources alter the power flow and the voltage profile in the distribution systems.
- Requires voltage and reactive power control equipment to operate based on a coordinated control using forecasting, optimization and remote control.

Phil discussed about this yesterday

Tap changers  Capacitor banks  FACTs devices
Demand Side Management

- A mitigating tool for energy imbalance and peak load management.
- Refers to initiatives and technologies that encourage consumers to optimise their energy use.

Source: EMA, Singapore

Demand Side Management

**Home Energy Management** ≈ Demand Side Management at home level

- Aim is to minimize the electricity bill
- Use artificial intelligence (Neural network techniques) to analyse load data and identify the usage at appliance level
- Non-intrusive load monitoring to make the process faster and cost effective
- Suggest optimal usage schedule considering individual appliance usage and customer needs
- Use of MAS for decision making

---


Fault Management and Network Reconfiguration

Primary Concerns of the utility

- Service reliability
- Customer satisfaction

Faults/Outages

Effective fault management approaches

Service interruption
Fault Management

Fault occurs $\rightarrow$ Detection and Isolation $\rightarrow$ Restoration of power supply to the unfaulted area

This process is called Fault Management

Recently, concept of self-healing and resiliency of the grid has also become very important

Anticipation of fault: data analysis using machine learning

X. Wang; S. McArthur; S. Strachan; J. Kirkwood; B. Paisley, "A Data Analytic Approach to Automatic Fault Diagnosis and Prognosis for Distribution Automation," in IEEE Transactions on Smart Grid, in press
Network complexity has increased: DGs (dispatchable and renewable), Loads (critical and non-critical), Energy Storage (Battery storage and EVs)
Uncertainty of load demand, power generated by renewable DGs, availability of EVs, and outage duration

Task becomes more complex and challenging
Integration of DGs in traditional distribution feeder

- Bi-directional fault current
- Reduced/increased fault current levels
- Changing fault current levels

Detection and Isolation

Over-reach

Under-reach

Loss of DGs

Loss of relay coordination

Islanding-effect
Adaptive protection schemes are required which consider power available from DGs and voltage level at buses to determine current and time settings.

H. M. Zeineldin; H. H. Sharaf; E. El-Saadany, "Protection Coordination for Microgrids with Grid-Connected and Islanded Capabilities using Dual Setting Directional Overcurrent Relays," IEEE Transactions on Smart Grid, early access.
Service restoration

- Process of restoring power supply to out of service area
- Restore maximum load as quickly as possible

Traditional approach

- Back-up feeders for restoration via network reconfiguration
- DGs were disconnected from the system
Service restoration

What if fault is on grid side?

- IEEE Std. 1547.6 – 2011 provided Islanding guidelines
- DGs to supply power to local loads and assist restoration through islanding
Challenge: develop efficient restoration strategies to determine islands which can restore maximum load in shortest time possible

Load can be critical (high priority) or non-critical (low priority)

Maximize priority load restored

Time governed by number of switching operations

Minimize the number of switching operations

Service restoration is generally solved in the literature considering a deterministic environment.

System operating conditions, such as load demand and power generated from the renewable DGs (such as wind and solar) do not remain constant during restoration process.

Motivation

Uncertainty of load demand

Uncertainty of wind power

Motivation

- An effective way to handle the system uncertainties is storage devices in the form of Battery energy storage (BES) and electric vehicles (EVs).

- Furthermore, in the presence of uncertain system operating conditions and storage devices, the uncertainty of outage duration also plays a vital role.

- The motivation is to solve the service restoration problem in an uncertain environment using DG islanding in the presence of various distributed energy resources (DERs).

- DERs used are dispatchable DGs, renewable DGs, battery energy storage, and electric vehicles.


Solution approach

- Classical optimization and metaheuristic techniques are proposed to determine the restoration strategy (islands to be restored)
  - Provide optimal solutions, however, require high computational time
  - Centralized approach, prone to single point failure

- A multi-agent system (MAS) approach can be used to overcome the aforementioned especially in presence of several DERs
  - Distributed approach
  - Parallel behavior
  - Flexibility

The main goal is to solve the service restoration problem in an uncertain environment using intentional islanding in the presence of various DERs.

Develop a MAS framework to solve the following problems:

1. Service restoration problem in deterministic environment
2. Service restoration problem under uncertainty of load demand and power generated by RDGs
3. Service restoration problem under uncertainty of outage duration
Service restoration in deterministic environment

Agents: DG agent, Load agent, Aggregator agent, and Switch agent

Communication between the agents transfers the information required to determine the restoration strategy
Restoration strategy

Aggregator agent

Load agent

DG agent

Other Load agent

Other DG agent

Coalition

Nodes to be restored decided

Switching instructions

Switch agent

Initiate Restoration

Request remaining power

Provides aggregated power from EVs

Calculates the V2G power available from the EVs

Implements heuristic rule-based algorithm to determine the nodes to be restored based on the objective functions and constraints
Results

38 bus distribution system

Total priority load restored = 2.2 pu

<table>
<thead>
<tr>
<th>Island</th>
<th>Priority load restored (pu)</th>
<th># of nodes restored</th>
<th># of switching operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island 2</td>
<td>0.39</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Total priority load restored = 11.13 pu

<table>
<thead>
<tr>
<th>Island</th>
<th>Priority load restored (pu)</th>
<th># of nodes restored</th>
<th># of switching operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island 1</td>
<td>1.15</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>
• A decentralized MAS framework is developed to solve service restoration problem considering DGs and EVs, to support service restoration

• Competence of the proposed decentralized MAS approach is validated, with advantages:
  • Scalability – can be implemented on large size test systems,
  • Robustness – ability to restore with different DG and EV penetration and work for single as well as multiple fault situations

• The benefits of utilizing V2G feature of EVs for service restoration are demonstrated

Service Restoration considering uncertainty of load demand and power generated by renewable DGs

The decentralized MAS architecture is extended to include the new system components i.e. RDGs and BES.
Uncertainty handling and likelihood estimation

- Uncertainty of load demand and power generated by renewable DGs is forecast using scenario generation method based on prediction intervals.

List of prediction intervals

Monte carlo scenarios


Likelihood estimation

- Manifold Monte Carlo scenarios → provide multiple solutions to the utility for decision making

- The maximum likelihood estimator (MLE) is employed to estimate the likelihood of the expected solutions

Likelihood function: \[ L_s(p|e(g,d)) = S(e(g,d)|p_s) \]

The likelihood estimation process
Restoration strategy

- **Aggregator agent**
  - Provides aggregated power from EVs
  - Calculates the V2G power available from the EVs

- **Load agent**
  - Forecasts load demand for known fault duration
  - Implements moving average technique to minimize average load over the fault duration

- **DG agent**
  - Initiates restoration
  - Requests remaining power
  - Provides power support
  - Implements heuristic rule-based algorithm to determine the nodes to be restored based on the objective functions and constraints
  - Calculates the V2G power available from the EVs

- **RDG agent**
  - Requests power support
  - Provides power support
  - Calculates maximum power support for fault duration

- **BES agent**
  - Provides power support
  - Forecasts power generated for known fault duration
  - Implements moving average technique to minimize average load over the fault duration

- **Switch agent**
  - Switching instructions
  - Nodes to be restored decided

**Flowchart**

1. **Initiate Restoration**
2. **Request remaining power**
3. **Provides power support**
4. **BES agent**
   - Provides power support
   - Forecasts power generated for known fault duration
   - Calculates maximum power support for fault duration
   - Switching instructions
   - Nodes to be restored decided
Results

38 bus distribution system

# of nodes restored = 23

# of switching operations = 7
Results

119 bus distribution system

# of nodes restored = 73
# of switching operations = 14

### Results

Compare 3 cases: no EVs, no BES, both EVs and BES

#### 38 bus system – DDG1

<table>
<thead>
<tr>
<th>Cases</th>
<th>No. of nodes restored</th>
<th>No. of switching operations</th>
<th>Likelihood estimate</th>
<th>Priority order of nodes restored</th>
</tr>
</thead>
<tbody>
<tr>
<td>No EVs</td>
<td>7</td>
<td>2</td>
<td>0.82</td>
<td>1,4,6,8,10</td>
</tr>
<tr>
<td>No BES</td>
<td>6</td>
<td>2</td>
<td>0.61</td>
<td>1,4,5,8,10</td>
</tr>
<tr>
<td>Both EVs and BES</td>
<td>5</td>
<td>2</td>
<td>0.76</td>
<td>1,2,8,10</td>
</tr>
</tbody>
</table>

No EVs – BES compensates system uncertainties  
No BES – EVs compensate only load uncertainty  
Both EVs and BES – restore node with priority 2

#### 119 bus system – DDG1

<table>
<thead>
<tr>
<th>Cases</th>
<th>No. of nodes restored</th>
<th>No. of switching operations</th>
<th>Likelihood estimate</th>
<th>Priority order of nodes restored</th>
</tr>
</thead>
<tbody>
<tr>
<td>No EVs</td>
<td>14</td>
<td>2</td>
<td>0.94</td>
<td>1-8,10-15</td>
</tr>
<tr>
<td>No BES</td>
<td>11</td>
<td>2</td>
<td>0.71</td>
<td>1-8,10-12</td>
</tr>
<tr>
<td>Both EVs and BES</td>
<td>13</td>
<td>2</td>
<td>0.89</td>
<td>1-13</td>
</tr>
</tbody>
</table>
Inference

- A decentralized MAS framework is developed to solve service restoration problem considering the uncertainty of load demand and power generated by RDGs.

- Competence of the proposed decentralized MAS approach is validated, with advantages:
  - Scalability – to work for different size test systems,
  - Robustness – ability to work for different load demand and RDG generation profiles.

- The benefits of deploying BES and EVs to alleviate system uncertainties are highlighted.

A. Sharma, D. Srinivasan, A. Trivedi, “A decentralized multi-agent system approach for service restoration in uncertain environment”, Transactions on Smart Grid, accepted.
• Outage duration is an uncertain quantity
• Depends on: cause of the fault, region affected by the fault, time of fault, reason of fault, availability of crew for repair etc.
• More important because of uncertain power generation from RDGs and limitations of energy storage

Solution approach

• Outage duration data is clustered on the basis of cause of fault
• Probabilistic analysis is used for uncertainty handling and decision making
• A restoration index is proposed, based on priority of node restored, number of switching operations, and MLE of the restoration solution

Work under review
Future work

• Extension of Service restoration problem
  • Include fault detection and isolation to develop a self healing system
  • Sizing and siting of distributed energy resources to assist restoration

• Extension of multi-agent system approach
  • Implement proposed MAS framework on RTDS
  • Implement learning ability in the agents
Conclusion

Summary to ANM prospects

• It will play a vital role in the smart grid vision
• A solution to make renewable integration a viable solution: economically as well as technically
• Open to new technologies: distributed energy storage and demand response
• Solutions require:
  • Standards for uniformity
  • Fast acting control hardware
  • Real time decision making
  • Communication protocols
Thank you