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We ask if natural selection in markets favors profit-maximizing firms and, if so, is
there a difference between the predictions of models which assume all firms are profit
maximizers and the predictions of models which explicitly take account of population
dynamics in the market. We show that market selection favors profit maximizing
firms, but we also show that the long-run behavior of evolutionary market models is
nonetheless not consistent with equilibrium models based on the profit-maximization
hypothesis. Dynamic equilibrium paths with market selection are not Pareto optimal,
nor even asymptotically optimal. The discrepancy arises because the dynamics
created by firm evolution causes prices to vary over time and the resulting dynamical
system need not have stable steady states. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

The axiom that firms maximize profit is crucial to most of neoclassical
equilibrium and welfare analysis. Various claims have been made defending
the empirical validity of this axiom and its use in modelling the long-run
behavior of markets. The most prominent defense of this axiom is the
market selection hypothesis, which justifies the use of neoclassical equilib-
rium models with profit-maximizing firms to describe long-run market
behavior by claiming that dynamic market forces continually weed out non-
maximizing firms. This claim has two parts: First, that market forces select
against firms that do not maximize profits; second, that the long-run
behavior of this dynamic market process can be described by conventional
market equilibrium. In this paper we will investigate both of these claims.
The first claim, that profit-maximizing firms drive firms with different
decision rules from the market, is strongly identified with Milton Friedman
[7, p. 22], who wrote:



Whenever this determinant (of business behavior) happens to lead to behavior
consistent with rational and informed maximization of returns, the business will
prosper and acquire resources with which to expand; whenever it does not the
business will tend to lose resources and can be kept in existence only by the addi-
tion of resources from the outside. The process of natural selection thus helps to
validate the hypothesis (of profit maximization) or, rather, given natural selection,
acceptance of the hypothesis can be based largely on the judgment that it summa-
rizes appropriately the conditions for survival.

Alchian [1] made similar arguments, as did Enke [6] who wrote:2 ‘‘In

2 The italics are present in the original.

these instances the economist can make aggregate predictions as if each and
every firm knew how to secure maximum long-run profits.’’ The intuition
offered by Alchian, Enke and Friedman is that eventually capital realloca-
tion will drive out firms that do not maximize profits.
The first claim comes in two varieties. One is that non-maximizing firms
will make losses and be driven out of the market because they cannot con-
tinue to fund their operations out of retained earnings. This story is most
closely associated with Winter [11, 12] and Nelson and Winter [9], who
claimed that the retained earnings of profit maximizers will grow fastest
and consequently that these firms will come to dominate the market. The
second story is that non-maximizing firms will fail to attract sufficient
investment capital to fund their operations. Here profitability is a signal
which attracts investors’ funds. The dynamics implied by each of these
stories is distinct, and so we will examine them both.
The market selection hypothesis has long had its critics. Nelson and
Winter [9, p. 158] understood that the coevolution of firm behavior and
the economic environment resulting from a complete model of the dynamic
process could pose problems for the evolutionary defense of profit maxi-
mization. They observed that among the ‘‘... less obvious snags for evolu-
tionary arguments that aim to provide a prop for orthodoxy ...’’ is ‘‘... that
the relative profitability ranking of decision rules may not be invariant with
respect to market conditions.’’ In other words, the first claim of the market
selection hypothesis, that non-maximizing firms are weeded out, may fail.
Koopmans [8, p. 140] took issue with the second claim of the market
selection hypothesis, that market equilibrium theory describes the long-run
behavior of markets whose dynamic behavior is governed by the selection
process. He characterized and criticized the argument as follows:

Here a postulate about individual behavior is made more plausible by reference to
the adverse effect of, and hence penalty for, departures from the postulated behav-
ior.... But if this is the basis for our belief in profit maximization, then we should
postulate that basis itself and not the profit maximization which it implies in certain
circumstances.
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Our analysis of the market selection hypothesis shows Koopmans to be
correct in his concern about the connection between equilibrium analysis
and long-run market behavior. We first construct a sequential-equilibrium,
market-clearing model in which retained earnings determines the scales of
firm operation. In its focus on retained earnings, this model is in the spirit
of the Nelson-Winter analysis. In Sections 2 and 3 we lay out the basic
model and show that under reasonable conditions, the claim that only
profit-maximizing firms survive in the long-run is true for the retained
earnings dynamic. However, this reassuring result does not imply that the
long-run outcomes of the retained earnings dynamic can be described as
competitive equilibria of economies with only profit maximizing firms. We
examine this in Sections 4 and 5 and show that limit behavior of the
retained earnings dynamic can fail to be Pareto optimal. Optimality can fail
because the retained earnings dynamic need not allocate retained earnings
correctly over firms using differing technologies. On the w-limit set of the
retained earnings dynamic, only profit maximizers have positive retained
earnings. Further, at any steady state, retained earnings are apportioned
across firms so that they operate at their competitive equilibrium levels. So
steady states of the retained earnings dynamic are competitive equilibria
and are Pareto optimal. But the retained earnings dynamic need not con-
verge to these steady states. As retained earnings change over time, output
levels change, and thus prices change, causing the relative profitability of
firms to change over time. We provide examples showing that if prices are
sensitive enough to output levels, then the limit behavior of the retained
earnings dynamic can include cycles and even strange attractors. Along
these non-converging paths, firms are not producing at their competitive
output levels. Consumer efficiency fails, and we even provide an example in
which producer efficiency fails, that is, the economy operates inside the
production possibility frontier.
The retained earnings model imposes a drastic market failure—the non-
existence of capital markets. In Section 6 we ask if the capital markets jus-
tification for profit maximization is correct. To do this we add a capital
market to our model. If all investors have rational expectations, then the
addition of the market makes the market structure dynamically complete.
In a complete markets equilibrium, no investor invests in non-maximizing
firms and so these firms never operate. This result could be interpreted as
providing support for the market selection hypothesis, but we find it
wanting. In such an equilibrium, no real selection occurs. The market gets
it right from the outset.
In models with capital markets, the objects of selection are investors’
decision rules rather than firms’ decision rules. Firms rise and fall together
with, and on account of, the particular investors who favor them. In order
to ever have non-maximizing firms raise financial capital, and thus operate,
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investors must have differing expectations about firms’ profitability. But if
expectations are heterogeneous, then markets are incomplete. In such an
economy there can be initial investment in non-maximizing firms. The
interesting question is, will this investment disappear, causing the non-
maximizing firms to shut down? In a series of examples we show that the
answer can be ‘‘no.’’ Investment in non-maximizing firms will disappear
only if those investors with incorrect expectations about firms’ profitability
disappear. We show that this need not happen. In fact, in incomplete
markets economies, the wealth of irrational investors may grow, rather
than decline to zero, and these investors may keep non-maximizing firms in
existence by continually investing in them. We conclude that the capital
markets version of the market selection hypothesis is even less successful
than the retained earnings version.

2. THE MODEL

This section describes the model and the concept of intertemporal equi-
librium without markets for financial capital. Time is discrete and is
indexed by t=1, 2, ... . At each date, the economy has J commodities.
Date t prices for these commodities are non-negative vectors pt ¥ RJ

+. The
set of commodities {1, ..., J} is partitioned into two sets: inputs which are
used in production, Inp, and outputs which are produced and consumed,
Con. (The symbols Inp and Con will represent both the respective sets and
their cardinality.) There are two types of infinitely lived consumers:
workers and capitalists. Workers are indexed by i=1, ..., I and have sta-
tionary endowments e i ¥ RInp

+ in each period. We assume that the aggregate
endowment is strictly positive, ;I

i=1 e
i± 0. Capitalists are indexed by

h=1, ..., H and own firms. The consumption set for both types is
C=RCon

+ . All consumers have perfect foresight.
Worker i has utility function Ui(c)=;.

t=1 b
t
iui(ct) on infinite consump-

tion streams c=(c1, c2, ...). Capitalist h’s utility function on consumption
streams is Uh(c)=;.

t=1 b
t
huh(ct). The discount factors, bi and bh, are non-

negative and less than one. The one-period reward functions ui( · ) and
uh( · ) from C to R+ are strictly concave, C1, and differentially strictly
monotonic. In addition, we make the usual assumption that indifference
curves do not transversally cut the boundary of the consumption set.

Axiom I. For every consumer (capitalist or worker) any consumption
good j and any sequence {cn}.n=1 of consumption bundles such that for
good j, cnj Q 0, Dju(c

n)Q+..
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Capitalist h owns firm h.3 As in optimal growth models, firms turn

3We do not consider multiple owners of firms. What is important for our analysis is that
the owner(s) of a firm want it to maximize profits. With a single owner, perfect competition,
and a deterministic world this is clear. With multiple owners we would also need to consider
the mechanism determining payouts.

today’s inputs into outputs available tomorrow. The technology for firm h
is described by a production possibility set Th … RJ

+. The sets T
h are closed

convex cones; that is, technology is convex and exhibits constant returns to
scale. For firm h, any input–output vector wh ¥ Th can be written
wh=(wh−, wh+), where wh− ¥ RInp is the vector of inputs and wh+ ¥ RCon is
the vector of outputs. Our dynamics are driven by the assumption that
production takes time. Inputs wh−t available at date t are used to produce
outputs wh+t+1 at date t+1. For a given price vector p, we let p

+ and p−

denote the vectors of prices for outputs and inputs, respectively. So p−t w
h−
t

is the cost of firm h’s date t inputs and p+t+1w
h+
t+1 is the revenue from firm

h’s date t+1 outputs.

2.1. Constrained Equilibrium

In an economy with rational investors there is no evolution unless the set
of available intertemporal contracts is constrained. Otherwise, a complete
markets equilibrium would begin at time 1 and develop over time. Rational
investors would simply not invest in less profitable enterprises. We impose
two constraints on the set of available intertemporal contracts. First, we
assume that workers have no opportunities for lending or borrowing across
different dates. Second, we assume that capitalists can transfer resources
over time only through investment in their firm. In each period, capitalists
receive their firm’s revenue. They decide how much to spend on current
consumption and how much to invest in their firm to generate tomorrow’s
revenues. We assume that the firm’s input purchases must be financed with
this investment of financial capital. Thus, we have a cash-in-advance con-
straint on firms.4 Specifically, retained earnings, or financial capital, is used

4Within our model, this cash-in-advance constraint is necessary to have financial capital
play any role. There may be other interesting ways to model the evolution of firms, such as
durable and irreversible investment in physical capital.

to purchase inputs at date t. These inputs generate output, and thus
revenue, at date t+1. The portion of this revenue that is retained in the
firm becomes its new financial capital. The economy is initialized by
endowing each firm with a stock of output, wh+1 > 0, in the first period.
We test for the emergence of profit maximization, and therefore we need
to allow for a variety of behaviors by firms. The behavior of firm h is
described by a decision rule

(wh−t , w
h+
t+1) ¥ d

h(pt, pt+1, y
h
t ),
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where pt and pt+1 are the prices at dates t and t+1, respectively, and y
h
t is

the amount firm h has available to spend on inputs at date t. We refer to
dh− and to dh+ for the projection of dh onto inputs and outputs, respec-
tively. Decision rules are assumed to satisfy four properties:

1. Production must be feasible: dh(p, q, y) … Th.
2. The firm’s cash-in-advance constraint must be met: p− · d−=y for

all d− ¥ dh−(p, q, y).
3. For given arguments, all outputs produce the same revenue:

q+· d+=q+· d+Œ for all d+, d+Œ ¥ dh(p, q, y). Thus we can define a revenue
function Rh(p, q, y)=q+· d+ for d+ ¥ dh+(p, q, y).
4. The decision rule is upper hemi-continuous.

One such rule is constrained profit maximization:

max
(wh−, wh+)

q+·wh+−p− ·wh−

s.t. (wh−, wh+) ¥ Th

p− ·wh−=yh.

We denote this special decision rule by Dh(p, q, y). Note that it is equiva-
lent to revenue maximization subject to the operating capital constraint.
Equilibrium in this economy is a sequence of prices, consumption
bundles, and production plans such that consumers maximize utility
subject to various constraints and such that the allocation is feasible. For
each worker, the constraints are the single-period budget constraints. For
each capitalist, the constraints are budget constraints involving the alloca-
tion of resources between consumption and production and the decision
rule. We call equilibrium with behavior as described above constrained
equilibrium. Formally,

Definition 2.1. A constrained equilibrium is a sequence (pgt ,
(x igt )

I
i=1, (x

hg
t , w

hg
t )

H
h=1)

.

t=1 with p
g
t ¥ RJ

+/{0} such that

• For all workers i, {x igt }
.

t=1 solves

max
{xt}

C
t
b tiui(xt)

s.t. p+g
t · xt−p

−g
t · e

i [ 0 for all t,

xt ¥ C for all t.
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• For all capitalists h, {xhgt , w
hg
t }

.

t=1 solves

max
{xt, wt}

C
.

t=1
b thuh(xt)

s.t. p+g
t · xt−p

g+
t ·w

hg+
t +p

g−
t ·w

hg−
t [ 0,

(whg−t , w
hg+
t+1 ) ¥ d

h(pgt , p
g
t+1, p

−g
t ·w

hg−
t ) for all t,

and xt ¥ C for all t.

• At each date t, ; i x
ig
t +; h x

hg
t −; h w

hg+
t =0 and ; h w

hg−
t −; i e i

=0, where (whg+1 )
H
h=1 and (e

i)Ii=1 are given.

Constrained equilibria have an important recursive property which is an
immediate consequence of the definition.

Lemma 2.1. If (pgt , (x
ig
t )
I
i=1, (x

hg
t , w

hg
t )

H
h=1)

.

t=1 is a constrained equilib-
rium, so is (pgt , (x

ig
t )
I
i=1, (x

hg
t , w

hg
t )

H
h=1)

.

t=T for any T.

2.2. Competitive Equilibrium
In a competitive equilibrium, workers maximize utility subject to a single
budget constraint, capitalists face a single budget constraint and can
choose any technologically feasible input–output vectors, and markets clear
at each date.

Definition 2.2. A competitive equilibrium is a sequence (qgt ,
(x igt )

I
i=1, (x

hg
t , w

hg
t )

H
h=1)

.

t=1 with q
g
t ¥ RJ

+/{0} such that

• For all workers i, {x igt }
.

t=1 solves

max
{xt}

C
t
b tiui(xt)

s.t. C
.

t=1
qg+t · xt−q

−g
t · e

i [ 0,

xt ¥ C for all t.

• For all capitalists h, {xhgt , w
hg
t }

.

t=1 solves

max
{xt, wt}

C
.

t=1
b thuh(xt)

s.t. C
.

t=1
qg+t · xt−q

g+
t ·w

h+
t +q

g−
t ·w

h−
t [ 0

xt ¥ C for all t.

(wh−t , w
h+
t+1) ¥ T

h for all t.
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• At each date t, ; i x
ig
t +; h x

hg
t −; h w

hg+
t =0 and ; h w

hg−
t −; i e i

=0, where (whg+1 )
H
h=1 and (e

i)Ii=1 are given.

The competitive equilibrium described here is equivalent to a competitive
equilibrium in a private-ownership economy in which each capitalist owns
all of his or her own firm and maximizes profit. Given the linear produc-
tion sets, this in turn implies that each firm earns zero profits in equilib-
rium.
The definition of competitive equilibrium presupposes the existence of a
market structure sufficient to transfer wealth across dates and firms. Con-
strained equilibrium presupposes that the market structure is inadequate
for this task. In fact, constrained equilibrium simply modifies the definition
of competitive equilibrium with incomplete markets—in this case, missing
capital markets—to include the possibility that some firms may not maxi-
mize profits. Our interest is in whether the dynamics induced by con-
strained equilibrium eventually compensates for the lack of complete
markets.

3. SELECTION FOR PROFIT MAXIMIZERS

We first ask if constrained equilibrium dynamics selects for profit-
maximizing firms. More precisely, we ask if less profitable firms are driven
out of the market by more profitable firms. We begin with a general result
about the fate of two capitalists with differing firm decision rules, utility
functions, and discount factors. The key to the result is the relationship
between the capitalists’ discounted marginal rates of return on investment.
Along any constrained equilibrium path, each capitalist sets his or her
marginal rate of substitution between expenditure on consumption at dates
t and t+1 equal to his or her discounted marginal rate of return on
investment at date t. More generally, the marginal rate of substitution
between expenditure on consumption at dates 1 and T is equal to the
product of discounted marginal rates of return on investment from date 1
to date T. Suppose capitalist h has over time a uniformly larger discounted
rate of return on investment than does capitalist k; that is, h faces a more
attractive investment opportunity at each date than does k. Then h’s
marginal rate substitution (MRS) between consumption at dates 1 and T
must grow exponentially relative to k’s MRS. Consumption is bounded
above, so marginal rates of substitution are bounded above. Thus k’s MRS
must converge to 0. That is, the marginal utility of income must diverge
for k. So k’s consumption and the financial capital of the firm owned by k
must converge to 0. Of course, this path is k’s optimal choice, but
nonetheless k is being driven out of the market by h.
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To develop this intuition we use the Euler equation for interior optima
to describe each capitalist’s optimal savings plan given the firm’s (perhaps
inoptimal) decision rule. For this approach to work we need to ensure that
the Euler equation is well defined and that there are no boundary optima
(which is to say that the interior Euler equation is a necessary condition for
optimization). In order to guarantee these two properties we need some
conditions on the revenue functions Rh(p, q, y).

Axiom R. Along the equilibrium path (pgt , (x
ig
t )
I
i=1, (x

hg
t , w

hg
t )

H
h=1)

.

t=1,
for every firm h,

1. The partial derivative Rhy(p
g
t , p

g
t+1, p

g−
t ·w

hg−
t ) exists.

2. lim infyQ 0 R
h
y(p

g
t , p

g
t+1, y) ] 0.

The first condition is that the marginal rate of return on investment is
well defined. The second assumption, along with our Inada condition on
utility functions (Assumption I), rules out boundary solutions with zero
investment in finite time.
For a given constrained equilibrium (pgt , (x

ig
t )
I
i=1, (x

hg
t , w

hg
t )

H
h=1)

.

t=1,
define

Rhyt=R
h
y(p

g
t , p

g
t+1, p

g−
t ·w

hg−
t ).

Theorem 3.1. Suppose that Assumptions I and R hold. In any con-
strained equilibrium, (pt, (x

i
t)
I
i=1, (x

h
t , w

h
t )
H
h=1)

.

t=1, and for any capitalists h
and k with discount factors bh and bk, if < t−1

y=1 (bkR
k
yy)/(bhR

h
yy)Q 0 as

tQ. then limt y
k
t /(;l y lt)=0 and limt ckt=0.

Theorem 3.1 provides a general characterization of the market selection
process. Which capitalists and firms survive depends on discount factors
and marginal rates of return, but not on one-period utility functions. The
only feature of utility functions that matters for the result is that marginal
utility of consumption diverges as consumption goes to zero.
Theorem 3.1 also has implications for the survival of constrained profit
maximizers. Along any equilibrium path, let rht=R(p

g
t , p

g
t+1, y

h
t )/y

h
t

denote average return on investment in period t. Note that for constrained
profit maximizing firms, Rhy(p, q, y) exists and is independent of y. Thus
for a constrained maximizer, the marginal rate of return on investment,
Rhyt, equals the average return on investment, r

h
t , for all t. To ensure that a

maximizer drives out a non-maximizer with the same discount factor we
need to rule out increasing returns to investment by the non-maximizer.
The following concavity assumption does this.

Axiom C. For every firm h and prices (p, q), the revenue function
Rh(p, q, y) is concave in y.
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With this assumption, the selection criterion can be restated in terms of
average rates of return.

Corollary 3.1. Suppose that Assumptions I, R, and C hold. For any
capitalists h and k, if capitalist h maximizes constrained profits and

D
t−1

y=1

bkr
k
y

bhr
h
y

Q 0,

then the conclusions of Theorem 3.1 still hold.

If two capitalists have a common discount factor and one maximizes
constrained profits while the other does not, then Corollary 3.1 implies that
the maximizer will drive out the boundedly rational firm if the maximizer
has a consistently greater rate of return on investment. This ‘‘selection for
profit maximizers’’ result can also be stated directly in terms of revenue
functions.

Corollary 3.2. Suppose that Assumptions I, R, and C hold. Consider
two capitalists h and k with bh=bk and suppose that capitalist h maximizes
constrained profits. In any constrained equilibrium (pt, (x

i
t)
I
i=1, (x

h
t , w

h
t )
H
h=1)

.

t=1,
the conclusions of Theorem 3.1 hold if:

1. Rh(pt, pt+1, y) \ Rk(pt, pt+1, y) for all t and y, and
2. There is an a > 1 such that for all y,Rh(pt, pt+1, y) > aRk(pt, pt+1, y)

infinitely often.

Suppose that capitalists h and k have a common discount factor, produce
common outputs from common inputs, and maximize constrained profits,
but that k’s technology is dominated by h’s technology. Then Corollary 3.2
implies that either k is driven out of the market or the regions in which k’s
technology is dominated by h’s technology are not used infinitely often.
Similarly, if h and k have identical technologies, but k does not maximize
constrained profits, then k is driven out of the market if he or she infinitely
often does strictly worse than a constrained profit maximizer.
Corollaries 3.1 and 3.2 apply even if the two firms are in different indus-
tries, have different technologies available to them, or are owned by capi-
talists with different utility functions. All that matters is rates of return and
discount factors. Any firm with a consistently lower rate of return will be
driven out by a firm with a higher rate of return as long as their owners
have a common discount factor. Of course, rates of return are endogenous
so this does not mean that all inefficient firms necessarily disappear (even
in the case in which all capitalists have a common discount factor). For
example, suppose that there are two firms, each the sole producer of some
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good, operated by two capitalists with a common discount factor. Then,
regardless of their decision rules, neither firm can be driven out of the
market. To see this note that if one firm was to disappear then the price of
the good that it produces would diverge (by the Inada condition on utility)
and thus its rate of return on investment would similarly diverge.
Because we have endogenized dividend rates, discount factors matter. If
firms’ decision rules and their owners’ discount factors are correlated in
some funny way, then higher discount factors can compensate for inferior
decision rules. The important role of discount factors in driving market
selection is demonstrated in the following corollary, which shows that if
two profit-maximizing capitalists have not too dissimilar long-run rates of
return, then discount factors alone determine who survives.

Corollary 3.3. Suppose Assumptions I and R hold. If capitalists h and
k are profit maximizers, if

lim sup
t

D
t−1

y=1

rky
rhy
<.,

and if bk/bh < 1, then the conclusions of Theorem 3.1 hold.

From Theorem 3.1 one might suspect that if one firm’s decision rule is
less efficient than the ‘‘aggregate decision rule’’ of the other firms in the
market, then the inefficient firm will be driven out, and the production side
of the economy would operate efficiently in the limit. Example 5.2 shows
this hypothesis to be false.

4. DYNAMICS

In the previous section, we gave conditions guaranteeing that among all
firms, the market survivors will be profit maximizers. More generally, we
saw that the market selects from among the firms with a given technology
those firms which are most profitable. The question that we turn to now is
whether the financial capital dynamic also ensures that each industry
operates efficiently. The questions of interest are: If several firms produce
several goods from common inputs with differing technologies, does the
market select for those firms which are most efficient? In particular, does
the economy eventually operate on the production possibility frontier and
does it eventually achieve a Pareto optimal allocation? If a new firm enters
an industry with an efficient technology (one that expands the production
possibility frontier in a relevant direction) will this firm flourish (or is it
possible that it will be driven out by the retained earnings dynamic)?
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The answers to these questions are ‘‘no’’ if there are no profit-maximiz-
ing firms or if the profit-maximizing firms belong to capitalists with low
discount factors. To see this, consider two capitalists with the same tech-
nology and differing discount factors. If the capitalist with the low discount
factor owns the profit-maximizing firm, and if the other firm has a suffi-
ciently high (although not maximal) rate of return, then according to
Theorem 3.1 the profit-maximizing firm would disappear. In the limit, the
economy would not be operating on its production possibility frontier. To
rule this phenomenon out, we assume for the remainder of the paper:

Axiom D. (i) All consumers have a common discount factor b.
(ii) All technologies come from a set of available technologies

{Tk}
K
k=1. For each available technology Tk there is at least one capitalist hk

who maximizes constrained profit using technology Tk.

To answer the questions about producer efficiency we need to analyze
the dynamics induced by constrained equilibrium in more detail. In par-
ticular, the relationship between constrained and competitive equilibria is
important. We begin with a characterization of competitive equilibria.
Under rather general conditions, competitive equilibria will have turnpike
properties. In our economy the turnpike is reached in one step.

Theorem 4.1. If Assumption D holds, then every competitive equilibrium
consumption path is stationary from period 2 on. That is, if (qt, (x

i
t)
I
i=1,

(xht , w
h
t )
H
h=1)

.

t=1 is a competitive equilibrium, then for each i and h, respec-
tively, there are consumption bundles x i and xh such that x it=x

i, xht=x
h for

all t \ 2.

Non-stationary competitive equilibrium production paths are possible
because of our assumption of constant returns to scale. But the proof of
Theorem 4.1 shows that every competitive consumption path can be sup-
ported by a competitive equilibrium in which production plans are sta-
tionary. We call such equilibria stationary competitive equilibria.
To describe the relationship between competitive and constrained equi-
libria it will be convenient to be able to normalize constrained equilibrium
prices. We assume homogeneity of firms’ decision rules in order to do this.

Definition 4.1. A decision rule d(p, q, y) is homogeneous if, for all
positive scalars a and b and all prices, price expectations, and revenues p,
q, and y, d(ap, bq, ay)=d(p, q, y).

The constrained profit-maximizing decision rule exhibits homogeneity. If
input prices and financial capital are rescaled so as to leave the firm’s
budget set unchanged, and output prices are rescaled so that relative prices
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of outputs do not change, then optimal production plans do not change.
Perhaps we could avoid assuming homogeneity of decision rules for non-
maximizers, but homogeneity is in all likelihood required for demonstrating
the existence of constrained equilibria and in any case firms with non-
homogeneous decision rules are not maximizing constrained profits and
will be driven out of the market.

Axiom H. Each firm’s decision rule is homogeneous.

In a standard competitive equilibrium, a consequence of the 0-degree
homogeneity of demand and supply in prices is that the aggregate price
level is indeterminate. Constrained equilibrium exhibits more price-level
indeterminacy because consumers and firms are not free to take advantage
of arbitrary relative intertemporal prices. In an economy with homoge-
neous decision rules, constrained equilibrium determines relative prices
only among commodities available at the same date. The price level is
indeterminate, period by period.

Lemma 4.1. Suppose firm decision rules are homogeneous (Assumption
H). If

(pt, (x
i
t)
I
i=1, (x

h
t , w

h
t )
H
h=1)t \ 1

is a constrained equilibrium and (lt)t \ 1 is a sequence of strictly positive
scalars, then

(lt pt, (x
i
t)
I
i=1, (x

h
t , w

h
t )
H
h=1)t \ 1

is also a constrained equilibrium.

Thus we are free to normalize prices period by period. A convenient
normalization, which we often use, is to set aggregate financial capital to
one in each period, ; h y

h
t=1, for all t.

The important question is, do constrained equilibria converge to a com-
petitive equilibrium? Competitive equilibrium allocations are stationary. So
if a constrained equilibrium converges to a competitive equilibrium the
limit allocation is stationary. We say that a constrained equilibrium path is
stationary if consumption paths are stationary and if each firm’s share of
total factor costs remains constant over time.

Definition 4.2. A constrained equilibrium (pgt , (x
ig
t )
I
i=1 , (x

hg
t , w

hg
t )

H
h=1)

.

t=1

is stationary if there exists consumption bundles x i and xh for each worker
and capitalist, respectively, and production plans wh such that the following
properties hold for all t \ 1: For all workers x it=x

i, for all capitalists
xht=x

h, and for all firms wht=w
h. A stationary constrained equilibrium is
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interior if for each technology k, whk ] 0. Finally, a stationary constrained
equilibrium is locally stable if for any initial outputs of the firms (wh+1 )

H
h=1

sufficiently close to (wh+)Hh=1, there is a constrained equilibrium path such
that workers’ consumptions converge to the respective x i, capitalists’ con-
sumptions converge to the respective xh, and production plans converge to
the respective wh.

We first show that any stationary constrained equilibrium with at least
one active constrained-profit-maximizer per technology is competitive.
From Corollary 3.2 it follows that all active firms maximize constrained
profit and thus maximize the gross rate of return they earn on retained
earnings. At a stationary constrained equilibrium, real retained earnings
must be constant, so the real rate of return must be one. Thus, in a sta-
tionary constrained equilibrium, each active firm is maximizing (uncons-
trained) profit. If the equilibrium is interior there is at least one active firm
for each technology. Technologies exhibit constant returns to scale so the
actual number of active firms per technology is irrelevant.

Theorem 4.2. Suppose Assumptions I, R, C, D, and H hold. The alloca-
tion resulting from any stationary and interior constrained equilibrium is a
competitive allocation.

Not all stationary constrained equilibria are competitive. Suppose that
there are two technologies, each used by exactly one capitalist, and that
one of the capitalists is endowed with 0 initial output. This capitalist’s firm
can never grow, so the constrained equilibrium is stationary, but unless the
non-producing firm’s technology is redundant, this equilibrium is not
Pareto optimal and therefore not competitive. Suppose, however, that the
constrained equilibrium path is initially interior and converges to a sta-
tionary state in which some firm has zero financial capital and is thus inac-
tive. This firm must be making losses along the way since it once had posi-
tive financial capital. If prices were continuous in financial capital stocks it
would follow that the firm would make a loss if it operated at the limit
prices. Thus the financial capital constraint would not be binding on such a
firm. To ensure the needed continuity we place an assumption on workers’
endowments that guarantees uniqueness of prices. With this assumption we
show that every locally stable, stationary constrained equilibrium is com-
petitive.
It is convenient to have every constrained equilibrium supported by a
price vector that is unique up to the renormalization described by Lemma
4.1. As a consequence of our assumptions on preferences, this already
holds for consumption goods’ prices because each consumption bundle is
supported by a unique budget line. We could use similar smoothness, cur-
vature, and boundary assumptions on production to guarantee the
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uniqueness of supporting input prices, but our examples in Section 5 all
involve piecewise linear production. The following nondegeneracy (ND)
assumption has the same effect.

Axiom ND. The matrix of worker endowments R
e1

x

eI
S has rank equal to

Inp, the number of inputs.

Given the workers’ consumption bundles (x i)Ii=1 and consumption
goods’ prices p+, the workers’ budget constraints must solve

p−R
e1

x

eI
ST=p+ R

x1

x

xI
ST.

Assumption ND implies that for each (x i)Ii=1 and p
+ there is a unique p−

which allows all the budget equations to be met.

Theorem 4.3. Suppose Assumptions I, R, C, D, H, and ND hold. The
allocation resulting from any stationary, locally stable constrained equilib-
rium is a competitive allocation.

5. STABILITY

Theorems 4.2 and 4.3 show that interior or locally stable stationary con-
strained equilibrium allocations are competitive. These results lend cre-
dence to the argument that market selection leads to Pareto optimality.
Nonetheless, in this section we show that the conclusion is not correct.
Market selection fails to generate Pareto optimal allocations because the
financial capital dynamic need not converge and because non-steady-state
allocations can be far from Pareto optimal allocations. We demonstrate
this failure with a sequence of examples.
All examples in this section share a common structure. There are two
consumption goods x and y and a single input good z. We assume that all
firms are constrained profit maximizers. All consumers’ utility functions on
infinite consumption paths are of the form:5

5 In Section 2 we assumed that the range of utility functions was R+. This lower bound on
utility was used only in the proof of Theorem 1. We have verified the conclusion of Theorem 1
directly for all of the examples in this section and the following section.

u(x, y)=C
.

t=1
b t log(xrt+y

r
t )
1/r.
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Both b and r < 1 are common to all consumers. Consequently, demand at
each date aggregates. Furthermore, one-period indirect utility for a capi-
talist with income z is log z+f(p), where f depends upon the parameter r.
Thus the intertemporal decision problems for capitalists are particularly
simple. The solutions all require that capitalists invest a constant fraction b
of their revenues in input purchases.
The first example shows that even in a standard economy with a unique
competitive equilibrium, financial capital stocks need not converge. We
find a limit cycle of retained earnings, and a corresponding limit cycle of
constrained equilibrium allocations, none of which are competitive equi-
libria.

Example 5.1. There are two capitalists and one worker. The worker is
endowed at each date with one unit of good z which is used by the firms to
produce x and y. Firm one produces 1 unit of x and 0.1 units of y at date
t+1 for every unit of z that it purchases at date t; firm 2 produces 0.001
units of x and 1 unit of y at date t+1 for every unit of z that it purchases
at date t.
For any r this economy has a unique competitive equilibrium with con-
stant relative prices

pgz=1 pgx=0.90009, and pgy=0.9991

and quantities which depend on r.
In any constrained equilibrium, capitalists invest fraction b of their
revenues in their firm and spend the remaining fraction on consumption.
Workers consume the entire value of their endowment. The demands by
any consumer for goods x and y are

x=
I

p1−rx (p
r
x+p

r
y)

and y=
I

p1−ry (p
r
x+p

r
y)
,

where r=r/(r−1) and I is the consumer’s expenditure on consumption.
These demands aggregate, and so at any date t,

pxt
pyt
=1xt
yt
2r−1. (1)

Prices are normalized at each date so that expenditures on inputs always
equal 1. Thus at date t, R1t+R

2
t=1 and so firm h purchases share R

h
t of

inputs. Consequently production by firm h is

(xht , y
h
t )=˛

R1t (1, 0.1) if h=1,
R2t (0.001, 1) if h=2.
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Recalling that fraction b of the date t revenues from the sale of these
outputs will be retained in the firm to purchase more input at date t+1 we
have

Rht+1=˛
b(pxt+0.1pyt) R

h
t if h=1,

b(0.001pxt+pyt) R
h
t if h=2.

Total expenditure on date t consumption has to equal the total wealth of
the capitalists, for what the capitalists do not consume directly they trans-
fer to the workers in return for inputs, and the workers spend this payment
on consumption goods. With our normalization, total capitalist wealth
must equal 1/b, and so the aggregate budget constraint is

pxtxt+pyt yt=
1
b
.

It follows from Eq. (1) that

pyt=
1
b

yr−1t

xrt+y
r
t

and pxt=
1
b

xr−1t

xrt+y
r
t

.

Consequently, the financial capital dynamic is

xt=R
1
t+0.001(1−R

1
t )

yt=0.1R
1
t+(1−R

1
t )

R1t+1=R
1
t
5xr−1t +0.1y

r−1
t

xrt+y
r
t

6 .

We know from Theorem 4.2 that for each r this difference equation system
has exactly one interior steady state and that this steady state characterizes
a stationary constrained equilibrium whose allocation is competitive. If this
steady state is locally stable then for any 0 < R11 < 1 the sequence of con-
strained equilibria converges to the competitive equilibrium. Otherwise,
more complex limit behavior must occur. Calculation shows that at the
steady state:

:dR1t+1
dR1t
: Y 1 as r Z −1.49.

So as long as the consumption goods are not too strongly complementary
the competitive equilibrium is locally stable. But if r is sufficiently small,
less than −1.49, then the unique competitive equilibrium is unstable.
Figure 1 illustrates the map from R1t to R

1
t+1 for r=−3. The instability of
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FIG. 1. Firm 1’s retained earnings.

the steady state arises because if firm 1’s purchasing power is too large,
then the output of good x exceeds its competitive equilibrium level. Indif-
ference curves are so curved around the competitive equilibrium consump-
tion that the additional output of good x and corresponding reduced
output of good y reduces the market clearing relative price of good x so
much that firm 1 experiences a large loss. Thus firm 1’s retained earnings
fall below the equilibrium level, while the opposite holds for firm 2 which
predominantly produces y. This causes the opposite response in the next
period, with firm 2 overproducing and good y in excess of its competitive
level. When the goods are sufficiently complementary this cycle of profits
and losses produces cycles in the levels of financial capital that do not
damp out. Figure 2 illustrates the limit behavior of financial capital stocks
as a function of r. The data for this figure were generated by iterating the
map describing the evolution of firm 1’s retained earnings starting from an
initial financial capital for firm 1 of R11=0.5.

6 For each value of r the

6 This picture is robust to the initial condition.

equilibrium equation system was iterated until either it was evident that a
stable cycle had been reached or it had been iterated 80,000 times. For
r > −1.49 the purchasing power of firm 1 converges to its steady state
value and the limit allocation is competitive. For −2.22 < r < −1.49 a two-
cycle emerges; for −2.44 < r < −2.22 a four-cycle emerges; and so on,
generating a period-doubling cascade. For sufficiently negative values of r
this map displays chaotic behavior with the limit purchasing power of firm 1
varying from about 0.2 to almost 1. A three-cycle emerges at r % −3.24.
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FIG. 2. Bifurcation plot—2 firm dynamics.

As a result of the instability of the steady state, the economy never achieves
a Pareto optimal allocation.

A firm caught in a two-cycle is making a loss in one period followed by
an offsetting profit in the next. If there was a market for financial capital,
and if investors had perfect foresight, they would never put their capital
today in firms that will have low returns tomorrow. We consider the ability
of capital markets to resolve this problem in Section 6. For now we note
that Example 1 demonstrates that for some economies the internal capital
market induced by having profitable firms grow and unprofitable ones
shrink is not sufficient to achieve Pareto optimality.
In Example 1, no Pareto optimal allocation is ever achieved. Nonetheless
production does take place on the boundary of the economy’s aggregate
production possibility frontier. Pareto optimality fails only because the
optimal mix of commodities is never produced. With two goods and two
non-redundant firms, producer-efficient production always takes place. No
matter how financial capital is allocated, the resulting allocation must be
on the production possibility frontier. But with three or more firms even
producer-efficiency can disappear. The following example shows how bad
the dynamics can be. Here only inefficient firms survive. All efficient firms
are driven out of the market.

Example 5.2. Now there are four firms. From 1 unit of z, firm 1 can
produce 1 unit of x and 0.1 units of y; firm 2 can produce 0.05 units of x
and 1 unit of y; firm 3 can produce 0.9 units of x and 0.15 units of y; and
firm 4 can produce 0.3 units of x and 0.7 units of y. Calculation of the
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FIG. 3. Retained earnings in Example 5.2.
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efficient frontier shows that the production processes used by firms 3 and 4
are dominated by combinations of those used by firms 1 and 2. Thus effi-
cient production requires that only firms 1 and 2 operate. For any r there
is a unique competitive equilibrium, and in this equilibrium firms 3 and 4
do not produce. This equilibrium corresponds to a steady state of the
dynamic with only firms 1 and 2 having positive financial capital. For suf-
ficiently small r the steady state is unstable. Figure 3 is a bifurcation plot
which shows the limit behavior of capital stocks as a function of r. For r
between 1 and −1.71 the economy converges to the competitive equilib-
rium, in which only firms 1 and 2 operate. The steady state is stable. At
r=−1.71 the steady state crosses the stability threshold, and a stable two-
cycle emerges. At this point the limit economy is producer- but not con-
sumer-efficient. The economy operates on the production possibility fron-
tier, defined by firms 1 and 2, but does not produce the optimal mix of
consumer goods. Beginning at r=−1.778 (inefficient) firm 4 emerges in
the limit, and producer efficiency fails as well. This region is blown up in
Fig. 3a. At r=−5.243 firm 2 vanishes in the limit. Firm 3 makes its
appearance at r=−6.284, and from r=−7.64 and beyond, only the two
inefficient firms, 3 and 4, operate in the limit. Between r=−1.71 and
r=−10.281 the limit is a stable two-cycle, but at r=−10.281 we see the
beginnings of a period-doubling cascade with the two-cycles crossing the
stability threshold and the emergence of a stable four-cycle. The kinks at
−1.778, −5.243, −6.284, and −7.63 are not computational artifacts. At
these parameter values, where a firm just emerges or vanishes, the deriva-
tive of the retained earnings map is singular.

Nothing in this example requires the two firms not on the efficiency
frontier to be constrained profit maximizers. If we presume that firms 1
and 2 maximize profits while firms 3 and 4 do not, the simulation results
for r < −1.778 show that profit maximizers in general do not drive out
profit maximizers, even when, collectively, their decision rules encom-
pass those of the non-maximizing firms. The market does not coordinate
firms 1 and 2 effectively to drive out firms 3 and 4. But if firms 1 and 2
were to merge, so that the capital allocation decision across them is
internalized, then it will follow from Theorem 3.1 that firms 3 and 4 will
vanish.
Example 5.2 is particularly disturbing when considering the entry of
efficiency-enhancing firms. Consider the economy of Example 2 but in
which only the two inefficient firms 3 and 4 exist and in which r is negative
and large in magnitude, such that the financial capital dynamic for this
economy has a stable four-cycle. Now suppose an entrepreneur discovers
the technology of firm 1. This technology expands the aggregate produc-
tion possibility set and would be used in any competitive equilibrium. If the
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entrepreneur begins with little financial capital, he or she will lose it.
Actually, simulations show that even if the entrepreneur begins with a large
initial financial capital, say R11=1/3, he or she will lose it. The inefficient
firms drive out the efficient firm.

6. FINANCIAL MARKETS

Capitalists would like to invest only in those firms they believe to be
most profitable. In the economy analyzed in the previous sections there is
no market for financial capital, so capitalists do not have this opportu-
nity. In this section, we add a market for investment in firms and a
market for loans. This allows us to address the Friedman–Alchian capital
market justification for profit maximization. We assume (for now) that
all consumers have perfect foresight so that they make correct investment
decisions.
Loans made by consumers at date t are denoted l it and have a gross rate
of return of gt+1 at date t+1. Loans are in zero net supply. The market
clearing condition requires that the sum of loans across all workers and
capitalists is zero. With access to consumption loans, both workers and
capitalists can transfer income over time. To ensure that the present dis-
counted value of each consumer’s expenditures on consumption is no more
than the present discounted value of his or her income, we require that,
asymptotically, the present value of loans is non-negative.
Each capitalist has the additional opportunity to invest his or her
savings in any firm he or she chooses. Firms use this investment as they
used the investment of their owners in the previous model—as operating
capital, to purchase inputs today in order to produce output and thus
revenue tomorrow. This revenue is paid out to the investors, with each
investor getting a share of the firm’s revenue equal to the share of finan-
cial capital that he or she provided. Formally, at each date t, capitalist h
decides how much to spend on current consumption, p+t · x

h
t ; how much to

loan out, lht ; and how much to save for investment in firms, s
h
t . The capi-

talist invests fraction ahk t of s
h
t in firm k at date t. Firm k’s expenditures in

period t are thus ; h a
h
kts
h
t . The rate of return between periods t and t+1

on this investment in firm k is rgk t=p
+g
t+1 ·w

kg+
t+1 /p

−g
t ·w

kg−
t . So capitalist h

will have income ; k a
h
k ts

h
t r

g
k t+gt+1l

h
t in period t+1. At the beginning of

time, there are no outstanding loans, capitalists have endowments of the
consumption goods, and workers have their constant endowments of
inputs.
The definition of an equilibrium with financial markets is an extension of
the definition of constrained equilibrium to include loans by consumers
and investment by capitalists in other capitalist’s firms.
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Definition 6.1. A rational expectations constrained financial equilib-
rium (RECFE) is a sequence
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• At every date t,

C
i
x igt +C

h
xhgt −C

h
whg+t =0,

C
h
whg−t −C

i
e i=0,

C
i
l igt +C

h
lhgt =0,
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1 }H K
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1 }

K
k=1 is given

such that ;H
h=1 w

hk+g
1 =wk+g

1 holds.

Aside from the details of the loan markets, this definition differs from
the previous constrained equilibrium definition in that here a firm is not
owned by a single capitalist and in that here the economy must be ini-
tialized by distributing ownership shares of pre-existing production among
capitalists.
In an RECFE only those firms that offer the maximal rate of return on
investment will receive any funds. So no inefficient firms will ever operate if
for each technology at least one firm with access to the technology maxi-
mizes constrained profit.
The following theorem shows that this system of markets—spot markets
for consumption loans and financial capital—is dynamically complete if all
consumers have rational expectations. So if consumers have rational
expectations, then all RECFE allocations are competitive equilibrium
allocations.

Theorem 6.1. Suppose Assumptions I and D hold. Any RECFE alloca-
tion is a competitive equilibrium allocation.

6.1. Evolution and Optimality with Dynamically Incomplete Markets

In an RECFE no selection over firms occurs (other than the trivial and
immediate selection at the beginning of time) so this is not an appropriate
structure in which to ask about selection for profit maximizing firms. But
with the financial markets described above, inefficient firms may attract
investment if some investors do not have rational expectations. In this case,
the selection question shifts from direct selection over firms to the effect on
firms of selection over investors with differing expectations. The interesting
questions include: Will investors with rational expectations be selected for?
Will this cause inefficient firms to eventually disappear? Will the equilib-
rium allocation converge to an RECFE allocation?
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The definition of an RECFE has rational expectations built into it, but
an extension to allow for differing expectations is straightforward. When a
consumer makes his or her consumption, savings, and investment plans he
or she does so at each date using whatever expectations he or she has at
that date about future prices and rates of return. These expectations may
be conditioned on any information that the consumer has. This informa-
tion is all publicly available information, current and past prices, and rates
of return, as well as the consumers own past choices and current wealth. A
worker’s decision problem yields consumption and savings decisions at
each date. A capitalist’s decision problem yields consumption, savings, and
investment choices, as well as a choice among the set of available produc-
tion plans for his or her firm at each date. The market clearing conditions
for inputs and outputs at each date are unchanged. We will refer to an
equilibrium with financial markets when some consumers may not have
rational expectations as a constrained financial equilibrium (CFE).
The success of market selection for rational expectations depends upon
what is meant by the phrase ‘‘rational expectations.’’ There are (at least) two
possible definitions. Rational expectations is a constraint on investors’ beliefs.
The first candidate definition constrains beliefs in (rational expectations)
equilibrium, but not outside equilibrium. These expectations can be viewed as
either forecasting a particular price and rate of return sequence or as using a
forecasting rule mapping observable information into predicted prices and
rates of return. But in either case, there are no constraints on forecasts from
data that are not generated in equilibrium. We call these expectations narrow-
sense rational. We say that capitalists in a CFE have narrow-sense rational
expectations if the CFE is an RECFE. The second candidate definition
requires a forecasting rule that generates expectations which are correct both
in and out of equilibrium, that is, expectations that always forecast correctly
regardless of the behavior of other traders. Equivalently, given the expecta-
tions or forecasting rules of other traders, the rational trader’s forecasting
rule must generate correct expectations from any set of initial conditions for
the economy. We call such expectations wide-sense rational. Wide-sense
rational expectations might arise in a CFE which is not an RECFE, if along
the equilibrium path some, but not all, traders have correct beliefs. Those
with correct beliefs have wide-sense rational expectations.
Individuals with narrow-sense rational expectations need not forecast
correctly in an economy in which some individuals have incorrect expecta-
tions. Thus, they may make inferior investments and their share of wealth
need not converge to one. As a result, the economy need not become even
asymptotically efficient. We addressed a closely related question in [2],
where we showed that rational expectations equilibria need not be locally
stable under a simple learning dynamic. The following example shows how
market selection for narrow-sense rational expectations can fail.
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Example 6.1. We add financial markets and a new firm to the
economy of Example 5.1. In that example, there are two technologies each
producing a mix of the two output goods from a single input. Any alloca-
tion of input to these two firms results in a point on the production possi-
bility frontier. So to make production inefficiency possible we also add a
third dominated technology. Technology 3 produces 0.8 times as much as
does technology 2 from a unit of input. This economy has a unique
RECFE with constant input and output prices, pz=1, px=0.90009, and
py=0.9991, and a constant gross rate of return on loans, Rt=1/b. All
consumers discount at rate b, so with constant goods prices and a gross
rate of return on loans of 1/b the loan market does not operate. The con-
stant outputs and the share of financial capital that is invested in firms 1
and 2 are functions of the utility parameter r. Firm 3 offers a lower rate of
return than does firm 2 and so it never operates. We assume that r=−3.0.
The RECFE share of financial capital that is invested in technology 1 is
0.533305, and the resulting outputs are (x, y)=(0.5338, 0.5200).
Suppose that all workers, and capitalist 1, always forecast the RECFE
prices. Thus, they have narrow-sense rational expectations. Capitalist 2 is
irrational. He or she believes that prices and rates of return will be constant
over time, but does not forecast the rational expectations prices and rates of
return. Exactly what prices and returns capitalist 2 forecasts do not matter
(because of the form of his or her utility function); all that matters is how he
or she chooses to allocate his or her savings between the firms. We assume
that capitalist 2’s forecasts are such that he or she always invests share 0.875
of his or her wealth in technology 1 and the remainder in technology 3.
Because all consumers forecast constant prices, and discount at rate b, the
loan market clears with no trade at a constant gross rate of return of 1/b.
Goods prices will vary with the wealth of the capitalists because of capitalist
2’s irrationality. The economy will be in an RECFE only when capitalist 1 has
all of the wealth. When the wealth of capitalist 1 is 1/b, he or she must invest
share 0.533305 of his or her wealth in technology 1, and the remainder in
technology two in order to support an RECFE. At any other wealth level, his
or her expectations and allocation of wealth between the two efficient firms is
not tied down by the narrow-sense rational expectations hypothesis.
Since capitalist 1 always forecasts the RECFE prices and rates of return,
he or she believes that the rate of return on investment in either efficient
firm is 1/b and that the rate of return on investment in the inefficient
firm is less than 1/b (as it is in an RECFE). He or she is thus indifferent
over investment shares between firms 1 and 2.7 We assume that when he

7 The evolution of the economy will depend only upon his or her wealth. So alternatively we
can assume he or she has a forecasting rule which depends upon current market data and is
such that, rationally optimizing, he or she will make the investment allocation we are about to
describe.
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FIG. 4. Capitalist 1’s allocation rule.

or she has wealth w, he or she invests fraction 0.533305+
3(w−0.2)(w+0.1)(w−1/b) in technology 1 and the remainder in tech-
nology 2. This rule has the property that when capitalist 1 has all of the
wealth in the economy, w=1/b, the share invested in technology 1,
0.533305, supports the RECFE. This allocation rule is illustrated in Fig. 4.
Other than the forecast and allocation at wealth share one, the structure of
this rule is not tied down by the narrow-sense rationality hypothesis.8

8 Only two properties of this rule matter for our results. First, at some wealth share less
than one for the rational capitalist, the two capitalists invest so as to have equal rates of
return. At this wealth the slope of capitalist 1’s allocation rule is positive. Second, at wealth
share one the rational capitalist invests so as to support the RECFE, and at this point the
slope of the rule is positive.

If capitalist 2 has all of the wealth in the economy, then the allocation of
financial capital is incorrect, and the equilibrium allocation is not an
RECFE allocation. If capitalist 1 has all of the wealth, then he or she
invests correctly, the rational expectations prices are realized and the allo-
cation is the RECFE allocation. What happens if initially both capitalists
have some wealth? Figure 5 illustrates the map from the wealth of capitalist
1 at time t, to his or her wealth at time t+1 for an economy with b=0.9.
This equation of evolution has four steady states. In the only locally stable
steady state, capitalist 1 has all of the wealth. This is the RECFE equilib-
rium. But its basin of attraction is tiny. Only if the initial wealth of capi-
talist 1 exceeds approximately 1.1105 (a wealth share of 0.9994) will his or
her wealth share converge to one. To see why this is the case, note that as
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capitalist 1’s wealth falls from 1/b he or she invests less than the RECFE
fraction in technology 1 and correspondingly more than the RECFE frac-
tion in technology 2. Capitalist 2 invests fraction 0.875 (more than the
RECFE fraction) of his or her small wealth in technology 1 and the rest in
the dominated technology. Less than the RECFE fraction of total wealth is
invested in technology 1, and thus the rate of return on technology 1 is
greater than on technology 2. For wealth of capitalist 1 below 1.109, capi-
talist 2 has a greater rate of return on investments than does capitalist 1. So
capitalists 2’s wealth share grows. Finally, as Fig. 5 shows, no other wealth
levels are mapped into a wealth for capitalist one of 1.109 or more.
The unstable steady state at approximately 1.1105 is the separatrix
between the basin of attraction for the RECFE and an attractor contained
in the interval 0.41717 and 0.79298. The dynamics in this region must be
complicated—numerical investigation of the map describing the evolution
of wealth shows that it contains a three-cycle for some initial condition in
this region.
With cubic allocation rules it is possible to generate other phenomena,
including a globally stable RECFE. We conjecture that the local stability of
the RECFE is generic, but we will not pursue this here.

Alternatively, we could require a rational capitalist to always invest
optimally. To do so he or she would have to be able to predict rates of
return when the economy is not in an RECFE. Thus he or she would have
wide-sense rational expectations. If we assume that rational capitalists have

FIG. 5. Capitalist 1’s wealth dynamics.
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wide-sense rational expectations, then in our examples with logarithmic
utility and a common discount factor, convergence to an RECFE is
ensured. This occurs for two reasons. First, with log utility and a common
discount factor, all consumers save at the same rate regardless of their
expectations. Second, with log utility, each consumer invests so as to
maximize his or her expected growth rate of wealth. The investors with
correct expectations correctly maximize the growth rate of their wealth. We
have shown in [3], that this behavior is selected for in the market. The
following example shows how this occurs and why it is of limited interest as
a selection mechanism for profit maximization.9

9More generally (with non-log utility), the completeness of markets is critical. We show in
[4] that investors with wide-sense rational expectations are selected for in economies with
dynamically complete markets. With incomplete markets, selection for rational expectations
need not occur.

Example 6.2. Suppose there are four firms using two technologies.
Each technology is employed by one profit maximizing firm, firms 1 and 3,
and one non-maximizing firm, firms 2 and 4. Each technology produces
one good. Suppose there are two capitalists with logarithmic utility and
equal discount factors, one of whom has wide-sense rational expectations.
The other capitalist who has incorrect beliefs invests only in the non-
maximizing firms. The rational investor will always invest in the profit
maximizing technologies; consequently his or her share of total investment
will grow relative to the investor investing in non-maximizing firms. It can
be shown using Euler equation arguments that the share of investment
belonging to the investor who invests in non-maximizing firms converges to
0. Thus, in this example, investors with ‘‘bad beliefs’’ are driven out.
But investors with incorrect beliefs who nonetheless always invest in
profit maximizing firms need not be driven out. Suppose that capitalist 1
has wide-sense rational expectations and that capitalist 2 knows the true
rate of return to investment in firm 1, but underestimates all the others.
Only firms 1 and 3 receive any investment funds. After some finite number
of dates the rate of return on investment in firms 1 and 2 must be identical.
This happens as soon as investor one, the rational investor, is wealthy
enough so that investing all of his or her savings in firm 3 makes its rate of
return less than that of firm 1.
But how is this maintained? Capitalist 2 invests all his or her money in
firm 1, and capitalist 1, the rational investor, allocates his or her money
between firms 1 and 3 so as to guarantee equal rates of return. Suppose
now far off in time, after this steady state is reached, capitalist 2’s expecta-
tions are such that his or her investment rule changes so that in every 13th
period he or she places all of his or her investment in firm 3. If capitalist 1
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leaves his or her investment alone, firm 3 will earn less than firm 1, so
investing in firm 3 would contradict the wide-sense rational expectations
hypothesis. If capitalist 1 invests everything in firm 1, firm 1 will earn a
lower rate of return than firm 3, which is also inconsistent with wide-sense
rational expectations. Consequently, capitalist 1 must adjust his or her
investment every 13th period so as to just offset capitalist 2’s behavior.

The wide-sense rational expectations hypothesis requires that rational
investment be responsive to the investment of irrational actors. We believe
that this kind of information requirement is inconsistent with the spirit of
competitive analysis. To assume that in any economy there is at least one
capitalist who always correctly forecasts endogenous prices begs the ques-
tion of how a capitalist whose behavior is so carefully tuned to the struc-
ture of the economy, including the behavior of any irrational capitalists,
could arise.

7. CONCLUSION

The market selection hypothesis claims that market forces weed out less
profitable firms in favor of more profitable firms and that the long-run
behavior of markets can be described by competitive equilibria of an
economy with only profit-maximizing firms. We have investigated both
parts of this hypothesis, the assertion about weeding out non-maximizers
and the assertion about long-run market behavior. The validity of the first
claim depends upon investors expectations and the market structure. In a
model without capital markets, firms grow only out of retained earnings.
Market selection favors more profitable firms. Controlling for discount
factors, among those firms using a given technology only the most profit-
able will survive in the long-run.10 In a model with capital markets, selec-

10 This result assumes that investors correctly forecast the marginal rate of return on
investment in their decision rule.

tion works on investors rather than on firms. We distinguish between wide-
sense rational expectations and narrow-sense rational expectations. We
argue that it is unreasonable to populate a market with investors who have
wide-sense rational expectations. When the more reasonable narrow-sense
concept is used, we find that the market need not select for investors with
rational expectations and that unprofitable firms can stay afloat through a
continual injection of outside funds.
We also investigate the second claim. When firms grow only through
retained earnings, it is true that the limit firm population contains only
profit maximizers (under the stated assumptions), but it does not follow
that the limit behavior of the market can be described as a competitive
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equilibrium of an economy with profit-maximizing firms. The market allo-
cation may not converge to an optimal allocation. We conclude that the
market selection hypothesis does not justify neoclassical equilibrium analy-
sis with profit-maximizing firms.
In retrospect, the negative answers we obtain are not surprising. To sen-
sibly ask questions about evolution, the market structure must be incom-
plete. Thus what we are really asking is whether natural selection can
compensate for the lack of complete markets. Of course, the incomplete
markets equilibrium will not be a complete markets equilibrium from the
start. But the natural selection conjecture is that from some interesting set
of initial conditions (describing firms’ capital or heterogeneous investors’
wealths), the incomplete markets equilibrium converges to a complete
markets equilibrium. Given how little structure incomplete markets equi-
libria have, the conjecture seems incredible and we show that it is false.
This study of selection has proceeded in an economy without stochastic
shocks. Dutta and Radner [5] demonstrate that in an uncertain world,
firm decision rules which maximize long-run survival probabilities are not
those which maximize expected profits. Studying market selection with
uncertainty is important because when profits are random, and the firm
cannot be valued through arbitrage, it is unclear what objective to attribute
to a firm. It is not obvious that capitalists would agree on expected profit
maximization or on any other objective for the firm. In this case it is par-
ticularly interesting to see what behavioral rules the market selects for. We
conjecture that, just as the investment market of [3] favors those rules with
higher expected log returns, constrained equilibrium paths for an economy
with uncertainty will favor those firm decision rules with higher expected
log revenues.
Our study of the market selection defense of the profit maximization
hypothesis is related to the literature on the market selection hypothesis in
financial asset markets [3, 4, 10]. These papers address the hypothesis that,
in pure exchange economies, asset markets select for rational investors. Our
analysis of the retained earnings dynamic uses methods similar to those
employed in these papers, but here we address different questions.
Nonetheless this paper and the financial markets selection literature touch
at one point. Our analysis of the capital markets justification for profit
maximization reduces to the question of selection for rational expectations
in repeated asset markets. The results we offer here on this issue are differ-
ent from some of those in that literature for two reasons. First, in contrast
to Blume and Easley [3], here we have a complete model of investor
behavior. In our earlier paper, we fixed savings rates exogenously and
investigated selection for ‘‘as if’’ rational portfolio rules. Here we endoge-
nize all decisions. Sandroni [10] also endogenizes all decisions, but his
analysis is not concerned with firms. Second, in contrast to [10], we
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consider incomplete markets. In Blume and Easley [4] we examine selec-
tion for rational expectations, without firms, and show that whether
markets are complete or incomplete is crucial. Our results here are consis-
tent with those findings.
A third argument for the long-run dominance of profit-maximizing firms
is adaptation. Firms adjust. By experimentation, imitation, and the like,
they grope for more profitable decision rules. Firm adaptation is an
important part of Winter’s [12] and Nelson and Winter’s [9] market
selection story. In this paper we separate adaptation from selection in order
to get a better understanding of how selection works. Making this distinc-
tion in biological models is certainly one big accomplishment of the neo-
Darwinian synthesis. But for two reasons we believe that putting adapta-
tion back into the market selection mechanism will not change our
answers. First, suppose adaptation really drives firms to profit-maximizing
behavior. The coordination problem illustrated in Example 5.2 still
remains. Selection cannot always allocate capital optimally in incomplete
markets. Second, we have studied the interaction of adaptation and equi-
librium in other, related contexts [2, 3] and have found mixed results. An
adaptive process that can converge to optimal behavior in a stationary
environment may be dysfunctional when the environment and the behavior
coevolve.
The dynamics of adaption and selection in the models discussed here are
quite different from biological dynamics. The models developed here are
certainly motivated by an elementary understanding of the Darwinian view
of natural selection in biological processes. But nonetheless the analogy
between biological and economic process is surprisingly rough given how
influential biological thought has been in the lore of economics if not in
serious economic analysis. What is the economic analog of a species? What
is the biological analog of a firm? The difference between adaptation and
selection in social and economic settings and in biological contexts suggests
that the population dynamics of the econosphere look very different than
that of the biosphere. At a crude level we have found the biological
analogy to be helpful in motivating our thinking, but we believe that suc-
cessful models of the population ecology of social and economic organiza-
tions will look very different than their biological analogs.

APPENDIX: PROOFS

Proof (Theorem 3.1). Under our assumptions, each capitalist’s optimal
path solves the optimization problem
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for j=h, k, where m jt is revenue at the beginning of period t, z
j
t is con-

sumption expenditure, y jt is expenditure on inputs, and v(p, z
j) is the capi-

talist’s one-period indirect utility function evaluated at prices p and
expenditure on consumption z j.
Aggregate endowments are fixed and used at each date to produce the
next date’s output, so aggregate consumption is finite. Individuals have
perfect foresight, so the value of each individual’s decision problem is
finite. These observations along with Assumptions I and R imply that the
Euler equations are necessary. Therefore along any equilibrium path,
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From the definition of the marginal utility of income it follows that for any
consumption good j,
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(A.1)

Suppose that< t−1
y=1 (bkR

k
yy/bhR

h
yy) converges to 0. Then the right hand side

of (A.1) converges to 0. Since consumption is bounded from above along
any equilibrium path, the numerator of the left hand side is bounded away
from 0. Consequently the denominator of the left hand side must be con-
verging to+., and so ckt converges to 0.
Finally, we need to show that capitalist k’s share of retained earnings
converges to 0. Suppose not. Then there is an E > 0 such that infinitely
often he or she can purchase at least fraction E of the aggregate endow-
ment. Since preferences are strictly monotone, in any such period he or she
could use it to produce a consumption bundle that would give utility
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uk(0)+d were he or she to consume it. If capitalist k carries out this plan at
some date far in the future, its utility exceeds the continuation utility of the
optimal plan with ckt Q 0. This is a contradiction. L

Proof. Consider Eq. (A.1) in the proof of Theorem 3.1. For the profit-
maximizing firm h, Rhyt=r

h
t , while for the other firm concavity of R

k in y
implies that Rkyt [ r

k
t . Consequently
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and the rest of the argument follows as in the proof of the theorem. L

Proof (Corollary 3.2). From Corollary 3.1, and noting that bh=bk, it
is sufficient to show that

D
t−1

y=1

rky
rhy

Q 0.

Note that as capitalist h maximizes constrained profits rhy is independent of
yhy . So for all dates y we have from assumption (1) of the corollary that

rhy=
Rh(py, py+1, y

k
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From assumption (2) of the corollary we have that infinitely often
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for a > 1. So
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L

Proof (Corollary 3.3). If both firms are profit maximizers, then
R jyt=r

j
t , and the result now follows immediately from Theorem 3.1. L

Proof (Theorem 4.1). In equilibrium, utility maximization for workers
implies that ; t qte i <.. Consequently the first welfare theorem is valid
and so every competitive equilibrium is Pareto optimal. Let
((x it)

I
i=1, (w

h
t , x

h
t )
H
h=1) denote the equilibrium allocation, and consider the

allocation with the same first period consumptions, and such that the
following properties hold: For all t \ 1, wh−t =(1−b); y \ 1 b

y−1wh−y . For
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all t \ 2, wh+t =(1−b); y \ 2 b
y−2wh+y . For all t \ 2 and for every consu-

mer j (capitalist or worker), x jt=(1−b); y \ 2 b
y−2x jy. This allocation is

feasible. If the equilibrium consumption plan is not stationary, this alloca-
tion is also Pareto preferred, which is a contradiction. L

Proof (Lemma 4.1). Multiplying price vectors by positive scalars leaves
the workers’ budget sets unchanged, so their demand is invariant to the
change in prices. The same is true for capitalists. To see this, consider a
plan (xt, wt)t \ 1 in capitalist h’s budget set. First observe that, for fixed w

+
t ,

the set of affordable (xt, w
−
t ) pairs is invariant to the proposed change in

scale of prices. Finally observe that, due to homogeneity, (w−t , w
+
t+1) ¥

dh(pt, pt+1, pt ·w
−
t ) if and only if (w

−
t , w

+
t+1) ¥ d

h(lt pt, lt+1 pt+1, lt pt ·w
−
t ).
L

Proof (Theorem 4.2). Because the consumption path is stationary, all
the output prices are collinear. Rescale prices (according to Theorem 4.1)
so that pgt=b

t−1pg1 . This price sequence supports the stationary consump-
tion path of all consumers in the competitive equilibrium consumer choice
problem.
It follows from Corollary 3.2 that all active firms maximize constrained
profits, but it remains to show that all active firms maximize (uncons-
trained) profits. To do this we show that for each capitalist the gross rate
of return on investment is constant over time and that its maximal value is
one.
Output price ratios are constant and the level is falling at rate b. Conse-
quently the value of each capitalist’s output falls at rate b. But, due to
piecewise linearity, the capitalist’s problem does not restrict input prices.
However, since the output prices are falling at rate b, it follows that the
value of each consumer’s consumption falls at the same rate. Since each
worker’s budget constraint is satisfied, the value of each worker’s endow-
ment falls at rate b. Consequently the value of aggregate expenditures falls
at the same rate. Since each capitalist’s share of input expenditure is con-
stant, each capitalist’s input expenditures falls at rate b. So the gross rate
of return on investment is constant over time.
We turn now to the decision problem of a typical capitalist (the
superscript h is dropped for clarity). This capitalist is spending amount zt
on consumption and yt on inputs in period t. Let r=p

+
t+1 ·w

+
t+1/p

−
t ·w

−
t

denote the gross rate of return on a dollar invested in the firm at time t.
(We have already seen that this number is constant through time). Con-
strained profit maximization implies that the firm is run so as to
maximize r. So we only need show that r=1. The capitalist solves the
following decision problem
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b t−1v(b t−1p1, zt)

s.t. yt+zt=mt,

mt+1=ryt,

m1 > 0 given,

0 [ yt [ mt,

where v(p, z) is the capitalist’s indirect utility function for the one-period
problem. The Euler equation is necessary (see the proof of Theorem 3.1)
and is given by

vz(pt, zt)=brvz(pt+1, zt+1).

From the 0-degree homogeneity of indirect utility and stationarity,

vz(pt, zt)=brvz(pt+1, zt+1)=rvz(b−1pt+1, b−1zt+1)=rvz(pt, zt).

Differential strict monotonicity of utility functions implies that vz > 0, so
r=1. L

The proof of Theorem 4.3 requires a result about the continuity proper-
ties of constrained equilibrium.

Lemma A.1. Suppose that Assumptions H and ND hold, and that
(pt, (x

i
t)
I
i=1, (x

h
t , w

h
t )
H
h=1)

.

t=1 is a constrained equilibrium. If the equilibrium
allocations converge to ((x ig)Ii=1, (x

hg, whg)Hh=1) as t grows large, then there
are positive scalars lt and a price vector pg such that:

• (b−(t−1)pg, (x ig)Ii=1, (x
hg, whg)Hh=1)

.

t=1 is a constrained equilibrium,
and

• b−(t−1)lt pt converges to pg.

Proof. Consider the price sequence {||p+t ||
−1 p+t }

.

t=1 for consumption
goods. These prices all lie in a compact set. Any sub-sequential limit sup-
ports each x ig and xhg. From our assumptions on preferences there is a
unique such consumption goods price vector of length 1. Call it p+g, and
observe that the sequence of consumption goods prices p+t converges to the
ray defined by p+g. Assumption ND implies there is a unique p−g which
solves the workers’ budget constraints when consumption goods prices are
p+g and consumptions are x ig. Upper hemi-continuity of the solution cor-
respondence for linear equations implies that p−g is the limit of the
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.

t=1. Taking lt=b
t−1||p+t || satisfies (2). From Lemma

4.1, (b−(t−1)lt pt, (x
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.

t=1 is a constrained equilibrium such
that, in addition to the convergence of the allocation, prices converge to pg.
The properties of equilibrium are all closed, and so (pg, (x ig)Ii=1,
(xhg, whg)Hh=1)

.

t=1 is a constrained equilibrium. Finally, renormalizing
prices as per Lemma 4.1 gives point 1. L

Proof (Theorem 4.3). Let (b (t−1)p, (x i)Ii=1, (x
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t=1 be a sta-
tionary, locally stable constrained equilibrium, while (b (t−1)pt,
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t=1 denotes a constrained equilibrium whose alloca-
tion converges to the stationary allocation. According to Lemma 1.1, there
is no loss of generality in assuming that b−(t−1)pt converges to p. We will
refer to the stationary equilibrium and the converging equilibrium, respec-
tively.
For each worker and capitalist, b−(t−1)p+t · x

j
t is converging to a limit z

j,
and for each capitalist, b−(t−1)p−t ·w

h−
t converges. The argument of

Theorem 4.2’s proof shows that all active firms are profit maximizing and
earning 0 profits. It remains only to show that a vanishing firm could not
make positive profits if it became active in the limit, that is, that there is no
stationary nonzero production plan with gross rate of return greater than 1.
The Euler equation holds along any equilibrium path. Thus
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where zt is the expenditure on date t consumption goods and r
h
t is the gross

rate of return on a dollar invested in firm h for one period at date t. Since
indirect utility is homogeneous of degree 0, its partial derivatives are
homogeneous of degree −1. Consequently for any capitalist h,
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The price sequence b−(t−1)pt converges to p. If firm h vanishes, then
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The Inada condition on utility functions then implies that the left hand
limit of the iterated Euler equation is +. for vanishing firms. Therefore
limt < t

y=1 r
h
t=0, that is, the long-run gross rate of return on investment in

firm h is 0.
Finally, observe that rht=p

+
t+1 ·w

h+
t+1/p

−
t ·w

h−
t converges to r

h=bp+·wh+/
p− ·wh−, the rate of return for firm h in the stationary equilibrium. If firm h
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is inactive in the stationary equilibrium, it is vanishing in the converging
equilibrium. But if rh > 1, then for t large enough, rht > 1, which contradicts
the conclusion of the previous paragraph that the long-run gross rate of
return on firm h investment is 0. L

Proof (Theorem 6.1). We show that in an RECFE markets are
dynamically complete and all operating firms maximize (unconstrained)
profits. Thus the equilibrium allocation is a complete markets competitive
equilibrium allocation (Definition 2.2).
By Assumption D there is, for each technology, at least one firm that
maximizes profit. All capitalists have rational expectations so clearly no
non-maximizing firm will receive any investment. We thus ignore such
firms. Clearly in any period all operating firms offer the same rate of
return, rgkt=r

g
t .

Lemma A.2. rgt=g
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t .

Proof. Suppose at some date t, rgt > g
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t . Let (x
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j t+1Con) for each good j. This plan is clearly

feasible and has a higher value than the supposed optimal plan. So rgt [ g
g
t .

Now suppose that at some time t, rgt < g
g
t . Assumption I implies that in

an RECFE all consumer goods are produced and so some firm(s) operate.
Each active firm has an investor. The reverse of the argument above
implies that for such investors there is an alternative feasible plan that has
a higher value than their supposed optimal plan. So rgt \ g

g
t . L

Definition A.1. The present value of profits from (wk−t−1, w
k+
t ) is

pkt=
pk+g
t ·wk+t
ggt

−pk− g
t−1 ·w

k−
t−1.

Lemma A.3. pkt=0 for all k, t.

Proof. For any inactive firm profits are clearly 0. Suppose that firm k is
active. Then from Lemma A.2 and the observation that all active firms
earn the same rate of return,

ggt=r
g
t=
pk+g
t ·wkg+t
pk−gt−1 ·w

kg−
t−1

.
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Therefore,

pkgt =
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L

Thus in an RECFE, all constrained profit-maximizing firms are uncon-
strained profit maximizers with respect to present value prices,
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Worker i’s RECFE budget set can be written as:
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i
t−1 for all t,

l0=0, and lim inf
t

l it
< t
y=1 g

g
t

\ 04 .

Definition A.2. The complete markets budget set for worker i is:

B̂ i(pg, gg)=3x i: x it ¥ C for all t and

lim inf
T

C
T

t=1
qg−t · e

i− C
T

t=1
q+g
t · x

i
t \ 04 .

Lemma A.4. B i(pg, gg)=B̂ i(qg, gg) for all workers i.

Proof. B̂ i … B i:
Let x i ¥ B̂ i(qg, gg). Define z it=p

−g
t · e

i−p+g
t · x

i
t. Then

lim inf
T

C
T

t=1

zt
< t
y=1 g

g
t

\ 0.

Define l i0=0 and l
i
t=z

i
t+g

g
t l
i
t−1 for all t \ 1. Note that for any T,

l iT
<T
y=1 g

g
t

=C
T

t=1

1
< t
y=1 g

g
t

z it.
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Thus x i ¥ B i(pg, gg) and is supported by the consumption loan sequence l i.
B i … B̂ i:
For any x i ¥ B there is a consumption loan sequence l i satisfying the
constraints in B. Substitution shows that for any T,

l iT
<T
y=1 g

g
t

=C
T

t=1

1 1
< t
y=1 g

g
y

2 (p−gt · e i−p+g
t · x

i
t).

Thus x i ¥ B̂ i. L

It follows from the observation that all active firms in period t earn rate
of return rgt and Lemma A.2 that the CFE budget set for capitalist h with
rational expectations can be written as:

Bh(pg, gg)=3xh: xht ¥ C for all t and there exists {lht , sht }.t=1 such that

p+g
t · x

h
t+s

h
t+l

h
t [ m

h
t=r

g
t s
h
t−1+g

g
t l
h
t−1 with s

h
t \ 0 for all t \ 1,

mh1 given, and lim inf
t

lht
< t
y=1 g

g
t

\ 04 .

Definition A.3. The complete markets budget set for capitalist h is

B̂h(pg, gg)=3xh: xht ¥ C for all t and

lim sup
T

C
T

t=1
q+g
t · x

h
t [ q

+g
1 ·C

k
whk+g
1
4 .

Lemma A.5. Bh(pg, gg)=B̂h(qg, gg) for all capitalists h.

Proof. See the proof of Lemma A.4. L

As each consumer faces the complete markets budget set, and each firm
maximizes unconstrained profits, any RECFE allocation is a competitive
equilibrium allocation. L
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