
Recipe	 for	 ODEs	 in	 Matlab	
Simple	 Second	 Order	 1D	 Example	

Step 1: Start with the problem expressed as a typical second order ODE, e.g.:

d 2u
dv2

− 5 du
dv

+ 4u = ve4v or ′′u (v) − 5 ′u (v) + 4u(v) = ve4v

where u(0)=1 and u’(0)=0.

Problem: Find u(4.5).

Step 2: Add the subscript 1 to the dependent (upper) variable – in this case u becomes u1:

d 2u1
dv2

− 5 du1
dv

+ 4u1 = ve
4v

Step 3: Define a new variable (subscript 2, i.e., u2) to be the derivative of the first:

du1
dv

= u2 (1)

Step 4: Substitute new variable (u2) into the ODE where possible:

du2
dv

− 5u2 + 4u1 = ve
4v

Step 5: Rearrange so that only the derivative term is on the left hand side:

du2
dv

= 5u2 − 4u1 + ve
4v (2)

Step 6: Rewrite the two first order ODEs – Equations (1) and (2) – in vector form:

d
dv

u1
u2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

u2
5u2 − 4u1 + ve

4v

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (3)

Step 7: In MatLab, define a function that takes two variables (the independent variable, v in
this case, should be first; the second is the vector u, and the subscripts above correspond to
elements in the vector) and returns a column vector representing the right hand side of
Equation (3):
>> f = @(v,u) [u(2);5*u(2)-4*u(1)+v*exp(4*v)];

Warning! Be very careful about spaces inside square brackets as these can confuse MatLab.

Step 8: Solve the ODE – for initial conditions, remember that u1 is the original variable u and
u2 is the first derivative:
>> [V,U] = ode23 (f, [0,4.5], [1;0]);

Important! When specifying the time interval as start and stop values, make sure to use a
comma. In MatLab, [0:4.5] would mean [0,1,2,3,4], so the solution would stop at 4, not
4.5!

Finally: The answer to the problem (“Find u(4.5).”) is the last element in the first column of
the matrix U (which is the solution for u1; the second column is for u2, and so on for larger
ODE problems). The vector V contains the corresponding values of v.

Second	 Order	 3D	 Example	

A particle with charge q moving with velocity v in an electromagnetic field experiences the
force F:
 F = q(E + v × B)
where E and B are electric and magnetic fields respectively; both may be functions of time t
and position x. If the particle has mass m then the acceleration a is:

 a(t) = F(t)
m

=
q
m
E(t,x(t)) + v(t) × B(t,x(t))()

where the dependence on t and x(t) is shown. The acceleration at any given time is therefore
dependent on its current position and velocity. All three quantities are of course three-
dimensional and can be written as column vectors with three components:

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
q
m

E1(t,x)
E2 (t,x)
E3(t,x)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

v1
v2
v3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

B1(t,x)
B2 (t,x)
B3(t,x)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
q
m

E1(t, x1, x2 , x3)
E2 (t, x1, x2 , x3)
E3(t, x1, x2 , x3)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

v2B3(t, x1, x2 , x3) − v3B2 (t, x1, x2 , x3)
v3B1(t, x1, x2 , x3) − v1B3(t, x1, x2 , x3)
v1B2 (t, x1, x2 , x3) − v2B1(t, x1, x2 , x3)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

This can be thought of as a single three-dimensional vector ODE, or equivalently as a system
of three inter-dependent ODEs. Written as above it is a second order ODE, since the
acceleration and position variables are both present. Remembering that:

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
d
dt

v1
v2
v3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
and

v1
v2
v3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
d
dt

x1
x2
x3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

we can replace the acceleration term by the time-derivative of velocity, but we also have to
add in the three ODEs corresponding to velocity as the time-derivative of position, so that
now there are six equations with six variables:

d
dt

x1
x2
x3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

v1
v2
v3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

d
dt

v1
v2
v3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
q
m

E1(t, x1, x2 , x3)
E2 (t, x1, x2 , x3)
E3(t, x1, x2 , x3)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

v2B3(t, x1, x2 , x3) − v3B2 (t, x1, x2 , x3)
v3B1(t, x1, x2 , x3) − v1B3(t, x1, x2 , x3)
v1B2 (t, x1, x2 , x3) − v2B1(t, x1, x2 , x3)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

In MatLab this needs to be expressed as a single six-dimensional vector ODE, so we replace
v1, v2, v3 by x4, x5, x6:

 d
dt

x1
x2
x3
x4
x5
x6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

x4
x5
x6

(q / m) E1(t, x1, x2 , x3) + x5B3(t, x1, x2 , x3) − x6B2 (t, x1, x2 , x3)[]
(q / m) E2 (t, x1, x2 , x3) + x6B1(t, x1, x2 , x3) − x4B3(t, x1, x2 , x3)[]
(q / m) E3(t, x1, x2 , x3) + x4B2 (t, x1, x2 , x3) − x5B1(t, x1, x2 , x3)[]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

To solve this in Matlab we first need to define functions for the EM field and various
constants. Here I have chosen an oscillating EM field with a second charged particle fixed at
the origin, and the resulting path of the particle is shown below.

Note: It would be impossible to read the code if the whole 6D vector ODE was defined at
once, so here I have broken it and the EM functions down into individual component
functions, and grouped them at the end. (For this example it would be better to create a
function m-file, but this is an example of how to use multiple @ functions together.)

Note: The 6D vector is really two 3D vectors. These can be separated easily: x(1:3) creates a
3-element vector from the first three elements of x, i.e., the position vector; x(4:6) creates
the 3D velocity vector from the last three elements of x.

k = 7 * 2 * pi; % fields oscillate with frequency 7Hz

a = 1.3E-3; % amplitude of magnetic field oscillation

m = 1E-3; % mass of particle in motion

q = 1; % charge of particle in motion
Q = -2; % charge of a heavy mass at the centre of the field

% Electric field:
% each function takes time and 3D coordinate vector
% each returns a single value
E1 = @(t,x) Q*x(1)/norm(x)^3 - x(2)*k*a;
E2 = @(t,x) Q*x(2)/norm(x)^3 + x(1)*k*a*sin(k*t);
E3 = @(t,x) Q*x(3)/norm(x)^3;

% returns 3D column vector representing electric field
E = @(t,x) [E1(t,x); E2(t,x); E3(t,x)];

% Magnetic field:
% each function takes time and 3D coordinate vector
% each returns a single value
B1 = @(t,x) 0;
B2 = @(t,x) 0;
B3 = @(t,x) a*cos(k*t);

% returns 3D column vector representing magnetic field
B = @(t,x) [B1(t,x); B2(t,x); B3(t,x)];

% ODE functions
% each function takes time and 6D vector coordinate/velocity
% each returns a single value
f1 = @(t,x) x(4);
f2 = @(t,x) x(5);
f3 = @(t,x) x(6);
f4 = @(t,x) (q/m)*(E1(t,x(1:3)) + x(5)*B3(t,x(1:3)) - x(6)*B2(t,x(1:3)));
f5 = @(t,x) (q/m)*(E2(t,x(1:3)) + x(6)*B1(t,x(1:3)) - x(4)*B3(t,x(1:3)));
f6 = @(t,x) (q/m)*(E3(t,x(1:3)) + x(4)*B2(t,x(1:3)) - x(5)*B1(t,x(1:3)));

% returns 6D column vector representing the ODE
f = @(t,x) [f1(t,x); f2(t,x); f3(t,x); f4(t,x); f5(t,x); f6(t,x)];

% Alternatively, we could do:
F123 = @(t,x) x(4:6);
F456 = @(t,x) (q/m) * (E(t,x(1:3)) + cross (x(4:6), B(t,x(1:3))));
F = @(t,x) [F123(t,x); F456(t,x)];

% Set initial coordinate (1,0,0); initial velocity (1,1,1)
x0 = [1;0;0;5;5;5];

% Solve from t = 0 until t = 1
[T,X] = ode23 (f, [0,1], x0);

plot3 (0,0,0,'ko')
hold on
plot3 (X(:,1),X(:,2),X(:,3))
xlabel ('x')
ylabel ('y')
zlabel ('z')

