
Recipe	
  for	
  ODEs	
  in	
  Matlab	
  
Simple	
  Second	
  Order	
  1D	
  Example	
  

Step 1: Start with the problem expressed as a typical second order ODE, e.g.: 

 
d 2u
dv2

− 5 du
dv

+ 4u = ve4v or ′′u (v) − 5 ′u (v) + 4u(v) = ve4v  

where u(0)=1 and u’(0)=0. 

Problem: Find u(4.5). 

Step 2: Add the subscript 1 to the dependent (upper) variable – in this case u becomes u1: 

 
d 2u1
dv2

− 5 du1
dv

+ 4u1 = ve
4v  

Step 3: Define a new variable (subscript 2, i.e., u2) to be the derivative of the first: 

 
du1
dv

= u2  (1) 

Step 4: Substitute new variable (u2) into the ODE where possible: 

 
du2
dv

− 5u2 + 4u1 = ve
4v  

Step 5: Rearrange so that only the derivative term is on the left hand side: 

 
du2
dv

= 5u2 − 4u1 + ve
4v  (2) 

Step 6: Rewrite the two first order ODEs – Equations (1) and (2) – in vector form: 
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Step 7: In MatLab, define a function that takes two variables (the independent variable, v in 
this case, should be first; the second is the vector u, and the subscripts above correspond to 
elements in the vector) and returns a column vector representing the right hand side of 
Equation (3): 
>> f = @(v,u) [u(2);5*u(2)-4*u(1)+v*exp(4*v)]; 

Warning! Be very careful about spaces inside square brackets as these can confuse MatLab. 

Step 8: Solve the ODE – for initial conditions, remember that u1 is the original variable u and 
u2 is the first derivative: 
>> [V,U] = ode23 (f, [0,4.5], [1;0]); 

Important! When specifying the time interval as start and stop values, make sure to use a 
comma. In MatLab, [0:4.5] would mean [0,1,2,3,4], so the solution would stop at 4, not 
4.5! 

Finally: The answer to the problem (“Find u(4.5).”) is the last element in the first column of 
the matrix U (which is the solution for u1; the second column is for u2, and so on for larger 
ODE problems). The vector V contains the corresponding values of v. 



Second	
  Order	
  3D	
  Example	
  

A particle with charge q moving with velocity v in an electromagnetic field experiences the 
force F: 
 F = q(E + v × B)  
where E and B are electric and magnetic fields respectively; both may be functions of time t 
and position x. If the particle has mass m then the acceleration a is: 

 a(t) = F(t)
m

=
q
m
E(t,x(t)) + v(t) × B(t,x(t))( )  

where the dependence on t and x(t) is shown. The acceleration at any given time is therefore 
dependent on its current position and velocity. All three quantities are of course three-
dimensional and can be written as column vectors with three components: 
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This can be thought of as a single three-dimensional vector ODE, or equivalently as a system 
of three inter-dependent ODEs. Written as above it is a second order ODE, since the 
acceleration and position variables are both present. Remembering that: 
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we can replace the acceleration term by the time-derivative of velocity, but we also have to 
add in the three ODEs corresponding to velocity as the time-derivative of position, so that 
now there are six equations with six variables: 
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In MatLab this needs to be expressed as a single six-dimensional vector ODE, so we replace 
v1, v2, v3 by x4, x5, x6: 
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To solve this in Matlab we first need to define functions for the EM field and various 
constants. Here I have chosen an oscillating EM field with a second charged particle fixed at 
the origin, and the resulting path of the particle is shown below. 

 
Note: It would be impossible to read the code if the whole 6D vector ODE was defined at 
once, so here I have broken it and the EM functions down into individual component 
functions, and grouped them at the end. (For this example it would be better to create a 
function m-file, but this is an example of how to use multiple @ functions together.) 

Note: The 6D vector is really two 3D vectors. These can be separated easily: x(1:3) creates a 
3-element vector from the first three elements of x, i.e., the position vector; x(4:6) creates 
the 3D velocity vector from the last three elements of x. 



k = 7 * 2 * pi; % fields oscillate with frequency 7Hz 
 
a = 1.3E-3; % amplitude of magnetic field oscillation 
 
m = 1E-3; % mass of particle in motion 
 
q = 1;  % charge of particle in motion 
Q = -2; % charge of a heavy mass at the centre of the field 
 
% Electric field: 
%   each function takes time and 3D coordinate vector 
%   each returns a single value 
E1 = @(t,x) Q*x(1)/norm(x)^3 - x(2)*k*a; 
E2 = @(t,x) Q*x(2)/norm(x)^3 + x(1)*k*a*sin(k*t); 
E3 = @(t,x) Q*x(3)/norm(x)^3; 
 
%   returns 3D column vector representing electric field 
E = @(t,x) [E1(t,x); E2(t,x); E3(t,x)]; 
 
% Magnetic field: 
%   each function takes time and 3D coordinate vector 
%   each returns a single value 
B1 = @(t,x) 0; 
B2 = @(t,x) 0; 
B3 = @(t,x) a*cos(k*t); 
 
%   returns 3D column vector representing magnetic field 
B = @(t,x) [B1(t,x); B2(t,x); B3(t,x)]; 
 
% ODE functions 
%   each function takes time and 6D vector coordinate/velocity 
%   each returns a single value 
f1 = @(t,x) x(4); 
f2 = @(t,x) x(5); 
f3 = @(t,x) x(6); 
f4 = @(t,x) (q/m)*(E1(t,x(1:3)) + x(5)*B3(t,x(1:3)) - x(6)*B2(t,x(1:3))); 
f5 = @(t,x) (q/m)*(E2(t,x(1:3)) + x(6)*B1(t,x(1:3)) - x(4)*B3(t,x(1:3))); 
f6 = @(t,x) (q/m)*(E3(t,x(1:3)) + x(4)*B2(t,x(1:3)) - x(5)*B1(t,x(1:3))); 
 
%   returns 6D column vector representing the ODE 
f = @(t,x) [f1(t,x); f2(t,x); f3(t,x); f4(t,x); f5(t,x); f6(t,x)]; 
 
% Alternatively, we could do: 
F123 = @(t,x) x(4:6); 
F456 = @(t,x) (q/m) * (E(t,x(1:3)) + cross (x(4:6), B(t,x(1:3)))); 
F = @(t,x) [F123(t,x); F456(t,x)]; 
 
% Set initial coordinate (1,0,0); initial velocity (1,1,1) 
x0 = [1;0;0;5;5;5]; 
 
% Solve from t = 0 until t = 1 
[T,X] = ode23 (f, [0,1], x0); 
 
plot3 (0,0,0,'ko') 
hold on 
plot3 (X(:,1),X(:,2),X(:,3)) 
xlabel ('x') 
ylabel ('y') 
zlabel ('z') 
 


