Recipe for ODEs in Matlab

Simple Second Order 1D Example

Step 1: Start with the problem expressed as a typical second order ODE, e.g.:

$$
\frac{d^{2} u}{d v^{2}}-5 \frac{d u}{d v}+4 u=v e^{4 v} \quad \text { or } \quad u^{\prime \prime}(v)-5 u^{\prime}(v)+4 u(v)=v e^{4 v}
$$

where $u(0)=1$ and $u^{\prime}(0)=0$.
Problem: Find $u(4.5)$.
Step 2: Add the subscript 1 to the dependent (upper) variable - in this case u becomes u_{1} :

$$
\frac{d^{2} u_{1}}{d v^{2}}-5 \frac{d u_{1}}{d v}+4 u_{1}=v e^{4 v}
$$

Step 3: Define a new variable (subscript 2, i.e., u_{2}) to be the derivative of the first:

$$
\begin{equation*}
\frac{d u_{1}}{d v}=u_{2} \tag{1}
\end{equation*}
$$

Step 4: Substitute new variable $\left(u_{2}\right)$ into the ODE where possible:

$$
\frac{d u_{2}}{d v}-5 u_{2}+4 u_{1}=v e^{4 v}
$$

Step 5: Rearrange so that only the derivative term is on the left hand side:

$$
\begin{equation*}
\frac{d u_{2}}{d v}=5 u_{2}-4 u_{1}+v e^{4 v} \tag{2}
\end{equation*}
$$

Step 6: Rewrite the two first order ODEs - Equations (1) and (2) - in vector form:

$$
\begin{equation*}
\frac{d}{d v}\binom{u_{1}}{u_{2}}=\binom{u_{2}}{5 u_{2}-4 u_{1}+v e^{4 v}} \tag{3}
\end{equation*}
$$

Step 7: In MatLab, define a function that takes two variables (the independent variable, v in this case, should be first; the second is the vector \mathbf{u}, and the subscripts above correspond to elements in the vector) and returns a column vector representing the right hand side of Equation (3):
>> $\mathrm{f}=@(\mathrm{v}, \mathrm{u})\left[\mathrm{u}(2) ; 5 * u(2)-4 * u(1)+\mathrm{v}^{*} \exp (4 * v)\right]$;
Warning! Be very careful about spaces inside square brackets as these can confuse MatLab.
Step 8: Solve the ODE - for initial conditions, remember that u_{1} is the original variable u and u_{2} is the first derivative:

```
>> [V,U] = ode23 (f, [0,4.5], [1;0]);
```

Important! When specifying the time interval as start and stop values, make sure to use a comma. In MatLab, $[0: 4.5]$ would mean $[0,1,2,3,4]$, so the solution would stop at 4 , not 4.5!

Finally: The answer to the problem ("Find $u(4.5) . ")$ is the last element in the first column of the matrix U (which is the solution for u_{1}; the second column is for u_{2}, and so on for larger ODE problems). The vector \mathbf{V} contains the corresponding values of v.

Second Order 3D Example

A particle with charge q moving with velocity \mathbf{v} in an electromagnetic field experiences the force \mathbf{F} :

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

where \mathbf{E} and \mathbf{B} are electric and magnetic fields respectively; both may be functions of time t and position \mathbf{x}. If the particle has mass m then the acceleration \mathbf{a} is:

$$
\mathbf{a}(t)=\frac{\mathbf{F}(t)}{m}=\frac{q}{m}(\mathbf{E}(t, \mathbf{x}(t))+\mathbf{v}(t) \times \mathbf{B}(t, \mathbf{x}(t)))
$$

where the dependence on t and $\mathbf{x}(t)$ is shown. The acceleration at any given time is therefore dependent on its current position and velocity. All three quantities are of course threedimensional and can be written as column vectors with three components:

$$
\begin{aligned}
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) & =\frac{q}{m}\left[\left(\begin{array}{l}
E_{1}(t, \mathbf{x}) \\
E_{2}(t, \mathbf{x}) \\
E_{3}(t, \mathbf{x})
\end{array}\right)+\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \times\left(\begin{array}{l}
B_{1}(t, \mathbf{x}) \\
B_{2}(t, \mathbf{x}) \\
B_{3}(t, \mathbf{x})
\end{array}\right)\right] \\
& =\frac{q}{m}\left[\left(\begin{array}{l}
E_{1}\left(t, x_{1}, x_{2}, x_{3}\right) \\
E_{2}\left(t, x_{1}, x_{2}, x_{3}\right) \\
E_{3}\left(t, x_{1}, x_{2}, x_{3}\right)
\end{array}\right)+\left(\begin{array}{c}
v_{2} B_{3}\left(t, x_{1}, x_{2}, x_{3}\right)-v_{3} B_{2}\left(t, x_{1}, x_{2}, x_{3}\right) \\
v_{3} B_{1}\left(t, x_{1}, x_{2}, x_{3}\right)-v_{1} B_{3}\left(t, x_{1}, x_{2}, x_{3}\right) \\
v_{1} B_{2}\left(t, x_{1}, x_{2}, x_{3}\right)-v_{2} B_{1}\left(t, x_{1}, x_{2}, x_{3}\right)
\end{array}\right)\right]
\end{aligned}
$$

This can be thought of as a single three-dimensional vector ODE, or equivalently as a system of three inter-dependent ODEs. Written as above it is a second order ODE, since the acceleration and position variables are both present. Remembering that:

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\frac{d}{d t}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \text { and }\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\frac{d}{d t}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

we can replace the acceleration term by the time-derivative of velocity, but we also have to add in the three ODEs corresponding to velocity as the time-derivative of position, so that now there are six equations with six variables:

$$
\begin{aligned}
& \frac{d}{d t}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
& \frac{d}{d t}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\frac{q}{m}\left[\left(\begin{array}{l}
E_{1}\left(t, x_{1}, x_{2}, x_{3}\right) \\
E_{2}\left(t, x_{1}, x_{2}, x_{3}\right) \\
E_{3}\left(t, x_{1}, x_{2}, x_{3}\right)
\end{array}\right)+\left(\begin{array}{l}
v_{2} B_{3}\left(t, x_{1}, x_{2}, x_{3}\right)-v_{3} B_{2}\left(t, x_{1}, x_{2}, x_{3}\right) \\
v_{3} B_{1}\left(t, x_{1}, x_{2}, x_{3}\right)-v_{1} B_{3}\left(t, x_{1}, x_{2}, x_{3}\right) \\
v_{1} B_{2}\left(t, x_{1}, x_{2}, x_{3}\right)-v_{2} B_{1}\left(t, x_{1}, x_{2}, x_{3}\right)
\end{array}\right)\right]
\end{aligned}
$$

In MatLab this needs to be expressed as a single six-dimensional vector ODE, so we replace v_{1}, v_{2}, v_{3} by x_{4}, x_{5}, x_{6} :

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
x_{4} \\
x_{5} \\
x_{6} \\
(q / m)\left[E_{1}\left(t, x_{1}, x_{2}, x_{3}\right)+x_{5} B_{3}\left(t, x_{1}, x_{2}, x_{3}\right)-x_{6} B_{2}\left(t, x_{1}, x_{2}, x_{3}\right)\right] \\
(q / m)\left[E_{2}\left(t, x_{1}, x_{2}, x_{3}\right)+x_{6} B_{1}\left(t, x_{1}, x_{2}, x_{3}\right)-x_{4} B_{3}\left(t, x_{1}, x_{2}, x_{3}\right)\right] \\
(q / m)\left[E_{3}\left(t, x_{1}, x_{2}, x_{3}\right)+x_{4} B_{2}\left(t, x_{1}, x_{2}, x_{3}\right)-x_{5} B_{1}\left(t, x_{1}, x_{2}, x_{3}\right)\right]
\end{array}\right)
$$

To solve this in Matlab we first need to define functions for the EM field and various constants. Here I have chosen an oscillating EM field with a second charged particle fixed at the origin, and the resulting path of the particle is shown below.

Note: It would be impossible to read the code if the whole 6D vector ODE was defined at once, so here I have broken it and the EM functions down into individual component functions, and grouped them at the end. (For this example it would be better to create a function \boldsymbol{m}-file, but this is an example of how to use multiple @ functions together.)

Note: The 6D vector is really two 3D vectors. These can be separated easily: $\mathrm{x}(1: 3)$ creates a 3 -element vector from the first three elements of x, i.e., the position vector; $x(4: 6)$ creates the 3D velocity vector from the last three elements of x.

```
k = 7 * 2 * pi; % fields oscillate with frequency 7Hz
a = 1.3E-3; % amplitude of magnetic field oscillation
m = 1E-3; % mass of particle in motion
q = 1; % charge of particle in motion
Q = -2; % charge of a heavy mass at the centre of the field
% Electric field:
% each function takes time and 3D coordinate vector
% each returns a single value
E1 = @(t,x) Q*x(1)/norm(x)^3 - x(2)*k*a;
E2 = @(t,x) Q*x(2)/norm(x)^3 + x(1)*k*a*sin(k*t);
E3 = @(t,x) Q*x(3)/norm(x)^3;
% returns 3D column vector representing electric field
E = @(t,x) [E1(t,x); E2(t,x); E3(t,x)];
Magnetic field:
% each function takes time and 3D coordinate vector
% each returns a single value
B1 = @(t,x) 0;
B2 = @(t,x) 0;
B3 = @(t,x) a* cos(k*t);
% returns 3D column vector representing magnetic field
B = @(t,x) [B1(t,x); B2(t,x); B3 (t,x)];
% ODE functions
    each function takes time and 6D vector coordinate/velocity
    each returns a single value
f1 = @(t,x) x(4);
f2 = @(t,x) x(5);
f3 = @(t,x) x(6);
f4 = @(t,x) (q/m)*(E1(t,x(1:3)) + x(5)*B3(t,x(1:3)) - x(6)*B2(t,x(1:3)));
f5 = @(t,x) (q/m)*(E2(t,x(1:3)) + x(6)*B1(t,x(1:3)) - x(4)*B3(t,x(1:3)));
f6 = @(t,x) (q/m)*(E3(t,x(1:3)) + x(4)*B2(t,x(1:3)) - x(5)*B1(t,x(1:3)));
% returns 6D column vector representing the ODE
f = @(t,x) [f1(t,x); f2(t,x); f3(t,x); f4(t,x); f5 (t,x); f6(t,x)];
% Alternatively, we could do:
F123 = @(t,x) x(4:6);
F456 = @(t,x) (q/m) * (E(t,x(1:3)) + cross (x(4:6), B(t,x(1:3))));
F = @(t,x) [F123(t,x); F456(t,x)];
% Set initial coordinate (1,0,0); initial velocity (1,1,1)
x0 = [1;0;0;5;5;5];
% Solve from t = 0 until t = 1
[T,X] = ode23 (f, [0,1], x0);
plot3 (0,0,0,'ko')
hold on
plot3 (X(:,1),X(:,2),X(:,3))
xlabel ('x')
ylabel ('y')
zlabel ('z')
```

