SULI2DULSUT] SUDISAG 2 [DIIUDYIPN JO J00YIS ‘QUA] uodn 2]3SpImMaN Jo AJ1s.1041u))

ces & MatLab

Complex Numbers, Matr

Complex Numbers, Matrices & MatLab

Sty

unynduio?) o] uonoNpoLuy Sy JPU01SSJ04J SULI2IULSUT] [DITUDYII PN

AT

Mechanical Engineering Professional Skills: Introduction to Computing

Contents

1
2

n

2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

Logic, Binary, Bits & Bytes
Complex Numbers

Butterflies & fish
Cartesian representation
Roots of unity

Polar representation

Introduction to Matrices

What is a matrix?

Basic arithmetic

Creating matrices in MatLab
Creating sequences in MatLab

Complex Numbers in MatLab
Elemental Operations

Element-wise arithmetic

Examples of element-wise arithmetic
Examples of element-wise functions
Extracting elements of a matrix
Changing elements of a matrix
Strings in MatLab

Functions and Plots in MatLab

Simple functions
Functions and matrices
Functions and fplot

6.4 Simple plots
6.5 Multiple plots
m-Files
7.1 Execution & editing
7.2 General comments
7.3 Checklist
Input / Output
8.1 Numerical input / output
8.2 String input / output
Basic Programming
9.1 Loops with ‘for’
9.2 Logical expressions and ‘if’
9.3 Controlling loops
9.4 More on getting user input
9.5 Comparing strings
9.6 Checking numerical input
9.7 Warnings, errors and asserts
Function m-Files
10.1 Function declaration and help
10.2 General comments
10.3 Using functions
10.4 Nested loops with ‘for’

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

Contents

11 Properties of Plots
11.1 Line plots
11.2 3D plots
12 Vectors & Matrices
12.1 Vector scalar (or ‘dot’) product
12.2 Matrix multiplication
12.3 Matrix powers and inverse
12.4 Simultaneous equations
12.5 Eigenvalues & eigenvectors
13 Ordinary Differential Equations
13.1 First order ODEs
13.2 Vector ODEs
13.3 Second order ODEs

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

1

Logic, Binary, Bits & Bytes

Computers are all about ones and zeros. Computer scientists have a joke:

There are 10 types of people in the world: Those who understand binary, and those who don't...

@

| “he
r
1 e oo
r
.
LT

Switch A Lamp

Up Off

Down On

Switch A Switch B Lamp
Up Up Off
Up Down Off
Down Up Off
Down Down On
Switch A Switch B Lamp
Up Up Off
Up Down On
Down Up On
Down Down On

The lamp 1s On 1f Switch A is Down.

The lamp 1s On 1f Switch A is Down AND
Switch B is Down.

The lamp 1s On if Switch A is Down OR
Switch B is Down.

Essentially the lamp has two states: On (if there 1s a voltage across the lamp) and Off.

In binary, ‘0’ means ‘false’ or ‘no’ or ‘nothing’ or ‘off’; while ‘1’ means ‘true’ or ‘not 0°. Data 1s
stored 1n computer memory, or on hard drives (or USB pen drives or DVDs, etc.) as a large
collection of ones and zeros. Digital transmissions are long strings of ones and zeros.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

1 Logic, Binary, Bits & Bytes

Each individual 1 or O 1s called a ‘bit’:

1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1

A byte is a sequence of 8 bits and, by itself, represents an integer in the range 0-255:

1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

153 139 77

99 8B 4D

The last row 1s the same values represented in Base 16 (hexadecimal) which 1s often used to
represent values of bytes. In Base 16 the letters A-F (or a-f) represent the numbers 10-15:

Base 10 Decimal 0 1 2 3 4 5 6 7 8 9 10|11 (12| 13|14 | 15| 16
Base 16 Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F 10

Computers usually use a sequence of 4 bytes to represent an integer and a sequence of 8 bytes to
represent a ‘double precision’ floating point number (a real number, with 16 significant figures).

For example, the sequence of three bytes at the top might represent the red, green and blue
components of colour (0=‘none’, 255="*full’) of a single pixel in a 24-bit colour image. My ‘six

megapixel’ (6MP) camera takes 2816%2112 photos, 1.e., 5947392 pixels, or 17842176 bytes of red-
green-blue data (which compresses to about 13% of this when saved).

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

2 Complex Numbers
2.1 Butterflies & fish

Butterflies

“You don’t add frogs and grannies.”
- Serbian saying.

Fish

Y
_4

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

SULI2DULSUT] SUDISAG 2 [DIIUDYIPN JO J00YIS ‘QUA] uodn 2]3SpImMaN Jo AJ1s.1041u))

w _
a'e @\
A -
m Y I— -
[
o
&
N ——
o m@A - -
QO £ °
) ml
m 2 % ~ O o~
<P _ - — .
Z = [S|]
~ — _Jl ﬁ —
u — -
> = _ - iﬁ
p om /H\ (N n/?
= 2 . I
P
o O ﬁ — +
N
l con
N

Complex Numbers, Matrices & MatLab

Sty

unynduio) oy uonoNpoLJuy S)JYS [PU01SSJ04J SULI2IULSUT] [DITUDYII PN

SULI2DULSUT] SUDISAG 2 [DIIUDYIPN JO J00YIS ‘QUA] uodn 2]3SpImMaN Jo AJ1s.1041u))

Y
e __
2 o
© 5 ©
o S «
A g
S|
o
o
Qo
. o® Ce,
A o
o o
.O 0.
@ =9 °
5 28 il
2 ¥ :
= E % >
N > “ ¢
) o o
X om o
k = ° o®
pp_m \ooooooooo
= g p
= ()
&
en
AN

Complex Numbers, Matrices & MatLab

Sty

unynduio) oy uonoNpoLJuy S)JYS [PU01SSJ04J SULI2IULSUT] [DITUDYII PN

AT

Mechanical Engineering Professional Skills: Introduction to Computing

2

Complex Numbers

2.4 Polar representation

Imaginary
A

(4,3) = 4+3i

z=4+3i
= 5cos(0) + 5isin(0)

_SeiQ

» Real

3
tan(0) = —
(0) /

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

3
3.1

Introduction to Matrices
What is a matrix?

A matrix 1s an ordered list of numbers.

] = a scalar.

(7) = a 1x1 matrix.

(1 3 4) = a 1 X 3 matrix, or row vector.

4

= a 2 X 1 matrix, or column vector.

(1 0 6)
-7 1 4| =a3Xx3 square matrix.

. 3 -7 2)
1 O -1 -3 .

= a2 X4 matrix (i.e., 2 rows, 4 columns)
3 4 0 6

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

3 Introduction to Matrices
3.2 Basic arithmetic

Multiplication (by scalar)

Division (by scalar) (1 3 4) =) =] —

Addition (1 3 4)+(2 6 8)=(3 9 12)

Subtraction (1 3 4)—(2 6 8):{—1 -3

Matrices of different sizes cannot be added to or subtracted from each other!

Addition and subtraction are element-by-element.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

3

>>

>>

Introduction to Matrices

3.3 Creating matrices in MatLab
X = (1 3 7)

[1 3 7]

[1/ 3;7/ 9;51_5]

y=(7 i)

0 + 1.0000z

(1)
z=|3

7
1

A=|"7
e

To create a matrix, place values
between ‘[’ and ‘]’.

Use semicolons (;”) to separate
matrix rows.

Use commas (“,’) to separate
clements within rows.

3)
9

_5)

Complex Numbers, Matrices & MatLab

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

AT

Mechanical Engineering Professional Skills: Introduction to Computing

3 Introduction to Matrices
3.4 Using sequences in MatLab

Use a colon to create a matrix with a sequence of numbers. By default this increases in steps of 1:

>> x = [1:3] x:(123)
x =
1 2 3
In general, [a:b:c] starts at a, increases 1n steps of b (which may be negative or non-integer,

but not complex), and ends at or before c:

>> y = [0:2:5] y=(0 2 4}
y =
0 2 4
>> z = [7:=3:-8] Z:(741 -2 -5 _8)
7 =
7 4 1 -2 -5 -3
Sequences can also be combined. This uses two:
>> [-1:1,2:-0.25:1] (_1 01 2 74 % % 1)
ans =
-1.00 O 1.00 2.00 1.75 1.50 1.25 1.00

Important: 1t 1s usually best to make a, b, and ¢ integers to avoid numerical accuracy problems.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

4

g

. S0

>> x = 4 + 3 * 1 Letx=4+3i &
4.0000 + 3.00001 f

>> real (x) Re(x) - 1.e., what 1s the real component of x? 3
ans = §
4 =

>> imag (x) Im(x) - i.e., what is the imaginary component of x? =
ans = 'g
3 2

S

. . >\

>> abs (x) | x| - i.e., what is the absolute value of x? -
ans = S
5 E

>> 1.7[0:3] (io iiQ i3) = (1 ;. —1 —i) 3
ans = =
1.0000 0 + 1.0000i ~1.0000 0 - 1.0000i 5

>> §

Complex numbers in MatLab

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

.
5.1

Elemental Operations

Element-wise arithmetic subtitle
Let A and B be n X m matrices, i.e., matrices with n rows and m columns:
(an A, 0 Ay, | (bn b, - b, i
A = Ay Uy = Ay, B— b, b,, - b,
\anl an2 - anm / \bnl bn2 o bnm /

In MatLab the element-wise operators such as .~ work like:

b b b
b21 b22 b2m
A B = dy dy, A,
bnl bn2 . e e bnm
\anl an2 anm)

but the matrices (A and B) must be the same size.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

S Elemental Operations
5.2 Examples of element-wise arithmetic

>> [1,2,3] .* 2 (1 2 3).*2=(1%2 2%*2 3%2)
ans =
2 4 6 =(2 4)
>> [1,2,3] .* [4,5,6] (1 2 3).%x(4 5 6)=(1*4 2*5 3%6)
ans = -
. r " =(4 10 18)
>> [1,2,3] .~ 2 (1 2 3).72=(1* 2* 3)
ans =
1 A 9 =(1 4 9)
>> [1,2,3]1 .~ [4,5,6] (1 2 3).7(4 5 6)=(1* 2° 3°)
ans =
1 32 729)
>> 2 .~ [4,5,6] 2.7(4 5 6)=(2* 2° 2°)
ans = —
16 32 64 =(16 32 64)
>> 2 ./ [4,5,6] 2./(4 5 6)= 2 2 %]
ans = 4 5 6
0.5000 0.4000 0.3333 =(05 04 0.3333)
>>

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

S Elemental Operations

5.3 Examples of element-wise functions
>> log ([-1,1,i]) =(In(=1) In(1) In@))

PU 0 7?6)

(sin(O) sin(%) sin(7t) sin(3%) sin(27r))
ans = (0 1.0 -1 0)

0 1.0000 0.0000 -1.0000 -0.0000

ans =
0 + 3.14161 0 0 + 1.57081
>> sin ([0: (pi/2) : (pi*2)])

>> f = 1inline ('z.”2+c','z','c"); Let: f(z,c)=2z."2+c

>> F([-1+1i,1+1i;-1-1,1-i],1) Ut N1 ARl PO
—1-i 1-i) —1—i 1-i
ans =
(1402 +i A+i)+i
0 - 1.00001i 0 + 3.00001 “crmipai amip s
0 + 3.00001 0 - 1.00001 f
>> (3 —ij

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

S Elemental Operations

5.4 Extracting elements of a matrix

Elements of vectors and matrices can be extracted; rows and columns of matrices can also be

extracted.
>> A = [1,2,3,4;5,6,7,8];
>> A

A =
1 2 3 4
5 6 7 8
>> A(1l, :)
ans =
1 2 3 4
>> b = A(2,:)
b =
5 6 7 8
>> A(:,3)
ans =
3
7
>> A(1,4)
ans =
4

Assign this 2x4 matrix to A.
What 1s A?

What is the first row of A?

Assign the second row of A to b,
1.e., b 1s a row vector.

What is the third column of A?

What 1s the element 1n the fourth
column of the first row?

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

S Elemental Operations
5.5 Changing elements of a matrix

Elements, rows and columns of matrices can also be changed.

>> A = [1,2,3,4;5,6,7,8]; Assign this 2x4 matrix to A.
>> A What 1s A?
A =
1 2 3 4
5 6 7 8
>> A(:,2) = [-2;-6] Overwrite the second column of A
A = with a new column vector.
1 -2 3 4
5 -0 7 38
>> A(l,:) = -A(2,:) Overwrite the first row of A with
A = the negative of the second row of A.
-5 6 -/ -8
5 -6 7 8
>> A(2,3) = A(1,1) + A(2,4) Add the first element of the first row
A = to the fourth element of the second
-5 6 -7 -8 row, and assign the value (-5+8=3) to
5 -6 3 8 the third element of the second row.
>>

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

S

Elemental Operations
5.6 Strings in MatLab

A string 1n MatLab 1s treated like a row vector of characters (1.e., letters, numbers, punctuation),

e.g.:
> H = ['H','e','"1",'1",'0",","]; Let: H = ‘Hello,’.
>> W = '"World!'; Let: W= “World!".

>> HW = [H,"' ',W]
HwWw =

Hello, World!

>> W(0)

ans =

Let: HW=H+ "+ W

1.e., HW = ‘Hello, World!’.
The 6th character in /...

... 18 ‘1,
The 2nd and 6th characters in H
and the 2nd character in V...

¢ % ¢

...1e., ‘e’,,and ‘0’ ... so ‘e,0’.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

6 Functions and Plots in MatLab

6.1 Simple functions

A function 1s a mathematical object which takes one value (or set of values) and turns 1t into
another value (or set of values).

For example, the function sin takes any real number and turns it into a real number between -1 and
1.

When a function ftakes a value x (the variable) and returns a value y, we write:

y=f(x)

MatLab has many functions defined, such as sin, tanh, acos, exp and log.
It 1s possible to define new functions. For example, if we want:

f(x)=sec’(x)— tan(x)
The traditional way to define functions in MatLab 1s to use the inline command.

>> f = inline ('sec(x)”"2-tan(x)','x");

The first parameter is the function definition and the other parameters are the function variables. In
the most recent release of MatLab, it 1s also possible (and recommended) to define functions using
the new (@ command like this:

>> f = @(x) sec(x)"2-tan(x);

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

6 Functions and Plots in MatLab

6.2 Functions and matrices

Functions can take vectors or matrices as variables, and the function value can also be a vector or
matrix, €.g.:

>> g = inline ('x.”"2 - x.*y + y.”"2', 'x', 'y');

>> a = [1,2,3]1;
>> b = [0,1,-1];
>> g(a,b)
ans =
1 3 13

Or, as an example of a function taking a real number and returning a matrix (representing a rotation
through angle w in three dimensions about the z-axis):

(cosw —sinw 0
R,(w)=| sinw cosw 0
. 0 0 1)

This 1s defined like:

>> Rz = @(w) [cos(w),-sin(w),0;sin(w),cos(w),0;0,0,17;

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

6 Functions and Plots in MatLab
6.3 Functions and fplot

In MatLab, one way to plot several different functions at the same time 1s to define a single
function which returns several different values. .

3+

For example, the function, pgr(x), takes a value, x, and Al
returns a row vector of values:

1. o

Let: pgr(x)=(cos(x) cosh(x) 2-cosh(x)) N\

You can define this functions like this: | o o
>> pgr = @(x) [cos(x),cosh(x),2-cosh(x)]; i

or you can define it using the inline command: T R :
>> pgr = 1nline ('[cos(x),cosh(x),2-cosh(x)]',"'x");

Bounding Box
Specifies the range on the x-axis and y-axis.

To plot this function in MatLab, you can use fplot:

>> fplot (pqgr, |[[-2*pi,2*pi,-4,4]));

Alternatively, you can just pass the function definition to fplot:

[_2*pj—/ 2*pj—1_4/4]) &

>> fplot ('[cos(x),cosh(x),2-cosh(x)]"',

Because the function definition returns a row vector, fplot plots multiple curves.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

6 Functions and Plots in MatLab
6.4 Simple plots

MatLab provides many ways to plot graphs. The command plot takes two vectors of the same
size representing x and y values and creates a plot of these as points and/or lines, e.g.:

>> X = [0,1,3/7/8];
>> Yy = [2,3,2,-3,-5];
>> plot (x, y, "r+’);

plots data as points using red ‘+’ marks; no line 1s drawn. Alternatively:

>> plot (x, vy, "b-");

would draw a solid blue line between the points. For more information on plot, type:
>> help plot

To plot a function rather than vectors of discrete data, use fplot instead.

You can change a figure’s current axes and add a title and axis labels using the axes, the title and
the xlabel, ylabel and zlabel commands respectively. See:

>> help legend

about adding a legend. Also useful is the text command which adds a text comment at a
particular x-y location.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

6 Functions and Plots in MatLab
6.4 Simple plots (contd)

>> f=0@(x) [12+10*sin((x-8)*2*pi/24),12+5*sin((x-11) *2*pi/24)];
>> fplot (£, [0,24,0,25])

>> xlabel ('Time [hour]')

>> ylabel (['Temperature [',176,'C]"])

>> title ('Variation of temperature with time of day')

>> legend ('Air temperature', 'Water temperature')

>> text (2,2, 'Miniumum alr temperature')

Variation of temperature with time of day

Here 1s an example of a function returning a row 25

T
Air temperature

vector with two values, being plotted at the same Water temperature

time using fplot.

Labels, a title, a legend and some text have been
added to describe the plot.

The degree symbol has been used in the label on the
y axis by combining two strings and the integer
value (176) of the UNICODE symbol for degrees.

Temperature [°C]

S

—Miniumum air temperature

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

O | | 1
0 5 10 15
Time [hour]

|
20

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

6 Functions and Plots in MatLab
6.5 Multiple plots

By default, MatLab uses only one figure window and each time you create a new plot it removes
the old one. To add a new plot to an existing one, type:

>> hold on

before adding a new plot so that MatLab knows to keep the current plot. Later, to remove the
current plot, type:

>> hold off
before adding a new plot.

Also, you can have more than one figure window. To open a new figure window, use the figure
command:

>> figure

and, 1f you have multiple figure windows open, you can select one to make it the active window
for new figures by typing, e.g.:

>> figure (2)
to make Figure 2 active.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

7 m-Files

7.1 Execution & editing

An m-file 1s just a text file with commands you would normally type into the MatLab command

window, e.g.:

= inline ('[(-(2*n+1l)) :2:(2*n+1)]1*L/ (2*n+1)"','n',’'L");

\Y,
x = v(8,pi);

Y = Xy

[X,Y] = meshgrid (x,V);
Z =X + 1 *Y;

Fr = real (cos (2)):;

Fi = imag (cos (2)):

figure(1l);
mesh (x,vy,Fr);

title ('real (cos (Z))"'");

xlabel ('Real');
ylabel ('Imaginary');
figure(2) ;

mesh (x,vy,Fi);

title ('imag (cos (Z))"'");

xlabel ('Real');
ylabel ('Imaginary'):;

Execution
This 1s the file ‘1cos.m’.

If this file 1s in your present working
directory - see the MatLab command
pwd - then you can execute the file
from MatLab by typing:

>> 1COs

Note: You do not add the suffix ‘.m’
when executing the file.

Navigation

To see the files in your present
working directory, use the MatLab
command /s (or dir). To change
directory, use cd.

Editing m-files are TEXT files. Create using the MatLab menu File — New — M-File, or use a text editor (Notepad, for
example, which is in the Accessories menu in Microsoft Windows) to edit and create m-files.

Do not use a word processor (i.¢., do not use Microsoft Word!) unless you are desperate.

The file must be saved as a text file with suffix ‘.m’.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

7 m-Files
7.2 General comments
Suffix

The suffix (file extension) 1s ‘*.m’, not “.m.m’, *.txt’ or ‘.m.txt’.

Viewing file extensions in Windows XP:

* Open My Computer, and sclect Folder Options from the Tools menu.
* Click on the View tab, turn off Hide MS-DOS file extensions for known file types, and press
OK.

http://www.annoyances.org/exec/show/article01-401

Comments (i.e., lines beginning with ‘%’ which are ignored by MatLab)
« add comments - i1t’s a good habit, especially in longer, more complicated m-files

Suppressing OQutput

* use ‘;’ at the end of lines to prevent MatLab echoing the answer

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

7

m-Files

7.2 General comments (contd)

Exponents
Computers use a special notation for representing real (or ‘floating point’) numbers:

>> x = +1.23E-6 x=123%x10"°
 _

1.2300e-06
>> yv = —-0.45E+3 y=-045x%x10"
y =

-450

>> z = .6789e9 z=0.6789 %10’
-

678900000

Variable Names

Do not use i (or j or pi) as a variable name, or you’ll end up with nonsense, €.g.:

>> 1 = 3;
>> (-1)70.5 - 1
ans =

-3.0000 + 1.00001

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

7

m-Files

7.3 Checklist

.

Does your m-file open in Notepad?
Yes? Okay.
No? It’s not a text file, and therefore not an m-file!
Can you execute your m-file from MatLab? (If the m-file 1s called, e.g., ‘myMFile.m’, can
you execute it from MatLab by typing ‘myMFile’?)
Yes? Okay.
No? Clearly something 1s wrong. Either MatLab can’t find ‘myMFile.m’ or
it can’t understand it.
Do you have text in the m-file that you would not actually #ype into MatLab?
(See below.)|You should also remove any commands which are not relevant!

No? OkaY- Previous command that didn t work.
Yes? Remove the unnecessary text!

>>| e” (1*pi)

MatLab error message. ??? Undefined function or varilable 'e'.

>> exp (i*pi)

ans =

Value of previous command.

-1.0000 + 0.00001

MatLab command prompt. >>

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

8 Input/ Output

8.1 Numerical input / output

When writing programs it 1s often useful to request information or data from the “user” (1.e., the
person using the program).

The input command 1s used to write a request for data from the user, and to return the answer. For
example, to ask the user what his or her age and height are:

age = input ('What is your age?[]'): Tip: Leave a space at the end to
height = input ('What is your height (in metres)?[[); separate question from answer.

Important: Put a semi-colon after the input command to stop the answer echoing.

Here the answers are stored in the variables age and height, which can be used later:

% Calculate average growth rate (AGR) in metres / year
AGR = height / age;

Numbers or strings can be written easily to the screen using the disp command:

disp ('Average growth rate (AGR) in metres per year 1s:')
disp (AGR)

This would put the text and the number on different lines, which 1s a bit messy. Try to put
everything on one line. Use the num2str command to convert the number 1nto a string:

disp (['Average growth rate (AGR) in metres per year 1is ',num2str (AGR),'.'])

Important: 1. Square brackets [] join strings together.
2. Do not put a space after num2str.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

8 Input/ Output
8.2 String input / output

To get a string from the user rather than a number, use the input command with the option 's'
specified at the end:

address = input ('Please enter your address? ', 's');

To put an apostrophe in a string, type two apostrophes together, e.g.:

friend = input ('What is your friend''s name? ','s');

Sometimes commands in MatLab can get very long, especially when using the disp command.
However, you can split commands over multiple lines, putting ... to indicate that the command
continues on the next line.

disp (['Your age 1s ', num2str(age),', your height is ',numZ2str (height),
', ', 'and your address 1is ',address,' and your friend''s name 1is ',
friend,'.'])

Important!

When asking the user for input, or when providing information to the user:

1. Be brief, but be informative - say what is necessary, and don’t confuse.

2. Be neat and be correct - think about spelling and the use of spaces for clarity.

3. Be polite!

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming
9.1 Loops with ‘for’

When a similar or 1dentical action has to be taken multiple times, it 1s usually a good 1dea to create
a loop. The program will then cycle repeatedly through a set of commands.

The simplest way to create loops 1s with the command for. For example, to get five numbers from
the user and add them up:

total = 0;

tor k = 1:5
inumber = input ('Please enter a number: '");
total = total + number;

end

disp (['The total is: ', numZ2str(total)])

The start of the loop 1s marked by for, and the end by end. The number of times the loop 1s cycled
through depends on the number of terms in the loop’s defining sequence, 1n this case 1:5 which has
five numbers: [1,2,3.4,5].

Any simple sequence can be used. Even a function returning a sequence 1s allowed:

>> X = @(n) -1 + 2 * [0:n] / n;
>> N = 100; y = O;ifor X = X(Nﬂ; vy =y + x*2 * (2 / (N + 1)); end; disp (y)
0.6800 T

This example integrates x> between -1 and 1; the precision increases as the integer N increases.

Complex Numbers, Matrices & MatLab

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

AT

9 Basic Programming
9.1 Loops with ‘for’ (contd)

Each time MatLab goes through the loop, the loop counter (7, in the case below) takes the next

Mechanical Engineering Professional Skills: Introduction to Computing

value 1n the sequence.

>> for m = 1:3:10; disp (['m = ',num2str(m)]); end
m = 1
m = 4
m = 7/
m = 10

for loops are generally used for accessing elements in a vector:

>> A = zeros (1,5) % create a 1x5 matrix (row vector) with zeros in it
A —

0 B 0 0 9 0 Tip: note the use of the zeros
= ;ior e = 1:2:5; A(e) = e; end command to create a vector or
Z>_ matrix of the correct size.

1 0 3 0 5
or matrix:

B = zeros (2,3); A=(1 O 3 O 5)
for row = 1:2

for col = 1:3

. iB(row,col) = row + col; 2 3 4

end —
end 3 4 5

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming
9.2 Logical expressions and ‘if’

Where there 1s the possibility of two or more different program behaviours, depending on the
values of certain variables, the if command 1s used to select which parts of the program are
executed. The expression after each if (or elseif) evaluates to true or false.

age = 1nput ('How old are you? '");

if (age < 18) 5. if age less than 18
idlsp ('"Sorry. This program is for over-18s only."'")

——

——

ikids = input ('How many children do you have? ');
% 1f age less than 30 and number of children 1s not zero

———

elseif: check condition only 1f none of the previous if/elseif conditions were true

else: 1f all else fails, do this...

if ... end
if ... else ... end
For comparison, use: To combine expressions: if ... elseif ... else ... end
== ‘is equal to’ && ‘and’ if ... elseif ... elseif ... else ... end
~= ‘is not equal to’ I ‘or’ if ... elseif ... elseif ... elseif ... else ... end

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming

9.3

Controlling loops

Two commands are particularly useful inside loops:

continue.

break:

for k = 1:10
if (k < 5)
continue;
elselif (k == T7)
break;
end
disp (k)
end

while cycles through the
loop as long as the
following expression
evaluates to true.

while true ... end
loops forever!

return to the start of the loop for the next cycle
(in for loops this jumps to the next value in the sequence)
jump out of the loop to the next part of the program
The flow chart 1llustrates the program below:

Increase k by 1.

Start

l

Setkto 1.

[YES

Another way to create
loops 1s with while:

k = 0;

while (k < 10)
k= k + 1; |
if (k < 5)
i continue; |
elseif (k == 7)!
| break; |
- end
' disp (k)

end T

YES

Y

Is k less than 57
NO
Is k equal to 77

NO

Display value of k.

l

Is k less than 10?7

YES

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming
9.4 More on getting user input

Sometimes the program wants to ask the user a question which requires text as an answer, such as a filename, or other name, or
perhaps just ‘yes’ or ‘no’. Do this using the command input again, but add a 2nd argument ‘s’:

name = input ('What is your name? ', 's');

If Appropriate, Suggest Possible Answers

If you are looking for a particular answer, it 1s useful to indicate this by suggesting possible answers:
likes kittens = input ('Do you like kittens? (y/n) ', 's');

Default Answer

If you have a good idea what the answer will be, it is helpful to provide a default answer, which you should specify in square
brackets after the question. (This is a good idea when you have to ask lots of questions.) Then, if the user just presses enter, the
value will be returned as the empty matrix, which you can test for using isempty:

likes kittens = input ('Do you like kittens? (y/n) [y] ', 's');
1f i1sempty (likes kittens)

likes kittens = 'y';
end i
Simple way to check the answer.
while 1
answer = input ('Would you like to exit this loop? (y/n) [yl ', 's'");
1f isempty (answer) || (answer == 'y')
break;
elseif (answer ~= 'n')
disp ('I don''t recognise your answer!');
end
end

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming
9.5 Comparing strings

Another way to compare two strings is to use the function strcmp:

1f strcmp (likes kittens, 'y')
disp ('So do I!");
end

This function can be used to compare against multiple possibilities, €.g.:

>> likes kittens = 'y';
>> strcmp (likes kittens, {'y','yes'})
ans =

1 0

1.e., the value 1s checked against a cell array (a type of matrix) of strings, and a matrix of 1s or Os indicates whether a match is
found. To determine whether any of the strings in the cell array matches, use the command any, which determines whether any
element in a matrix is non-zero.

To compare strings without worrying about case (i.c., a/A...z/7Z) use strcmpi.

Better way to check the answer.

while 1
answer = input ('Would you like to exit this loop? (y/n) [yl ', 's'");
1f isempty (answer) || any (strcmpi (answer, {'y','yes'}))
break;

elseif any (strcmpi (answer, {'n', 'no'}))
continue;
end
disp ('I don''t recognise your answer!');
end

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming
9.6 Checking numerical input

The command isempty can also be used with numerical input:

v = 1nput ('Pick a number between 1 and 10 [5]: '),
1f isempty (V)

v = 5;
end

You can check to see what kind of number or matrix the answer is:

[¢]

1f ~isscalar (v) % a scalar i1s a number or a 1x1l matrix

disp ('I expected an ordinary number, not a matrix!")

end

i1f isvector (v) % true 1f v 1s a row vector, a column vector - or a number!
disp ('Hey! That''s a wvector!')

end

1if v == round (v) % true 1if v 1s an integer
disp ('Great! That''s an integer!')

elseif v == imag (v) % true 1f v 1s purely imaginary
disp ('Wow! That''s an imaginary number!')

elseif v == real (v) % true 1f v 1s purely real
disp ('Excellent! That''s a real number!')

elseif ((v >= 1) && (v <= 10)) % true 1f v 1s between 1 and 10 inclusive
disp ('Thank you!")

end

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

WS

Mechanical Engineering Professional Skills: Introduction to Computing

9 Basic Programming
9.7 Warnings, errors & asserts

Values used in m-files (but defined outside or through user input) may need to be checked. Perhaps you need positive or negative
or non-zero numbers, as in the example here, or maybe you want matrices of a particular size or particular characteristics... It is
possible to 1ssue warnings and error messages, or even just to give up without comment (although this is not really polite - it’s nice
to explain what the problem is...).

>> myFunction (1,-1,1) x, y and z all okay - no problems.
ans =
1
>> myFunction (-1,-1,1) oops, X 1s negative! issue warning. ..
Warning: I don't like negative numbers! (warning)
ans = ... but calculate answer anyway.
-1
> In myFunction at 3
>> myFunction (1,1,1) oops, y 1s positive! issue error and stop.
??? Error using ==> myFunction at 6 (error)
I really don't like positive numbers!
>> myFunction (1,-1,0) 0o0ps, z is zero! just stop (i.e., without message).
??? Error using ==> myFunction at 8 (assert)
Assertion failed.) ,
function a = myFunction (x,vy,2z)
if (x < 0)
warning ('I don''t like negative numbers!');
Note: assert was added to MatLab very i?d L=)
recently and may not work in older error ('I really don''t like positive numbers!');
versions of MatLab. end
assert (z ~= 0);
a=x+vy + z;

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

10 Function m-Files

10.1 Function declaration and help

m-files can be used to define functions, e.g.:
>> help myFunction
myFunction takes the wvalues

x, y and z . 2 3

and returns the values
a = X ty + Z
b=x .y .* z
>> [a,b] = myFunction (1,2, 3)

o)
I

..................

function [a,b] = myFunction (x,y,z)

.................

o\°

myFunction takes the values x, y and z
and returns the wvalues

a = X t+y t Z

b=x .y .* z

o® o\°

o\°

o

6 @

O
|

>> [c,d] = myFunction (2,3,4)

= x + vy +t z;
= X .y .* z;

The m-file ‘myFunction.m’

1.Output variables, e.g., the y in y=f(x).

2.Function name (file name is this with suffix ‘.m’ added) , e.g., the f
in y=f(x).

3.Input variables, e.g., the x in y=f(x).

4.Comments at the start of the function m-file become the ‘help’
statement.

9

d =
24

>> [e,f] = myFunction ([1,2],1[2,3],1[03,4])
e =

6 9
f =

6 24

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

10 Function m-Files

10.2 General comments

Function Name

e The function declaration should be the first (non-empty or non-comment) line in the file.
» Use a descriptive function name, e.g., ‘deflection(...)’ rather than ‘f3(...)’

e The file name must match the function name, e.g., ‘deflection.m’ for ‘deflection(...)’

Suppressing Output

« As with normal m-files, use ;" where necessary to suppress output, and use disp where
communication with the user is intended.
e ‘;’1snot needed at end of the function declaration line.

Function Variables

* Do not assign values to the function’s iput variables. You provide values to the
function when you run it!

* There are zero or more nput variables.

* There are zero or more output variables.

 Input and output variables can be scalars, vectors, matrices or strings

Comments (i.e., lines beginning with ‘%’ which are ignored by MatLab)
» function help (the comments immediately before or after the function declaration) - essential!

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

10 Function m-Files
10.3 Using functions
Most Important

If you defined, e.g., ‘myFunction(...)’ in the file ‘myFunction.m’,
* can you successfully use myFunction in MatLab?
* do you get any help when you type ‘help myFunction’ in MatLab?

Sample solution:

The m-file ‘deflection.m’.

>> help deflection
y = deflection(d, L)
Deflection, y, of the end of a steel
cantilever beam
Young's modulus, E = 209GPa
Density, rho = 7800kg/m3
Square cross-section, width d
Beam length L
>> deflection (0.005, 1)
ans =
0.0022

function y = deflection(d, L)

o oC o o\® o° o©

o\°

E

y = deflection(d, L)
Deflection, y, of the end of a steel
cantilever beam
Young's modulus, E = 209GPa
Density, rho = 7800kg/m3
Square cross—-section, width d
Beam length L
= 209E9;

rho = 7800;

o\°

o° H

W00 =

Second moment of area

= d*4 / 12;

Mass per unit length

= rho * d"2;

Deflection

=w * L / (8 *E * I);

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

10 Function m-Files
10.4 Nested loops with ‘for’

Example of a function m-file with a nested for loop. The function has two input variables: a vector (X) of x values, and an integer
(n) which says how many Fourier sequence terms to use in the approximation to the square wave. There is one output variable (Y)

which 1s a vector of y values representing the height of the square wave.

function Y = square (X, n)

o

% Y = square (X, n) - square wave generator with n terms in sequence
% Check that n is a scalar integer and greater than or equal to 1:
assert (isscalar (n));

assert ((n == round (n)) && (n >= 1));

o

% Check that the input matrix/array X is a vector:

assert (isvector (X))

by referring to the position in the vector, i.e.:
- if Z 1s a row vector, then Z(3) 1s the same as Z(1,3);
- if Z 1s a column vector, then Z(3) 1s the same as Z(3,1).

% Find the number of elements:
max (size (X));

Z
I

Elements in vectors (both row and column) can be extracted or changed

% Create the output vector (same size as the input vector):
Y = X;

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

WS

Mechanical Engineering Professional Skills: Introduction to Computing

11 Properties of Plots
11.1 Line plots

In MatLab, as an alternative to using plot, you can add a line to plots using the line
command:

>> X = [0:0.1:10];
>> Y = X."2;
>> line (X,Y)

The above results in the top-right figure. You can also add a line to a 3D plot. The middle-
right figure was created like this:

>> 7 = sin (X);
>> line (X,Y,Z2)
>> view (65,70)

X, Y and Z can be matrices containing data for multiple lines. At a much more
fundamental level in MatLab, single lines are added like this:

>> line ('XData',X,'YData',Y)
>> line ('XData',X, 'YData',Y, 'ZData', 2)
>> view (65,70)

where no additional line properties are set (see bottom-right figure). By storing the handle
(a reference) to the line, 1.e.:

>> h = line ('XData',X, 'YData',Y)

you can use it to change the line’s properties later, such as colour and line width, and even
the X-Y (or X-Y-Z) data used to draw the line:

>> set (h, 'Color','r', 'LineWidth', 4)
>> set (h, 'ZData',Z.”2)

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

WS

Mechanical Engineering Professional Skills: Introduction to Computing

11 Properties of Plots
11.2 3D plots

There are a set of commands that are useful for plotting functions in 3D, e.g.: ezcontour
and ezsurf. The top-right figure was created like this:

>> g = @(r) r .* exp (-r)
>> f = @(x,y) sin (x) .*

g (x.7%2 + y."2);
>> ezsurfc (£, [-4,4,-4,4]

)

In general, 3D plots are based on a vector of X values, a vector of Y values, and a matrix
of Z values. An identical plot can be created like this:

>> X =4 * [-59:2:59] / 59;

>> Y = X3
>> 7 = zeros (060,060);
>> for 1y = 1:60; Z(iy,:) = £(X,Y(iy)); end

>> surfc (X,Y,2)

As with lines (and plots generally), you can store a handle to a surface and change
properties later. The middle-right figure was created like this:

>> s = surf (X,Y,Z);
>> set (s, 'ZData',Z.”2)

There are lots of properties associated with surfaces, mostly to do with different colour
and lighting models. For example, the bottom-right figure has smoother colour across
surface faces, no edges, and is slightly transparent:

>> s = surf (X,Y,7%2);
>> set (s, 'FaceColor', 'interp', 'EdgeColor', "'none')
>> set (s, 'FaceAlpha',0.85)

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

12 Vectors & Matrices
12.1 Vector scalar (or ‘dot’) product

The scalar product of two vectors a and b is written a - b.

, and similarly b has length |b|.

The length of the vector a 1s the absolute value, |a

In Cartesian coordinates, using Pythagoras theorem, if a and b are n-dimensional column vectors:

A
(a /bl A
b
a= a2 b: b-z
NIV G

then the lengths (magnitudes) of the vectors are:

a| =@ +a +--+a’ |b|=[b> +b}+---+ D

and if the angle between a and b is 0, the scalar product is: a- b = |a||b|cos 6

but also the scalar product is defined as: a-b=ab, +a,b, +---+a b =a'b
where a’ is the transpose of a,i.e.ca’ :(a a, - a,)

In MatLab, the scalar product can be calculated using the command dot: >> dot (a,b)

The transpose of a vector or matrix in MatLab is calculated using an apostrophe: >> a’ * b

The length (magnitude) of a vector can be calculated using the command norm.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

12 Vectors & Matrices
12.2 Matrix multiplication

Let A be an n X m matrix and B an m X p matrix, then the product:

C=AB
1S an n X p matrix:
(.)
Cll 612 Clp a4y alm\ (bll blj
C = Crp Gy 0 Gy A — 5 : o by, -+ by,
—— : : ¢ . : ai] aiz oo aim E .
\ : R, \bml bmj

\ Ca G 7 Cnp)
where:

c; =a,b;+a,b, +...+a,b

im- mj
Example - a permutation matrix rearranges the elements in a vector:
(0 1 0)(x) (¥

0O O 1|yl|=]|z
1 0 OAz) (x/

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

12 Vectors & Matrices

12.3 Matrix powers and inverse

Let A be an n X n square matrix, then:

A’=1T A'=A A°=AA A’=AAA etc.
where I 1s the n X n 1dentity matrix.

Negative powers are also possible:
AZ=(A") AZ=(A") et
where A™' is the inverse of A, and is defined by:

A7A=1I=AA"
and this behaves like a normal power of A,e.g.: A7A’ = A’

In MatLab, matrix powers are calculated in the usual way, 1.e., don't use
element-wise methods!

>> AN2

The inverse of a matrix A can be found using the command inv, or by
raising it to the power -1:

>> A" (-1)
>> inv (A)

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

12 Vectors & Matrices

12.4 Simultaneous equations
3x+4y=>3
Tx+12y=13

. . . 3 4 \(x 5
can be written 1n matrix form: —
7 12 N\ y 13

In general, this can be written as the problem:
Ax=Db
where A 1s a known n X n matrix and b is a known n-dimensional vector.

Simultaneous equations, €.g.:

The problem is to find x.
One way is to find the inverse of A and multiply b:
x=A"b
Computationally, it 1s better (faster and more accurate) to use Gaussian elimination.

In MatLab this 1s done using a backslash:

>> x=A\Db

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

12 Vectors & Matrices

12.5 Eigenvalues & eigenvectors

The eigenvalues and eigenvectors of a matrix are solutions of the equation:
Mv —Av=0

(not including the case where v=0). For instance, the principal stresses are the eigenvalues of the stress matrix.

In MatLab, you can find eigenvalues and eigenvectors using the eig command, e.g.:

> M = [1,2,3;4,5,6;7,8,9];
>> [V,L] = eig (M)
V =
-0.2320 -0.7858 0.4082
-0.5253 -0.0868 -0.8165
-0.8187 0.60123 0.4082
T
16.1168 0 0
0 -1.1168 0
0 0 -0.0000

This 1s an example of a MatLab function which returns two matrix values; here they are saved as V and L. The matrix V contains
the eigenvectors in columns, and the matrix L. contains the eigenvalues along the diagonal elements. The eigenvector in column »
of V corresponds to the eigenvalue in row n, column n of L, so for n=1:

> M * vV(:,1) - L(1,1) * V(:,1)

' 1.0e-14 *: i.e., very small!

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

13 Ordinary Differential Equations
13.1 First order ODEs

First-order ordinary differential equations (ODEs) have the general form:

d
- v = t,
57 f@,y)
where y can be a single variable of time, ¢, or a vector of variables of time. For example:
4 y=t = y=1t"+c
dt ?
d
—y=Y = In(y)=t+c
dt
d . . :
= y=y+t = y=ce —t—1 (use an integrating factor)
4

Note: Although the ODE is expressed in terms of f(¢,y), the function does not have to depend on ¢ and y (or, if y is a vector, on all
components of y).

In MatLab, you can solve the ODE using the ode23 command (there are other ODE solver commands also), e.g.:

d . >> f = @Q(t,y) sin (y + t);
Ey_sm(yﬂ) = 5> o0de23 (£, [0 20],0);

The 2nd function argument, [0 207, tells MatLab to work out the function starting at time /=0 and finishing at =20. The 3rd
function argument, 0, tells MatLab to start at =0 when =0.

To get the data of function values (Y) and corresponding times (T) instead of a plot, type:

>> [T,Y] = ode23 (£,[0 20],0);

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

WS

Mechanical Engineering Professional Skills: Introduction to Computing

13 Ordinary Differential Equations
13.2 Vector ODEs

A system of first-order ordinary differential equations (ODEs) may be expressed as a vector:

d yl y2 _ y3 1.5
| 2T YT VAW AN A
dt ? : . T AR
y3 yl . y2 0.5
In MatLab, solving again using the ode23 command:)
>> £ = @(t,y) [y(2)-y(3);y(3)-y(1);y(1)-y(2)]; EJ %
>> ode23 (£,[0 10],[1;0;-11); ﬂﬂy
produces the figure on the right. N; * 4
To get the data of function values (Y) and corresponding times (T) y

instead of a plot, type:

>> [T,Y] = ode23 (£,[0 10],0);

This creates a vector T of times between 0 and 10 inclusive (the time
interval requested), and a matrix Y with three columns (one column

for each element in the vector returned by the function f) of y-values
corresponding to the time-values in T.

For example,

>> plot3 (Y(:,1),Y(:,2),Y(:,3))

produces the figure below-right.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

13 Ordinary Differential Equations
13.3 Second order ODEs

Second-order ordinary differential equations (ODESs) involve higher-order derivatives, e.g.:

d’ d
—y+—y+y= f(t,
eyt Yty f(,y)
where y can be a single variable of time, 7, or a vector of variables of time. For example:
d +2d +y=t = Ae”' +Bte' +1 -2
e y s yry Y
4 Ry=sinkt) = y= Asin(kt)+ Beos(kt) — ——cos(kr)
L y y = sin y = Asin COS " COS
d’ GMr . :
—r+——=0 = (orbit equation)
dt r
d’ d B . : : :
Fx + ,uzx =g = (projectile equation with resistance)
The last two are equations of motion (r and x are position vectors), relating 15000

acceleration to position and velocity.

10000 -

Practical 6 has an example of several large moons passing close to one
another, with motions described by the orbit equation given above. The
figure on the right shows the result of including all five bodies.

5000 _| ,

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

13 Ordinary Differential Equations
13.3 Second order ODESs (contd)

To solve higher-order ordinary differential equations, you can add new variables, e.g.:

r_dy =Yy
d* d dt L 2
—y+—y+y=f{ity) = -
dt dt d
dty2+y2+)’1:f(ta)71)

This turns a higher-order problem into a first-order vector ODE problem.

In other words, y started out as a single variable but has been turned into a vector:

i V1 _ Y
dt Yo f(ta)ﬁ)_)ﬁ_yz

It can often be useful to think about first and second order ODEs as equations of motion,
even if the system being described has nothing to with physical motion.

In this (one-dimensional) case, let the position be s, the velocity v and the acceleration a:

(d

ESZV 1% dl s %
+v+s=f(t,s) = - = = — =
atv+s=fit.s) d (a) dt(1%) ft,s)—s—v

Ev+v+s=f(t,s)

J

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

AT

Mechanical Engineering Professional Skills: Introduction to Computing

13 Ordinary Differential Equations

13.3 Second order ODESs (contd)

As another example, motion in 2D with resistance:

oo il H

may be rearranged:

d(x]_ v, oY (0w
o Yy d Y Yy

S
al v —v. dr| Vi — U,
dr| v, - —uv,— g \ Yy L —Hv,—§

J

Here a second-order vector ODE has been rearranged to give a first-order vector ODE,

but the vector has more elements.

University of Newcastle upon Tyne, School of Mechanical & Systems Engineering

Complex Numbers, Matrices & MatLab

