25 Newcastle
University

Final Report
Automation of a Rail Buggy

MEC8095-Mechanical & Systems Engineering Project

Supervisor: Dr. Franklin

Name: Abdulrahman Mahmoud

Student Number: 140362477

Declaration

I, Abdulrahman Mahmoud the author of this report, declare that this report is submitted
as a requirement from the Mechanical Engineering School towards the end of the
Mechatronics degree at Newcastle University, has not been submitted for any other
degree at any other Universities. It is solely the work of Abdulrahman Mahmoud unless
recognised otherwise in the text. It illustrates the work that was carried out at
Newcastle University which is recorded in a project logbook. | am aware that
plagiarism, fabricated results and the use of unacknowledged research, ideas or words
will be dealt under the University’s Assessment Irregularities Procedure and if needed
subjected to a disciplinary action. Thus, | declare that this report is free from

plagiarism, fabricated results and unacknowledged research.

Abdulrahman Mahmoud,

24/08/2018

Acknowledgements

| would like to direct my utmost gratitude for the assistance of my supervisor Dr.
Francis Franklin for his guidance, vital care, encouragement, support and the
recommendations made by him throughout the progression of the project. His
continuous supervision upon my work was vital in the progression and completion of
the project successfully. | would like to extend my gratitude for the support of my family
members and friends particularly, Mohammad Al-Banna, Nicolas Abboud and Ajith

Thomas for their help during the project.
Thank you,

Abdulrahman Mahmoud.

Abstract

Regular operation of trains will result in a progressive damage to railway tracks, even
though the steel used is very durable and can withstand high loads. Through constant
use the rails can develop small defects such as micro-cracks, gauge cornering
cracking, rolling contact fatigue, wear etc. These small defects if not detected can grow

and eventually cause a catastrophic failure if the rail breaks during operation.

The railway track buggy is a foldable lightweight vehicle that can be used to carry
equipment, e.g. monitoring equipment to detect defects in the rail. Although the track
buggy has motors, the control system is still being developed and the present report
develops systems for feedback, and control using speed sensors at both driving and

driven wheels.

The control system couples a Raspberry Pi with a Teensy, and a method of
communication over 12C developed for the system. Photo-interrupter sensors were
used as a way of measuring the speed of the track buggy on rail. An Arduino Leonardo

board was also used to test the system.

System testing is shown, and the results are laid out to present the main strengths of
the system whilst suggesting an improvement for the flaws. Results from both boards
are shown and a conclusion is based on these results. Overall system implementation

between all boards was a success, along with the speed feedback system.

Contents

R [T 0T [Tod 1 0] o PR 5
1.1 - AIMS aNd ODJECHIVES:ciieeiiiiiiee e e e e e et e e e e e e eeeeees 5

2 - LItErature REVIEWuuei ittt e e e e e e e e e e e aaaan s e e e e e e eeeeenes 5
2.1 - RASPDEITY Pl 5
2.2 - Arduino SHIEIo 6
2.3 — TEEBNSY 3.2 . et eaaans 7
2.4 - Programming Languages USEd ... 9
2.5 — Sharp GP1A57HRJO0F Photo Interrupter SENSOr.........ccooeveeeeeiieieieeeeeeeeeee 10
2.6 - 12C/IIC (Inter Integrated CirCUit) BUSccooeeiiiiiiiiiiiiieeeeeeeceeeiie e 10

3 — MeChanIiCal DESIGNccoeieiiici e e 12
3L =DrVEN WREEI ... 12
3.2 =DriVINg WREEI e 14
R)11 (=] 1 PP 15
4.1 — Raspberry Pi Code (PYthON)ccoiiiiiiiiicc e 15
4.2 — Arduino/Teensy Code (CH) .o 17
LIRS VA1 (=] 1 1 T IS PP 20
5.1 — SBINISOIS ..ttt ettt e e e e e e e e eraans 20
5.1.1 —DrHVEN WREEIS.....ccoeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 21
5.1.2 = DriVINg WHREEL ... 23

5.2 — RPi — Teensy/Arduino CommuniCatioNcooevviiiiiiiiiieeeeeeeee e 24

B — DISCUSSIONceeeeeeieitiee e e e e e e e e ettt e e e e e e e e e eeeaea e e e e e e eeeeeeaaanneeeeeeeeeeessnnnnaeaeeeeeennnes 27
A o] o od U] T o PSR 28
8 — FULUIE WOTK ..ttt e e e e e e e et e e e e e e e e e eeennnn s 29
S T] (=] =T [0S 31
Appendix A — Driven Wheel Components Engineering drawings..........ccccevvveveeeeeee. 33
Appendix B — Driving Wheel Components Engineering drawingsccceevvveeeeee.. 37
Appendix C — Raspberry Pi code (Python)...........cvvviiiiiiiieeeeeeeeee 40
AppendiXx D — Teensy Code (CHt) .o 41
Appendix E — Arduing €O (CH) .o 44

1 — Introduction

According to the Office of Rail and Road, there has been a total of 438 million
passenger journeys made in Britain by a train operator in the 3 quarter of the financial
year 2018 [1]. Due to this large volume of journeys the rail must be maintained
regularly and scanned for any defects that might cause disastrous events.

To inspect the rail, operators use various technologies and vehicles including hand-
pushed buggies. These buggies are loaded with monitoring equipment and the
operator manually pushes the buggy across the rail. The Track Buggy, being
developed at Newcastle University, is a foldable, lightweight, self-powered railway

vehicle that can be used to carry equipment e.g., monitoring equipment.

The Track Buggy is equipped with 2 MY1016 24V, 250W electric scooter motor. The
driving wheels are not directly driven using the motor, instead it uses an 11-tooth
sprocket to a 25-tooth sprocket that sits on an intermediate shaft. This intermediate
shaft contains a 28-tooth sprocket that drives a 42-tooth sprocket located on the
driving wheel. Chains are used to transmit the torque from the motors to the wheels.

This allows the Buggy to reach speeds up to 15km/h [2].

The Track Buggy needs an integrated system that will allow it to operate automatically
on the track. The system will have a speed feedback system to control the buggy’s

velocity on the track. The system can be controlled wirelessly.

1.1 - Aims and Objectives:
e Select optimum solution for control.
e Speed monitoring system.
e Establish an 12C! bus between the Pi and the other boards for non-serial
communications.

e Build the system and test it.

2 - Literature Review

2.1 - Raspberry Pi
The Raspberry Pi is a cheap single board computer that can be used easily with a

keyboard, mouse, a monitor and the free operating system Raspbarian. The small

112C: Inter Integrated Circuit communication protocol

computer supports multiple programming languages all aimed for programmers to

learn a new program or for experienced users, to be use in any project.

Raspberry Pi Model 3 is equipped with 1GB of RAM and a Quad Core 1.2GHz 64-bit
CPU. It has built in Wi-Fi and Bluetooth capabilities with a 40-pin extended GPIO
(General-Purpose Input/Output) that can be used for 12C, SPI?> or UART?
communication protocols, allowing the Pi to be versatile in communication. The Pi also
has some limitations such as, no built in ADC (Analogue to Digital Converter) and
cannot produce enough power to drive an inductive load, making it hard for the Pi to
control hardware components. However, these disadvantages can be overcome by

using a Teensy board or an Arduino Shield [3].

GPIO Pinout Diagram

SlEEELEEE L BB B
Ao Rk e S E- G 1)
2: B 6 &5 &5 80 6 & & & & &5 65 21 6 & & & & &
100000000006 6 ofK-Ior'IololoF
§ ~ H
00000000006 00KeeLeLE
05 Ng @9 ~ ~ o (& ex B a: o © © L3 © k-1
AEEiEEEOE o5 OEOE OB g5 8 2 E B E ¢ B F
62 68 & § & & & §/° S8 "2 ° ° 1§ & |8 (8
4 Squarely Placed 40 GPIO SMSC LAN9514 USB
Mounting Holes Headers Ethernet Controller
Run HeaderUsed R __ _ _ _ __ __ _ 1
i Header Used T ——

2x2 USB-A
Ports to PC

Broadcom BCM2835

MicroSD Card Slot
(Underneath)

DSI Display Connector

Switching Regulator for

Less Power Consumption e Ethernet Out Port

HOmM
F i !
LS Dl
3

5V Micro USB HDMI Out Port -ommAydicand
Power Composite Output Jack

CSI Camera
Connector

Figure 1: Raspberry Pi with pinout map [4]

2.2 - Arduino Shield

The Arduino is an open-source electronics platform based on easy-to-use hardware
and software [5]. Generally, an Arduino can be regarded as a microcontroller with its
I/Os, memory and CPU all integrated on one board. It uses an IDE (Integrated

Development Environment) that can be downloaded on a computer where the

2 SPI: Serial Peripheral Interface communication protocol
3 UART: Universal Asynchronous Receiver/Transmitter communication protocol

programmer can write and upload the code to the board with the use of a USB cable
[5]. This IDE uses a simpler version of C++ programming language, making it easier
to program the board [6]. This IDE can be downloaded on the Pi and then the codes

can be uploaded to the Arduino using the Pi.

The Arduino offers different variety of pins such as, Ground, 5V & 3.3V, Analogue,
Digital and PWM [6]. The board also supports the same communication protocols
offered by the Raspberry Pi. To keep the microcontroller cost to a minimum,
manufacturers did not include built in Wi-Fi or Bluetooth. However, it is good in
controlling hardware but inadequate for communications. Thus, by combining a
Raspberry Pi’'s excellent communication and an Arduino’s ability to control hardware

and run them, the result is a complete system.

The Arduino shield in use is based on the Arduino Leonardo Chip with its on board
microcontroller chip being an ATmega32u4 with a clock speed of 16 MHz [7]. The
shield also offers different Raspberry Pi 1/O pins.

L ; ' Pi GPIO Expansion

© Ty Raspberry Pi s ey
; N—
H E = it] N
SV P D o 4 4 =
__________________ s L—@

(

([N W0 6 N N SN &N NN s

rduino Digital Port Seri

[
H

=

Figure 2: Arduino Shield used with pinout map [8]

2.3 —-Teensy 3.2

The Teensy is a complete USB-based microcontroller, with its small size, high
performance and large memory the board can manage many types of projects [9]. The
Teensy board can be programmed using the Arduino IDE software, by installing an

add-on called Teensyduino [10]. Teensyduino also allows the user to choose the

processor speed he would like to use.

The Teensy board offers multiple pins such as, Ground, 3.3V, Digital, Analogue and
PWM. However, the Teensy is equipped with the MK20DX256VLH7 processor with a
rated speed of 72 MHz which is faster than the Arduino Leonardo. Unlike the Arduino
board, Teensy 3.2 cannot supply 5 volts of output power, as it is limited to a maximum
of 3.3V [11]. Another important feature that is lacked in the Arduino is that on the
Teensy board, almost all the pins can be modified as attach interrupt pins, pins that
can pause the controller for a small amount of time to execute the Interrupt Service

Routine (ISR%).

Welcome to Teensy 3.2 Teensy 3.2 Back Side

32 Bit Arduino-Compatible Microcontroller
Additional pins and features available on the back side

— =
<<
g LDn S E (Cut to separate VIN from VUSE, if
Digital Pins s===555%5¢S using a attery charger r extemal
Pl B £ power for USE Device mode.
igitalRea oaaakFkFFEF oo eSS
digitalWrite . ™ T=22E T
pinMode & o\ MEskw A m W@
= = (SN (SRv oo A nm ™M= o« =2
[g N Mmoo =T =
" e Qoo
AnalogPins < LSS S=3S 04
4 s 8 = (G- =] .
analogRead o EEelx R R DAC/ALS T
analogReference “; 8 e M -M-M-N-N-N-
analogReadRes = NoOoROnTmoN = B Program | J
EU0UMmau—~ooommM~w®intm *! ————— -
PWM Pins S E AN 33VET 4] =, USE
analogWiite 29000008 *e VBat B, Signals
anlogteRes [= AL4/DAC I RY
Program IomouFos
=
Touch Sense | @[] G= et
Pins M~ W0 =
: 33V 222§
touchRead VBat Use 3V coin 2 Add32768kHz Add 150 pF
@ cell for Real Crystal for Real Capacitor for
Serial Ports Time Clock b = Time Clock. USB Host made.
Seriall o CEE - L‘E
Serial 5 25
Serial3 =) ~ L v
< 25
= =)
12C Port Fa S Is
Wire Library a ==
=
== =E=EE=EZ=
SPI Part z =
ee EEE= CAN Bus

SP| Library

Figure 3: Teensy 3.2 board with Pin layout [12]
With the high performance and the capability to overclock the processor’s speed,
combining a Teensy board with the Raspberry Pi will create a powerful system that
can operate at a fast rate. The following table compares the main features of a Teensy

3.2 board against an Arduino Leonardo board.

4 |SR: Software invoked process that interrupts the CPU from the current process. Once the ISR is
complete the CPU resumes the interrupted process

Table 1: Comparison Between Teensy 3.2 and Arduino Leonardo [11] [13]

; Teensy 3.2 Arduino Leonardo
Processor MK20DX256VLH7 ATmega32u4

Processor Speed (MHz) 72 (overclock-able to 95) 16

Length (mm) 17.78 68.6

Width (mm) 36.26 53.3
Digital 1/O Pins 34 20
PWM Pins 12 7
Analogue Input Pins 21 12
Flash Memory (kbyte) 256 32
SPRAM (kbyte) 64 2.5
EEPROM (kbyte) 2 1
Interrupt Pins All digital pins can .be 5

used as Interrupt Pins

2.4 - Programming Languages Used

A programming language can be regarded as rules that can instruct a computer or an
electrical component on what to do and how to perform a task. There are many
different languages such as, C++, C, Python and Fortran, all these languages vary a
lot due to their syntax, which is the form of an instruction and how it should be set up
[14].

Arduino’s IDE is a simplified version of C++ with Libraries that can make writing a code
easier and shorter. C++ is an object-oriented high-level language developed by Bjarne
Stroustrup [15]. It is regarded as a compiled language. Compiled languages are
converted directly into machine code thus, they can run significantly faster and more
efficiently than interpreted languages [16]. This offers the developer control over the
hardware aspects. However, the code needs to compile each time new changes are
made which can make debugging, the process of identifying and removal of errors,
the code complicated and time-consuming. Teensyduino software is an add-on for the

Arduino IDE which allows the Teensy board to be programmed [10].

The Raspberry Pi offers different software for coding, but the easiest one to learn is
Python [17], due to its easy syntax readability. This makes debugging the code easier
as well, and the presence of multiple open-source libraries is a significant factor [18].
Python is an in interpreted, object-oriented, high-level programming language.

Interpreted languages do not require machine code to execute a program, instead they

will run through the program line by line and execute each command [16]. This is a

main disadvantage which will slower the program execution speed.

2.5 — Sharp GP1A57HRJO0OF Photo Interrupter sensor

The sensor in use is a standard transmissive photointerrupter
with the emitter and detector in the same case but opposite to
each other. The sensor contains a diode on the emitter side.
The sensor requires a voltage input between -0.5 to 17 volts

with a peak current of 1 ampere [19], and the recommended

current for the emitter is 7mA. This sensor outputs 1 when
there is nothing crossing the slot and 0 when there is Figure 4: Sharp

GP1A57HRJOOF Sensor [19]
something blocking the slot. A photo of the sensor can be

seen in figure 4.

2.6 - 12C/1IC (Inter Integrated Circuit) Bus
A Serial Protocol for two wire interfaces designed by Philips in the early 80’s to
facilitate communication between components on the same circuit board, hence the

name Inter Integrated Circuit [20].

I2C is a half-duplex protocol, this means that the data can be sent in both to and from
a device but not simultaneously. It uses two main wires for communication, a Serial
Data wire (SDA) and a Serial Clock wire (SCL). SDA is used to transfer data shared
between transmitters and receivers and SCL is used for synchronisation of the
electrical component clocks on the bus. The protocol can support speeds up to 3.4
Mega-Bits/Second [21].

There are two types of device profiles on the bus a Master and a Slave. A master
generates bus clock and begins a communication process on the bus, whereas a slave
will respond to the commands that appear on the bus. In case of multiple slaves
connected to the bus the master can address specific Slaves by their unique address
ID, usually master devices do not have an address to eliminate the possibility of a
slave transmitting commands to the masters. But in the case of having two or more

master devices and two of them initiate a transmission on the bus, bus arbitration takes

10

place. Bus arbitration means that both SDA signals from the masters are compared to
each other while the SCL signal is high, if one of the SDA signals is LOW and the other
one is HIGH the master with the low SDA signals wins the bus arbitration process and
thus, have access to use the bus. The other master will have to wait till a stop condition

appears on the bus. Each device can be a transmitter, a receiver or both [22].

The SCL and SDA signals are bidirectional. They are connected via resistors to a
positive power supply voltage, and they also have an open-collector to achieve a wired
AND bus connection. A wired AND connection means that when the bus is free both
the SCL and SDA signals are high (equivalent to 1) so to initiate a bus transmission,
both lines must be pulled down to low state (equivalent to 0). Only a master can pull
the clock signal into a low state to start the synchronisation of the clock and mark the
start of data transmission, the master keeps the clock low till it receives the data from
the receiver since the receiver cannot pull the SCL to the low state. To mark the end
of the data frame the master has a stop function to indicate that the bus is free for use
[22].

The typical data frame of the bus, see figure 5, shows the full data frame structure
used in the bus. The frame starts with a Start Condition, which is the start function on
the master. This is followed by a 7 or 10 bits address frame that is unique for different
slave devices on the bus. The Read/Write bit is set as O if the master is writing to the
slave and 1 if the master is reading from the slave. The data frame can send up to 8-
bits (1 byte) of data and there is no limit of how many bytes you send if every byte
ends with an Acknowledgement bit added by the receiver [22]. The 12C protocol is
governed by the SMBus, System Management Bus, on the Pi and by the Wire library
for the Teensy and Arduino boards. The SMBus & Wire library will manage the

message frame.

Message
.
~ -
Read/ | ACK/ ACK/ ACK
Start 7 or 10 Bits write |nack| 8 Bits |nack| 8 Bits |nack| Stop
Bit Bit Bit Bit

—— e

Address Frame Data F 1
Start Condition ata Frame Data Frame 2 Stop Condition

Figure 5: 12C data frame format [23]

11

3 — Mechanical Design

Mechanical components that will allow the mounting of the sensors to calculate the
speed of the buggy. Additional components were added to the buggy to use the sensor

with the recommended configuration.

3.1 — Driven Wheel

An arrangement of two sensors is used to get feedback about the direction of
movement of the buggy, in a way that one sensor will be slightly leading the other in
its reading. Please refer to section 4.2 for details about how the direction of the buggy
is determined. This arrangement required the design of a disk encoder with teeth to
not only get the direction, but the speed as well. The disk had to be designed and
manufactured in house since there were no suppliers to purchase a disk with the

desired dimensions.

The disk is made from 6mm black acrylic. The choice of black acrylic was to reduce
weather effects on the disk and to fully absorb the light from the sensor’s emitter. The

design can be seen in figure 6.

Number of
teeth:18

4 x @8

All dimensions are in
mm

Figure 6: Disk Dimensions

The smallest diameter of the wheel is 93.2mm, therefore the diameter of the disk was
chosen as 92mm. This is so that the disk will not hit the rail whilst the buggy is moving.
For the sensor to have space, two 6mm spacers were added to push the disk away
from the wheel. The spacers are made from plywood. See Appendix A for the CAD

drawings.

12

The disk has a total number of 18 teeth, the number was calculated using the following

formula:

Circumference
Pitch Equation 1

Number of teeth =

The pitch is the slot width and the pitch circle circumference for 1 tooth. A pitch of
16mm will calculate a number of 18.06 teeth. The slot width was kept at 8mm and the

number of teeth to 18, this calculated a pitch circle circumference of 8.05mm.

A frame lip was designed to hold the components to the frame of the wheel, so that
the sensor is far away from the ground. An adjuster was added to be able to change
the height of the sensors from the disc. A small component was added to hold the
sensors together but separated by a small distance, so that one sensor will be leading
the other one. All these components were made from 3mm clear acrylic. The inventor

assembly can be seen in figure 7.

Adjuster Frame Lip

| Sensor Holder

Figure 7: Inventor Assembly for the proposed arrangement

The assembly of this arrangement can be seen in figure 8 & 9. The engineering

drawings of the other components can be seen in Appendix A.

13

Figure 9: Side view of the arrangement
Figure 8: Arrangement for the driven wheel

3.2 — Driving Wheel

Due to the chains and the sprockets on the driving wheel, it was difficult to design the
same disk as the driven wheel. So, the sensors were mounted adjacent to the chains
for the chain links to break the sensors light. For this purpose, a different frame lip was
designed that will allow a plate to slot through it. This plate will have angular slots to
allow the sensor to slot inside. A tight fit lock is used to secure the sensor in its position.
The components are made from 3mm clear acrylic. Figure 10 shows the inventor

assembly of the arrangement.

Frame Lip

Sensor Holder

Figure 10: Inventor Assembly for the arrangement of the Driving Wheels
The whole arrangement can be seen in figures 11 and 12. The engineering drawings
for the components can be seen in Appendix B.

14

Figure 11: Driving Wheel Arrangement

4 — System
4.1 — Raspberry Pi Code (Python)

Figure 12: Driving Wheel Arrangement

The Python code is simple and is understandable. The python code be seen in

Appendix C. The main library used is the pigpio library. This library runs using the

pigpio-daemon to facilitate the control of the general-purpose Input/Output pins

available on the Pi [24]. The following table shows the functions used from the library

along with their explanation.

Table 2: pigpio functions used [24]

Function

Explanation

pigpio.pi()

It connects to the pigpio daemon to grant
access to the Pi's GPIO pins.

i2c_open(bus, address, flags)

Returns a "handle" to open the 12C
communications to a specified bus and
address. Currently there are no flags, so it's
left empty.

pi.i2c_write_device(handle, data)

Sends data bytes to the device associated
with the handle. This function can send up
to 32 bytes of data.

(count, data) =
pi.i2c_read_device(handle, Number of
bytes to read)

This function reads up to 32 bytes of data
from the device associated with the handle.
Data received is presented as a bytearray.
Count represents the number of bytes
received.

15

The steps of the code can be seen in table 3.

Table 3: The logic of the code explained in steps

Step 1 | Join address 5 as the master.

Step 2 | Awaiting user input.

Send the byte representation of the user input along with the stopping
character ‘I'.

If the user input is “speed”, use the function “readingSpeed”. If not skip to step
10.

Step 5 | Read 10 bytes from the transmission.

Step 3

Step 4

Step 6 | Apply logical shift left by 8 bits to the first byte.

Add the second byte from the transmission to the logically shifted first byte to

Step 7 obtain the speed.

Step 8 | Print the rest of the bytes received as the direction of movement for the buggy.

Step 9 | Return the value of the speed back to the main loop.

Step 10 | The user input is not “speed”, use the function “readingCharacter”.

Step 11 | Read up to 14 bytes of data from the device.

Step 12 | Return the received values to the main loop.

Step 13 | Print the returned values from the functions and return to step 2.

Step 2 happens on line 20 which shows a while True loop, this is the main loop of the
code. Step 3 happens between lines 21 and 25. The command “str.encode()” returns
the byte representation of the user input, so that it can be sent over the SDA. The use
of a stop character “/” was to create a method to send two inputs from a single data
frame for example, this method can be used to adjust the voltage input of the motor to
alter its speed. In the other code, this stop character is recognised to separate the
input in the data frame.

For the 4" step, a separate read function is used to read the speed of the buggy due
to the logical shift section inside the function. The logical shift left is applied to the first
byte only, since this byte will be logically shifted right by 8 bits on the other board and
sent to the Pi as the first byte. So, to obtain the full speed value, the shifted first byte
is added to the second byte. This method was used since the maximum number the

byte can hold is 255 thus, using this method the maximum speed value that can be

16

sent is 65535. The received speed is then returned to the main loop to be printed for
the user.

4.2 — Arduino/Teensy Code (C++)

As mentioned in section 2.4 that both the Arduino and Teensy 3.2 boards can use the
same sketches, this means that the code written can work with Arduino and Teensy
3.2 board with few differences. The full code can be seen in Appendix D, this code
was used in the Teensy 3.2 testing and is the proposed code. As mentioned in section
2.5 the Wire library controls the 12C communications on the Arduino/Teensy board.
The Wire library offers a few functions that are used in the code, the following table

lists the used functions along with their explanation.

Table 4: List of used functions from the Wire library [25]

Function Explanation

Placed in the void setup, this function allows the device to
Wire.begin(address) join the specified address as a slave. To join as a master
the function is left empty

Placed in the void setup, this function calls a function

Wire.onReceive(function)) . .
when a slave device receives a transmission

Placed in the void setup, this function calls a function

Wire.onRequest(function
. () when a master requests data from the slave

Wire.read() Reads a byte from the bus

Writes data on the bus. Data sent can be in the form of a

Wire.wri i i
ire.write() string (character pointer) array.

The flow chart of the code can be seen in figure 13.

17

Loop for an 12C event

Request Unknown Request
for reply event for Speed
-
Rasp- [
berry Pi
rCaIcuIate average
speed from the
obtained speed Controller's
Loop
Always
Running Speed Calculation
_Firstnon.divenwheel _ _ _ Secondnondrivenwheel _ FIerynd Secpiang
1 ' 1
ISensor 1 I |Sensor 2] h |Sensor 3| ISensor 4 I I ISensor 5| ISensor 6]
1 1

II
(i) |

! -Dlrecllon
' I

1

Interrupt Interrupt | 1 : Interrupt Interrupt Interrupt

Service Service |1 | Service Service Service

Routine Routine | 1, | Routine Routine Routine

(ISR-1) (ISR-2)) : (ISR-3) (ISR-4) (ISR-5)

1

Interrupt
Service
Routine
(ISR-6)
Bl o [EE = | |

Delta Delta Delta Delta Delta Delta
Time 1 Time 2 Time 3 Time 4 Time 5 Time 6

Figure 13: Flow chart of the C++ code

The following table presents the steps of the code and how it works.

Table 5: The logic implemented in the code

Step 1 | Join address 5 as a slave.

Identify the functions to be used for the Wire.onReceive and Wire.onRequest

Step 2

commands.

Record the time for the “fallTime” variables along with the ISRs used for each
Step 3

sensor.
Step 4 If the wheel is moving, the speed is calculated till it is requested. If the wheels

don’'t move for more than 0.3s then mark the speed as zero.

Step 5 | Awaiting transmission from the master.

Step 6 | Clear the variables to store incoming data.

“, ”

Step 7 | Loop for the stop character “/”and store the received data.

Set a flag depending on the received data. If the received data is “reply” go to
Step 8 | step 9, else if the received data is “speed” go to step 10, else flag it as an
unknown event and go to step 13.

Step 9 | Reply back with “Hi Pi” and then return back to step 5.

Loop through all the speed values and add the values greater than zero then
divide by the number of speed values to calculate the average speed.

Apply logical shift left by 8 zero bits to the average speed value and store in the
Step 11 | variable “z”, then apply logical AND with OxFF (eight values of 1) to the average
speed value and store it in the variable “y”.

First send variable “z” and then “y” to the master, then send the direction of
movement. Return back to step 5.

Step 10

Step 12

Step 13 | Reply back with the message “Unknown event received” and go back to step 5.

18

For the 3 step, the ISRs are activated using the “FALLING” condition, this condition
represents that a transition from the HIGH state to the LOW state occurred. When the
sensor goes through this transition the ISR will be activated. The variable “fallTime” is
used across the ISRs of the sensors, it is used to calculate the delta time between the
activation of the ISR for one sensor. The order of the ISRs is the same order that

appears in the flow chart on figure XX.

The 4! step is always active. The speed calculation depends on the movement of the
wheels, so when the wheels are moving the speed of the buggy is updated. Therefore,

if the wheels are not moving for more than 0.3 seconds, the speed is set as zero.

For the 7™ step, the controller reads all the characters within the transmission looking
for the stop character to split the transmitted data. This is done because if another
transmission received, the Wire.onReceive function will be repeated again losing any
data from the previous transmission. The use of a second command in the system
was aimed to control the speed of the buggy, in a way that if the first command
received is “speed” and the second command is a number, then that number is used

to alter the speed of the buggy.

The 8" step sets a flag depending on the first command. This flag is used in the
Wire.onRequest function to set the correct data that is going to be sent back in reply

to the received transmission.

Steps 10, 11 and 12 occur within the Wire.onRequest function. The speed values are
obtained from a separate speed function that calculates the speed of the buggy every
0.1 seconds. The Teensy sends the Least Significant Bits (LSB) first, therefore in step
11 the average speed value is logically shifted to store the Most Significant Bits (MSB)
of the speed. The average speed undergoes logical AND with OXFF to store the LSB
of the value. They are sent in the order of MSB first then LSB later since the Pi is

expecting the first byte to be the MSB of the speed value.

Inside the speed function the first four sensors are regarded as the driven wheels. The

following equation was used to calculate the speed from the sensor readings.

Speed = s X 1000y 180) (0.5) £ tion 2
peed = (=) ST x(ﬂ (370 quation

19

Where s (in mm) is the distance between the ‘falling’ edges on the encoder disk,
equivalent to 15mm (8mm gap width and approximately 7mm teeth width). The
position of the sensor to the centre of the wheel is represented as r (in mm), from
measurements the distance is 43mm. &t is the time since the ISR got activated till the
next instance the ISR was activated again, its measured in milliseconds. The first
bracket will calculate the radians per second, then multiplying it by 180/1T to calculate
it in degrees per second finally multiplying by 0.5/3.0 to calculate the speed in RPM. 3
degrees/second is equivalent to 0.5 RPM. The rest of the sensors, which are mounted

on the driving wheel, are calculated using the following formula.

Speed ((P X 1000000) PCR) o (180) y (0.5)
peed = || ——————) + — —
ot n 3.0 Equation 3

Where p is the measured minimum distance between two chain links which is 2.40mm.
Whereas PCR is the Pitch Circle Radius of the 42 teeth sprocket which is 42.5mm
[26]. This calculation will calculate the angular velocity of the wheel. Multiplying the

angular velocity by 180/t and then by 0.5/3.0 will calculate the speed value in RPM.

5 - System Test

5.1 — Sensors

To follow the recommended input voltage and current. The sensor was connected to
3.3 volts and a resistor of value 660 ohms is chosen to limit the current to 5 mA through
the emitter only. The receiver did not have the resistor. Figure 14 shows how the

sensor should be connected, the “digital pin” refers to a Teensy digital pin.

3.3V

: j 660 Q

""" R ecelver LTO digital pin }

Figure 14: Circuit diagram for the Sensor in use

20

5.1.1 — Driven Wheels
Several methods were tested to investigate for the smoothest speed profile. The

smoother the speed profile, the fewer the errors in the method used. The main aim
was to have a constant feedback of the speed, so counting the number of teeth of the

disk till it finishes a full cycle should not be implemented as the speed feedback method

since, it is slow when the buggy is moving at a slow speed.

The first method was to calculate the speed every time a tooth passes by, as in
measure the speed when the sensor changes state from 1 to 0 and then from O to 1.
The sensor pin was connected to a normal digital pin. The method also included
measuring the speed from one gap as well, same sensor logic as the tooth but
inverted. The results of 1 tooth vs 1 gap can be seen in figure 15. Sensor 1 was

measuring the teeth and Sensor 2 was measuring the gaps.

1 Tooth Vs 1 Gap
1

450 T
Noa Sensor 1
“\\/\/ \/\V‘ Sensor 2
400 - | \"M, .
J WVL\
| v/\fwv‘ a
| \
L W\, i
350 | Yy >
Yy :
| ™ n 4 \/\/\m:
N, P
oo Mg A RO .
| R
= AN VAL
Z 250 | Mt ™M, =
[/ %! VAL,
@ ' [PN \
1S \ H ML “n
he] | A, A\
b5 i N WS
& 200 ., N _
Rl = “
Il \\N\ A%
[l AL \-
| N\
150 It I It -
I M (o
I AN _\
| h M \\\
Y% —
100 | AN
| N
N
50 [\\ -
\
0 \ \ \ I I I I
0 50 100 150 200 250 300 350 400

Number of Measurements

Figure 15: 1 Tooth vs 1 Gap Speed profile
From the graph, there is a huge difference between both speed profiles, this can be
due to the machine error. The laser cutter used to manufacture the disk had a
tolerance of 0.1mm, so the teeth of the disk may not have the same width. Moreover,
the tooth width used is 7mm and the gap width is 8mm, in real life the distance may
not be 15mm thus the rise of the huge difference between both speed profiles. The

distortions that appear on the graphs are periodic. Letter ‘a’ represents the full

21

revolution of the disk (18 teeth). The errors have the same profile every full revolution
of the disk, this can be due to machine error.

For the second method, instead of reading tooth by tooth or gap by gap, instead one
sensor will only look for transitions from 1 to 0, and once it counts 2 transitions, it
calculates the speed. The sensors were connected to a normal digital pin. This means
that sensor have crossed a tooth and a gap, from the actual arrangement the total
distance is approximately 15mm. The other sensor was left to calculate the speed
every gap. This was done to check which method produces the smoothest speed
profile. Sensor 1 was used to count the teeth transitions and sensor 2 was kept

measuring the speed per gap. The chart can be seen in figure 16.

400 1 Tooth & 1 Gap (Sensor 1) VS 1 Gap (Sensor 2)
I I I I

Sensor 1
Sensor 2

350

300

250

200

Speed (RPM)

150

100 -

50

0 I | | | | | I |
0 50 100 150 200 250 300 350 400 450

Number of Measurements

Figure 16: 2 Teeth transition VS 1 Gap speed profile

There is still periodic appearance of the errors on both profiles, but for the first sensor
the distortions have been minimised. The difference between both profiles have been
reduced as well, the distance was not changed the method of calculating the speed
only changed.

The 2 teeth method is quick and produces a much smoother profile. To further
eliminate errors, it was decided to use interrupt pins and measure the speed every 0.1

seconds for the third method.

22

Finally, the last method was to test 2 teeth transitions and 2 gaps transitions (based
on interrupt pins) and check which provides the smoothest profile. Results are shown
in figure 17.

250 2 Teeth Vs 2 Gaps (Interrupt Based)
1 1 1

Sensor 1
Sensor 2

2 Teeth zoomed axes
T T T

2001

50 [~ 190} \
.

180

| | | | | | | |
0
0 20 40 60 80 100 120 140 160 180
Number of Measurements

Figure 17: 2 Teeth transition VS 2 Gap transition speed profile

Both profiles seem similar, but the 2 teeth transition was chosen as the primary method
to calculate the speed of the buggy. This is because its profile seems to be the
smoothest, as it can be seen from the zoomed axes on figure 17. There are still
periodic errors, but they have decreased significantly when the interrupt method was
used. For this reason, the main method to calculate the speed of the driven wheels is

the 2 Teeth transition interrupt based.

5.1.2 — Driving Wheel
For the driving wheel, the method chosen was to mount the sensor adjacent to the
chain to measure the chain’s linear speed and consequently the wheel’s angular

velocity.

The speed profile can be seen in figure 18. There is a lot of distortion visible, this is

due to the vibration of the motor’s frame when it was running.

23

Driving Wheel Speed Profile
700 : ‘

600

500

200

100

0 | l l l
0 50 100 150 200 250
Number of Measurements

Figure 18: Speed profile of the Driving Wheel

5.2 — RPi — Teensy/Arduino Communication
There are two codes, both are fundamentally similar. The code that was used to test

the Arduino board can be seen in Appendix E. This code works perfectly on the Teensy
board with minimal errors.

When testing the Arduino board, the first byte that is sent on the 12C bus is always

faulty. The results of the communication can be seen in figure 19.

24

Speed 1: 0.00 Speed 2: 416472.31

speed 1: o.o00 speed 2: 416472.31
Speed 1: a.00 Speed 2: 416472.31
Receiving

command: speed
Secondary Command:
sending Speed: ©

Speed 1: 0.00 Speed 2: 277648.18
speed 1: 0.00 speed 2: 277648.18
Speed 1: a.00 Speed 2: 277648.18
Receiving

command: reply
secondary Command:
sending Reply
Receiving

=============== RESTART: /home/pi/Arduino/Python I2C master.py ==============: Command: ag
Enter something to send: speed Secondary Command:
Want_tu add something? unknown Event Triggered
Arduino: 8 speed 1: @.00 speed 2: 17722.23
Enter something to send: reply Speed 1: 0.00 Speed 2: 17722.23
Want to add something? —~ speed 1: 0.00 speed 2: 17722.23
Arduino: bytearray(b'\x04e PINTIAXT AT AT IARF AR AT PARFFAXTT") Speed 1: 6.03 Speed 2: L.19
Enter something to send: g speed 1: 508.65 Speed 2: 44,57
Want to add something? Speed 1: 88.44 Speed 2: 161.98
Arduino: bytearray(b(\nnknown Event\xff') . speed 1: 135.59 Speed 2: 135.17
Enter something to send: speed First |etter/byte Speed 1: 132.17 Speed 2: 131.55
Want to add something? Speed]. 129.28 Speed 2 129.70
Arduino: |S InCOI’I’eCt speed].: 124,41 Sspeed 2: 124.77
. Speed 1: 120.75 Speed 2: 118.70
Enter somethjpg to send: | speed 1 114,49 Speed 2: 115,17
Speed 1: 116.63 Speed 2: 169.76
speed 1: 187.91 Speed 2: 106.94
Speed 1: 102.68 Speed 2: 163.18
Speed 1: 97.95 Speed 2: 9§.53
speed 1: 94,88 speed 2: a93.79
Speed 1: 96.50 Speed 2: 89.79
speed 1: 86.77 Speed 2: 87.07
Speed 1: 85.37 Speed 2: 84.36
. speed 1: 80.98 Speed 2: 81.45
Received speed Speed 1: 80.95 Speed 2: 76.55
Speed 1: 74.51 Speed 2: 73.03
[speed 1: 71.12 speed 2: 69.24
value IS InCo. rect Speed 1: 66.62 Speed 2: 65.35
speed 1: 62.84 Speed 2: 61.78
Speed 1: 62.84 Speed 2: 59.73
speed 1: 56.21 Speed 2: 56.88
Speed 1: 55.46 Speed 2: 54,36
Speed 1: 52.07 Speed 2: 52.67
speed 1: 50.39 speed 2: 49,41
Speed 1: 46.57 Speed 2: 47.33

Receiving

Speed 1: 46.57 Speed 2: 45.16
speed 1: 42.18 speed 2: 48.27
Speed 1: 39.23 Speed 2: 37.76
speed 1; 36.63 Speed 2: 34,36
Speed 1: 33.19 Speed 2: 31.12
speed 1: 33,19 Speed 2: 27.59
Speed 1: 26.21 Speed 2: 27.59
anapad 1+ 22 4f snapd 2+ 23 a1
[Autoscroll Mo lineending | v | |2C

Figure 19: System testing. Raspberry Pi (on the left-hand side - python) and Arduino (on the right-hand side -
Serial Monitor)

From the figure, it can be seen that from the Arduino’s side speed 2 is incorrect, even
when the wheel is not rotating. Furthermore, at higher speeds (approximately 300
RPM) the ISRs don’t have enough time to execute thus sometimes the speed might
be shown as a zero, partially because of the sensors being so close to each other and
partially caused by the Arduino’s processor speed. Thus, at higher RPMs the ISRs are
activated more frequently. Therefore, when one ISR is being processed and the next
ISR is triggered, this causes a slight delay and a prediction of a lower speed. This

effect is not seen at lower RPMs because the ISRs are not activated frequently.

The Arduino applies logical shift right by 8 bits to the average speed, to store the most
significant bits. It then sends the most significant bits as the second byte and the least

significant bits as the third byte. This way the Arduino can send up to 2 bytes of data.

25

Hence, the Pi applies logical shift left by 8 bits and then adds it to the received third

byte. A value of 46 is expected to be the result of the transmission but a garbled

transmission of 2819 was received.

Enter something to send: reply
Want to add something? no
Teensy:
Enter something to send: hello
Want to add something?

Teensy:
Enter something to send: speed
Want to add something?

Direction: bytearray(b'Backward’)
Teensy: @

Enter something to send: speed
Want to add something?

Direction: bytearray(b'Forward\x60")

RESTART: /home/pi/Arduino/Python I2C master.py
bytearray(b'HL Pi\x08\x00\x00\x00\x00 \x00 \x00\x00\x08")

bytearray(b'Unknown Event\x00')

7Direction of the buggy

Teensy: Qo)<
Enter something to send: |

Receiving

command: reply
secondary command: no
Sending Reply
Receiving

command: hello
secondary command:
Unknown Event Triggered
Receiving

Command: speed
secondary command:
Sending Speed: @
Receiving

command: speed

secondary Command;

Speeds matched — |

Figure 20: System testing. Raspberry Pi (on the left-hand side - python) and Teensy (on the right-hand side -

Serial Monitor)

For the Teensy board, the first byte is sent out correctly, therefore the Teensy can fully

use the 32-byte limit. The results of the tests can be seen in Figure 20. Add to that,

the Pi performs the logical shift to the corresponding byte and the expected speed

matches the received speed. Figure 21 shows the array that contains the speed along

with a provisional sign that represents the direction of movement.

T F F FFFF A FFFF A A A A A

- 18.
- 45,
- G8.
- G6.
- B2.
- 57.
- 53.
- 51.
- 48.
- 45,
- 43,
- 41,
- 38.
- 36.
- 34,

45.42 37.19 0.00 0.00 0.00 0.00
54,72 56.53 0.00 0.00 0.00 0.00
55.92 55,09 0,00 0.00 0.00 0,00
51.08 52.64 0.00 0.00 0.00 0.00
48.89 47.93 0.00 0.00 0.00 0.00
46.65 45.54 0.00 0.00 0.00 0.00
42,39 43,56 0.00 0.00 0.00 0.00
40,33 41.66 0.00 0.00 0.00 0.00
38.83 37.99 0.00 0.00 0.00 0.00
36.67 35.92 0.00 0.00 0.00 0.00
34.63 33.83 0.00 0.00 0.00 0.00
32.43 31.52 0.00 0.00 0.00 0.00
30.05 31.52 0.00 0.00 0.00 0.00
27.25 29,02 0.00 0.00 0.00 0,00
27.25 26,13 0.00 0.00 0.00 0.00
24,02 22,61 0.00 0.00 0.00 0.00
19.958 22.61 0.00 0.00 0.00 0.00
19.95 18.20 0.00 0.00 0.00 0.00
19.95 18.20 0.00 0.00 0.00 0.00
14,61 18.20 0.00 0.00 0.00 0.00
14.61 11.80 0.00 0.00 0.00 0.00
14,61 11.50 0.00 0.00 0.00 0.00

0.00 11.50 0.00 0.00 0.00 ©.00
3.36 0.00 0.00 0.00 0.00 0.00
69 3.33 0.00 0.00 0.00 0.00

23 57.58 0.00 ©.00 0.00 0.00
27 GG.04 0.00 0.00 0.00 0.00
59 65.66 0.00 0,00 0.00 0,00
89 60.92 0.00 0.00 0.00 0.00
30 58.12 0.00 0.00 0.00 0.00
58 54.34 0.00 0.00 0.00 0.00
36 52.09 0.00 ©.00 0.00 0.00
75 47.78 0.00 ©.00 0.00 0.00
20 45,90 0,00 ©.00 0.00 0,00
43 44,10 0.00 ©.00 0.00 0.00
18 39.42 0.00 0.00 0.00 0.00
61 37.84 0.00 ©.00 0.00 0.00
93 35.52 0.00 ©.00 0.00 0.00
G0 32.86 0.00 ©.00 0.00 0.00
91 0 A0 7T A AG M AG A AO 0 o0

Figure 21: The speed array that holds the speed from different sensors. The "+" means the direction is clockwise

and is anti-clockwise

26

The test was carried out using two sensors (1 driven wheel), this is because they don’t
require an external power source to drive the motor. Moreover, the track buggy can’t

be unfolded inside the lab to take readings from all six sensors.

Operating the board at a processor speed of 72 MHz is fast enough to not allow one
ISR clashing with the other ISR. But at speeds exceeding 600 RPM the ISRs start to
clash with each other. The test was repeated using a processor speed of 96MHz
(overclock — running at higher speeds than what was intended by the manufacturers)

where this issue was not visible. However, overclocking reduces the processor’s life.

Both boards were able to join the 12C as a slave for the Pi, but the Teensy performance

is much better than the Arduino.

6 — Discussion

The method used for calculating the speed of the buggy for the driven wheel is the 2
teeth transition based on interrupt pins, due to the profile being the smoothest out of
the tested methods. When further investigating the errors for a trendline within this
method. The zoomed profile shown in figure 17 showed that there is a trendline. This
trendline may be due to the 0.1mm tolerance of the laser cutting machine that was

used to manufacture the disk.

Furthermore, for the driving wheel the suggested method showed a lot of distortion. It
is expected to have small distortions in the profile, due to the chain vibration. However,
when the test was carried out the wheel was not touching the ground and the motor
when turned on started to vibrate. Add to that, the sensors were not constrained to the
chains. There were difficulties in constraining the sensor mounts on the frame because
of the motor housing. Due to this, the sharp changes in speed and the extreme

distortions are visible on the profile presented.

When investigating the error when ISRs start to clash with each other. It was
discovered that the “micros()” timer function is updated using its own timer interrupt,
with multiple functions. Even when the ISRs are kept short to avoid long paused on

the CPU, they still clash due to the “micros()” command.

27

Finally, the communication between the Raspberry Pi and the Teensy 3.2 board via
12C is error free. Whereas, for the Arduino board when the bus was checked for the
devices on the 12C bus, an address of 68 appeared. The address is still present even
when the Arduino joins the bus (please refer to pages 11 and 20 in the logbook). The
source of the address is unknown, and its removal was not possible. When the shield
is removed from the pins of the Pi the address disappears, which suggests that it
belongs to the shield itself. There is a possibility that this address is the source of

errors within the Arduino transmissions.

7 — Conclusion

Summarizing the report sections, the proposed system aims to automate a Track
Buggy. The Buggy is a lightweight vehicle that have foreseen design changes through
the years, but so far, the Buggy has never seen a system implementation. The
developed system aims to start the automation of the buggy. Keeping the cost as low
as possible, a combination of a Raspberry Pi and a Teensy 3.2 board is used to be

the main components of the system.

The Raspberry Pi with its support for multiple communication protocols, low cost (£32),
and it is a microcomputer with low power consumption, makes it the ideal board to be

the main interface of the system and the master on the bus.

The Teensy 3.2 is a development board that is small and low in cost (£16), paired up
with a powerful processor and a capability of controlling hardware effectively, makes
it an effective microcontroller. Communication between the Raspberry Pi and the
Teensy via 12C was free of errors. Yet the Teensy face a problem with ISR clashing
with each other at higher RPMs but when the CPU was overclocked, there was no
clashes. The Buggy’s maximum speed is 15km/h. Assuming that the radius of the
wheel that is in contact with the rail is 56.5mm, the angular velocity of the wheels is
73.7 rad/s or approximately 704 RPM. This speed will be an issue for the Teensy if the

CPU is not overclocked.

Whereas for the Arduino Leonardo shield, the slow processor speed, caused the ISRs
to clash at speeds over 300 RPMs. This meant that for the current arrangement the

use of an Arduino board to use interrupt pin to calculate the speed was difficult.

28

Moreover, the appearance of the board’s address when the shield is connected to the
pins of the Pi might be the cause of the errors appearing in the transmissions from the
Arduino to the Pi. Due to this, communication via 12C was not a success for the Arduino

Shield. Therefore, the Shield was not used.

Furthermore, a proposed method to calculate the speed of the driving wheel by
mounting the photo-interrupter adjacent to the chain. However, there were limitations
in constraining the sensor mount on the frame of the wheel to keep the sensor adjacent
to the chain. Yet, it was successful in calculating the speed of the driving wheel, but

the profile showed a lot of distortions due to the vibrations of the chain.

Overall, aims of the project have been met. A board to control the hardware has been
chosen to be the Teensy 3.2. The Teensy system testing was a success,
communications via 12C ran with no errors to account for, and the implementation of

an accurate method to calculate the speed of the Buggy was achieved.

8 — Future Work

To further to develop the system, wiring up of the motor to a battery pack is essential
to provide a power source for the motors and the electrical components of the buggy.
The use of a motor driver or a MOSFET Transistor could be used to drive the and
control the MY1016 motor used for the Buggy. The motor driver should be able to drive
up to 24V and 13.7A to the motor through the PWM pins of the Teensy board. The
suggested motor driver is the Pololu G2 high power motor driver, it can supply up to

13A and a range of 6.5V to 40V. This driver can user bidirectional control of the motor.

To avoid weather effects damaging the sensors on the driven wheel, a compartment
should be designed to cover the sensors and a part of the encoder disk. Furthermore,
for the driving wheel the proposed method can be improved by using optical encoders.
The readings of an optical encoders are accurate, and after revising the frame of the
intermediate shaft, it is possible to mount an optical encoder on the frame of the shaft
to record readings from the intermediate shaft. Kubler 8.3700.1322.1024 Incremental
Encoders were found inside the box of components for the buggy, they can be used

for such arrangement.

29

In terms of controlling the Raspberry Pi wirelessly, VNC Server is pre-installed on the
Pi. VNC Viewer software can be downloaded on any personal computer or mobile
phone for free. A small portable Wi-Fi should be used to connect the Pi to the internet
to be able to use VNC Server. This software will provide full wireless control on the Pi

from a computer or a mobile phone.

Moreover, to avoid ISRs interrupting each other a counter can be used inside the ISR
instead of calling the function “micros()”. The counter will initiate as zero and once an
ISR is activated, the counter will increment inside the ISR. Inside the loop an “f”
statement can be written to check when the counter reached 1, then the time can be
recorded. Within the first “f” statement, another “if’ statement can be used to record
the stop time when the counter reaches 2 counts. The start time should now be equal
the stop time and the whole method is repeated. This will eliminate the use of
“micros()” within the ISR for the sensors, therefore the ISR should not interrupt each

other.

Finally, the implementation of all the improvements onto the code and testing the fully

developed track rail buggy on the rail.

30

9 - References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

ORR, “ORR,” [Online]. Available: http://orr.gov.uk/statistics/popular-
statistics/how-many-people-use-the-railway.

A. Coley, “Design, Optimisation and Testing of a Portable Track Vehicle,”
2017.

“Raspberry Pi 3,” [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

“Raspberry Pi Pinout Diagram,” [Online]. Available:
https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-
note.html.

“What is Arduino?,” [Online]. Available:
https://www.arduino.cc/en/Guide/Introduction.

“What is an Arduino,” [Online]. Available:
https://learn.sparkfun.com/tutorials/what-is-an-arduino.

“Arduino Shield,” [Online]. Available: https://www.dfrobot.com/product-
1211.html.

“Raspberry Pi Meet Arduino Shield Pinout,” [Online]. Available:

https://www.dfrobot.com/wiki/index.php/Raspberry_Pi_Meet_Arduino_Shield_

SKU:DFR0311.
“Teensy Board,” [Online]. Available: https://www.pjrc.com/teensy/.

“Teensyduino,” [Online]. Available:
https://www.pjrc.com/teensy/teensyduino.html.

“Teensy Features,” [Online]. Available:
https://www.pjrc.com/teensy/teensy31.html.

“Teensy Picture,” [Online]. Available:
https://cdn.shopify.com/s/files/1/1093/9912/products/teensy-3_2-pinout-
05_2048x2048.png?v=1527181603.

ArF, “Arduino Features,” [Online]. Available:
https://store.arduino.cc/usa/arduino-leonardo-with-headers.

“Programming Languages,” [Online]. Available:
https://www.computerhope.com/jargon/p/proglang.htm.

31

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

“C++,” [Online]. Available: https://www.computerhope.com/jargon/c/cplus.htm.

“Programming Concepts,” [Online]. Available:
https://thesocietea.org/2015/07/programming-concepts-compiled-and-
interpreted-languages/.

“Top Programming Language,” [Online]. Available:
https://www.webopedia.com/TERM/P/programming_language.html.

“What is Python,” [Online]. Available:
https://www.python.org/doc/essays/blurb/.

Sharp, “GP1A57HRJO0OF,” [Online]. Available:
https://www.sparkfun.com/datasheets/Components/GP1A57HRJO0F.pdf.

“What is i2c,” [Online]. Available: https://www.i2c-bus.org/.

[2CVUARTVSPI. [Online]. Available: http://www.rfwireless-
world.com/Terminology/UART-vs-SPI-vs-12C.html.

“i2c bus specification,” [Online]. Available: http://i2c.info/i2c-bus-specification.

“How i2c works,” [Online]. Available: http://www.circuitbasics.com/basics-of-
the-i2c-communication-protocol/.

“Plgpiod,” [Online]. Available: http://abyz.me.uk/rpi/pigpio/python.html.
“Wire Library,” [Online]. Available: https://www.arduino.cc/en/Reference/Wire.

P. N. S.-4. 42 Teeth Sprocket Datasheet. [Online]. Available:
http://www.hpcgears.com/pdf ¢33/13.12-13.13.pdf.

32

Appendix A — Driven Wheel Components Engineering drawings

9 S

S v

£ _

[4 _ I

L 40 | ON 133HS T'T
a|juny

3IV0S

MY ILVIA | SHIANHOD dHVHS 1TV SAONIH
1123roudd WL "0F SNOISNINIO 1TV

NOISSINETd NILLIMM
HOldd LNOHLIM 3aYN

38 AYW Ld¥d NI 40 3T0HM
THL NI NQILDNAOHIH

a .
ﬁ\%@ m\ruv ANAL-NOAN-31LSYOMAN
- 2 meu ONITNNG NOSNIHJALS
i¥

ML L3N

Q Jdirdi] eweld - Junoyy Josues -FNYNITE W NI SNOISNIWIA 1T &/IMWU
Elva .rr_m OIHOFHO| :NMOHS ISIMHIHLO SSTINN mn_._rw.Dd__ﬂM_a?m_ﬂ w_.._._.wm,umh_hn__’m.m 02&“““2&02“ m‘-w_-hm\rm
PROWIYEIA UEWHEANPGY A8 AINDIS3A ONIMYHA SIHL NI STT10ILHY
idi we - Junop Josues B® [w TIV 40 1HONIADD O ® TVIINVHOIW 40 TOOHIS
3 WIWE :SSAUNDIY L
J1jAIDY Je3)D :jeusie
L9
IW_ JA4 S
w
YT +. A
AT (& s>
TF
wul
; S D 4N
un
S 0T
v
9 S € [4 T

33

S v

9 | 9 _ £ | I | I
40 1 oN133s Tz Vs NOISSIME Tcl NILLIMM, Nz L3N
kY AWIYILYN | SHINHOO dHYHS TV JA0WTY HOld LNOHLIM 3avi INALNOAN-F1LSYOMaN
103roud W L'0F SNOISNIWIA TTv | 38 AYIW Laivd NI MO T10HM Fe
JsIsnfoY - Unop Josuss IWVNII ww NI SNOISNIWIG TTy| FHL NINOLLONAOXd Y %mg ONITTING NOSNIHAILS
31va ABODIDIH| NMOHS ISIMMIHLO SSTTNA ON aNv ALISYIAIND

PNOWUEW UBWYRINETY A8 OINDIS3A

Jdriesnipy - Junopy Josues

B © [vv

ANLEVIMAN OL ONOT3E
ONIMYHA SIHL NI S3701LdY

T 40 LHO-ALOD @

ONIYFINIONT SWFLSAS
® TVOINVHOIW 40 TOOHOS

W :ssauyIy|
ALY e3P :|eudle

s

9'8¢

or S°¢

9t

| ¥4

T

€D X

S6r

34

9 l g l 4 A_w £ l 4 l I

PO PSS Mm._m o SHIANHOD dHvYHS TIv IAQINTA o L ho i A B) ML L3N
oy TWIHALYA HOMd LNOHLIM 3a¥A %] ;
1J3roNd W' 0F SNOISNIMIA TT¥ | 38 AVIN LHvd NI HO T10HM w.nmfbn @ % ANALNOAN-ITLSVOMIN
JaMep0N JOSUeS - JUNo JOSUBS =TI ERIE Ll NI SNOISNTMIA TTY AHL NI NOIL2NA0OHd 3 u e Y ONIQTINA NOSNIHAILS
. _ _ ON QN ALISHIAINN
aLva . ASOIAIIHD| NMOHS 3SIMEIHLO SSIINN T1LSYIMAN OL ONOTIE ONIMIINIONT SWILSAS
PIOAUPIA WBRINRANPAY AS Q3INDIS3A ONIMYHA SHL NI STIDILNY
1y 28PIOH JOSUBS - JUNDYY JOSUES 2 @. _ v TV 40 LHOIHALOD & ® TVOINVHOIW 40 TOOHOS

WWE 'SSAPIIYL
JAIDY 13 :|elsiel

€| SPL | T9 | SbL

86
4!

EvPXe

L

LTPXT /7

35

9 _ 9 _ 74 A_N € _ Z _ I

T 30 + ON 133HS T1 oS NOISSINNE NALLRM T

ysjul ‘poomd| 4 IVIHALYW | SHANHOD dHvHS TV 3A0WIY MO LNOHLIM 3aYW i [Ava)
o INAL-NOAM-ITLSYIMAN

:103roud WL '0% SNOISNIWIA T1v| 38 AV Laivd NI MO T10HM = E|
Jpueoeds wwg INYNIA ww NI SNOISNIWIG 11V m:w n.%@ﬂa%%%hmm i) o ONIONNE NOSNIHAILS
N nouen uewemay Apganereaa| OSSN | anisvoman o1 onoTas ONINIINIONT SWILSAS
AN HLMN A

Jarseoeds wnug Wwy @ _ Y T 40 LHOINALOD & w dqﬁuhzqtums h\o ﬂooxum

W9 :SSaudIYL
poOMA|d :|eLIa1ey

[43

36

Appendix B — Driving Wheel Components Engineering drawings

: \V

9 _ S _ 3 _ Z _ I
} 40 F ON133HS ann JV0S T — NOISSIWHIH NI LLIMM s . Ny 13N
alioyy WMLV HORId LNOHLIM 3avIN \%\3) . .

1103roYd WwwL"0F SNOISNIWIA TT¥ | 38 AV LYvd NI HO 3T0HM w\\ﬁu - = H\W ANALNOA"I1LSVOMIN

a Jdidr) ewei4 - jeeym ueaug IWYNITIL ww NI SNOISNIWIQ TV mzw u_%@ﬂ_ﬂ_%%mmhmn =Sl Sl ONITUNG NOSNIHAILS

P orouen veusenvay aamersaa] o e ST ausvoman oL ononae ONRIFINIONT SWILSAS

W v
Jdi'dr] ewel - fasy LB w. @ _ 14 T 40 LHOIHAJOD @ ﬁ qum 2 qzom_ E lum 0. lﬁoo:om
wwg ssauaiy L
u__\Cu{ deg]D |elisle|y
2
9 (43 6'C 0s 14
IW w
O
—
'S
g N
” /
86
€YD X T
Y
9 S € 4 I

37

W

9 _ 9 ¥) _ 4 I
b 40) ONL133HS L ‘A0S NOISSIWM3d NILLIMM T
WAy TTYINILYA | SHINEOO dMVHS TIV IA0NTY HORd LNOHLIM 3avi 0, Lacd INAL-NOAN-T1LSYOMAN
1103r0dd W | '0F SNOISNIWIA TV | 38 AV Ldvd NI 4O S10HM @ = |
ajeyd jois Josuas pabuy - jasy uaALg FWYNITIE Wil NI SNOISNIWIA TV IHL NI NOILONAO LIS =3 & llall ONIJNE NOSNIHJALS
: : _ ON GNV ALISH3AINN
e oo weusienpay <o o] OHS FSMEIMIOSSIN| 31i5voman o1 oNoO13E ONIYIINIONT SWILSAS
ONIMYHA SIHL NI STT0ILHY
ajerd jofs sosues paibuy - [eeyum uenug w @ _ 14 TV 40 LHOIMALOD @ ® TVIINVHOIW 40 TOOHIS

WIWE SSaUIYL

JIJADY 13D |elien

4R,]

'S
SJO|S 20| Josuss
67T
e &
[\ [#)}
.99
I B
P Xt | o
_ |®\A/
P S'ZT 0Td X ¢
43
) S 2 P\ € Z T

38

v

9 _ S _ 4 3 _ 4 _ I
PO L NS aH " o SHINYOD dHVHS TIV JAOHIY o g e gt MEz 13N
Aoy vRALYA HOlMd LNOHLIM 3avi| 5 s }]
193roud Wwi 0 SNOISNIWIA TTv | 38 AVIN LYWd NI ¥O J10HM ﬁngw ANALNOAMITLSVOMIN
¥20] J05USS - (o8l ueAug IWYNITIH ww N| SNOISNAWI TTV m_I._nw n_az%(_.ﬁﬁ_dmn%umhmm C_m_ub ONIQTINE NOSNIHAALS
aLva 'AB A3IN0TIHD| :NMOHS ISIMHIHLO SSTINN
oowten vewuennpay aa aanosaa| oS A8 0S8 F1LSYOMIN O ONO'38 ONIYIINIONT SWILSAS
DNIMYHEA SIHL NI S3N0ILHY
¥O0] JOSUSS = [83yM usaud Wuy @. _ 14 A 40 LHOIHALOD @ w dqohz_ qx ..Um E nm 0 d.oo_t.om
WIS :ssauydIy L
DAY 13| :|eudle
[
W
w .
60
b
g
o))
(5] | ©
_ [
_ 7]
w| _|
o —
ED
G¢
S
9 S 1 3 c T

39

Appendix C — Raspberry Pi code (Python)

rg37Aq elEp pauUIngaI 2yl Juradg (s23figpaaTaoay 4, ifsu=z=zp,)aurzd |Dw

UOTIoUnI PEsI I=2Ul0 =2yl =2snd () I:q0eaeyllUuTpe3I = S21AQPSAT203Y -&Z

t{ypeads, =i dur) Io (yp22d5, =i dUuTt) ITT= -8Z

uoTloung pe=x peads 2yl =2sn ol () ISqunyburpesI = S23AgpsATI03Y -LZ

i (up22dgy = dut) 0 (4p23ds, =— dut) IT -9E

£21fqg ge zzioexeus Hurtddoas xTIUl uaTa sanduT puswmos 3yl SuTtpussg (.9 + THUTPUIS + .9 + DUTpUIS‘y)30TASP =23TIM OZT Td -57
*2p0o0 ISY30 2yl UT PIAT2I03I £234A0 PRUNWOD puUoo23g 2yl ST £Tyai (Tdur)=poou=-I3s = THhurpu=s -7

(u cbuTyazwos ppe o1 aueM,)andutr = Tdut -£z

2poo I2Yl10 2yl UT pRAT202I PUBNWOS €T STYL "Sng 2yl U0 £33Aq S8 pUPINOD =Yl PU=F 031 €T Tyl (dut) apoouaI1as = DUTpU=3g -Zz
(u ipuss o3 HBurtylswos I=3ud,)indur = dut -TZ

rInIL s —0g

-6T

_ _ q uIni=3z -8T

£271Aq T 01 3T HUTATTWT ‘SNg 2Y3 U0 UOTSSTWEURI] TeXauab SuTtpeaIg (6T “4U)=oTaASp peaI ozT"Td = (9 ‘Junod) -LT

uoTdoung Hurpe=1 Tei=uzbi () IzzoezeyqburpEsI I=p -oT

-ST

paads uzinazz -&T

UoT302ITR 24Ul butderdsTpg (UOTID2ITJ ‘Y, UOTIDSITI,) 3utzid -£T

=320 2aep A¥sU YL 34 01 p2ioadEs ST uoTio3ITR 2yl [oT:2]T9 = UWOTID2ITO -1

peads 2yl 10y s=nTesa yloq Dutpped goT+EsH=p==2ds -TT

UOTSETWSURIY 2Y3 JO 957 2yl ST 238g puodas 2yl LurtpeaIg [TlTa=851T -0T

€474 0IIZ g Ad AFIT IFTUs TeoTHOTE g >> [0] TO=9S5H -8

Baep 2yl Io fPIzeadfq 2ul ST ,Td. DUP PIATI02I £3Tq IO ISQUNU 2yl ST Junoog (0T°U)20Ta2p peax ozT Td = (Tg ‘aunod) -g
uoctTioung Durpesi pa=zdsg 1) Trgqumpbutpe=sI I=SE -4

-2

AgU=z3l =2yl IoF UOTIDUNT STPUEY Iul {gs=zppe‘sng)uado ozt'td = 4 -5

uow=zep oTdEiTd 03 JosuuoDg (JTd-ordbtd = Td -¥%

ST ES2IPPE £,349TE 23Ul 5 = Sg3IPRp® -¢

T gng uo JFI =sn 09 LHuTAyTo=zdes T = sng -%

AzexqrT otdiTd peoTd otdbtd 1zodomt -T

‘EIZUNU SUTT 2yl juasaidal SpIc puey 1FsT 243l U0 SISCUNU gL
LLBPZICOFT ‘PROWYRK UPWUEITnpdyY A U12TIm ST 2p0D STULE

40

Appendix D — Teensy code (C++)

1|/*% This code was written by Abdulrahman Mahmoud to Dr. FJ Franklin for his project, automation of the rail track buggy */
2

3 #include <Wire.h> f/Wire Library for iZc

4 String command_received=""; f//empty string for the first command received

53 String bytes_received=""; f/empty string for the second command received

€ const char ¥ reply = "Hi Pi"; //character pointer array for the write function

7|const char * error_msg = "Unknown Event";

2 const char ¥ Forward = "Forward"; // This line and the next concerns the direction of the buggy
9 const char * Backward = "Backward":

10 boolean Command; f/flag used for the request function

11 boolean errors f/flag used for the request function

12 |const uintd_t pinl=3; f/interrupt pin for the first sensor

13 |const uintd_t pin
14 const uintf_t pin3=
15 |const uint3_t pind=i
16 |const uintd_t pin5
17 |const uintd_t piné
13 wvolatile unsigned long fallTime[€]; //an array to hold all the falltime values
1% volatile unsigned long dt[€]; /fan array to hold all the Delta-Time values

20 |float now _speed[6]; //an array to hold all the speed values

21 unsigned long Interval=100;

22 lunsigned long previous;

23 |volatile boolean bDirectionl = false; // used in the ISR to get the direction
24 'volatile hoolean bDirection2 = false;

25 int avg_speed;

f/interrupt pin for the second sensor

26

27 \woid setup()

28 [

29 Wire.begin(5); f/join the i2c as slave on address 5

30 Serial.begin({2000000); /f/start the serial port at a baud rate of 2,000,000 bits/sec

31 Wire.onReceive (rec)s //This function is activated everytime a transmission cccurs on the bus
32 Wire.onRequest (req) s //This function is activated after the onReceiwve function has finished

33 pinMode {pinl, INFUT) ; f/identifying that pinl is input

34 pinMode {(pin2, INFUT) ;

35 pinMode (pin3, INFUT) »

3 pinMode (pind, INFUT) »

37 pinMode (pin5, INFUT) ;

g pinMode (pin6, INFUT) 5

3% previous = millis({);

40 for (int 1 = 0; 1 < &; i++) // a for loop to record time for all € values in the array

41 {£allTime [i] = micros ()]

42 // interrupt function is activated everytime the

43 // sensor transitions from 1 to 0. Sensorl being ISR

44 attachInterrupt (digitalPinTolnterrupt (pinl), Sensorl, FALLING): //ISR for the lst sensor on the lst Non-Driven Wheel
45 attachInterrupt (digitalPinToInterrupt (pin2), Sensor2, FALLING); //ISR for the 2nd sensor on the lst Non-Driven Wheel
48 attachInterrupt (digitalPinTolnterrupt (pin3d), Sensor3, FALLING) ; //ISR for the lst senscr on the 2nd Non-Driwven Wheel
47 attachInterrupt (digitalPinTolnterrupt (pind), Sensord, FALLING) ; //ISR for the 2nd senscor on the 2nd Non-Driwven Wheel
43 attachInterrupt (digitalPinToInterrupt (pinS), Sensor5, FALLING) r //ISR for the lst sensor on the lst Driven Wheel

49 attachInterrupt (digitalPinTolnterrupt (piné) , Sensoré, FALLING); //ISR for the lst sensor on the 2nd Driven Wheel

5001
51
52 woid loop()
53 {
54 I
55 if
s
57

vious>Interval) // this if function initiates the calculation of the

0.1 seconds (debuggi

5
m

than

i

checks all the

if they

gging if statement

ytime a change cccurs

ectionl &s&
al.print

oo 4 e

=)

{"Backwards ");

< 87 14+

[11):

|G E)

sl

WD -1 Mot oee G L

=

R e L L e e e e B I = - == -

(S

4 wvoid rec(int numBytes) f/numBytes is the number of bytes received during the transmission
{
Serial.println("Receiving™);
command_received=""; // emptying the string to make it available for the next transmission

8 bytes_received=""; //secondary string, can be used for speed control when motor is wired up
9 while (Wire.availakle{)>0) f//a while loop to read the data on the bus when there is transmission
I} {

a1 char c;

92 char by

93 while {trus)

dire.read();
iffe=="1") f/this is the stop character to separate the data inside the message
{break;]
command received += c; //concat the character to the string
}
while {trus)
{
b = Wire.read():
if(b=="1")
{break;}
bytes_received += by

1

Serial.print{"Command: ™); //debugging
Serial.println{command received);
Serial.print{"Secondary Command: ");
Serial.println({bytes_received);

if{command_received == "reply" || command received == "Reply")
113 [
114 Command = true; //this flag is used to differ what data to be sent in the onRequest function
115}
118 e£lse if({command received == "speed” || command received == "Speed")
117 {
11s Command = false;
115 }
120 zlse if(command received !'= "reply” || command received != "Reply” || command received != "speed” || command received != "Speed”)
121 {
12z |rror = true;
123 }
124 |}
125
128 wvoid req()
127 {
1 if {error) f/1if error is true
128 {
130 Wire.write (error_msg);
131 Serial.println{"Unknown Event Triggered”™);
132 error = falae; //if not set to false the onRequest function will keep on sending this case
133]
134 2lse if({!Command) //the command flag is used here to test for the cases && if command is not true
135 {

int sum=0;
int n=07
for{int i=0;i<@;i++)
1
if{now_speed[i]>0) // the if statement calculates the speed and choses the values greater than zero
{
sumt= (int)now_speed[i]; // compound addition to the speed value and increasing the "n" count
n++;

1
avg_speed=sum/n; // the average speed is the sum divided by the number of speed values greater than 0 used
//next section is about sending a number over 255, since on the i2c its limited to § bits, so 9th bit will be ignored.
int z = avg_speed >> 8 /fto capture the most significant bits
int y = avg_speed & OxFE; //to capture the least signigicant bits, thus leaving the M5B as zero
Wire.write(z):
Wire.write(y)r
if(bDirectionl ss bDirection2) // send the direction within the transmission
[Wirs.write (Forward):}
else
{Wire.write (Backward) ;]
Serial.print("Sending Speed: "):
Serial.println(avg_speed)
}
else if(Command) J/if command is true
{
Wire.write (reply);
Serial.println{"Sending Reply™):

42

flecat Speed({int i) //speed calculation function for all the senscrs. its an array function that takes the first
// 4 sensors as the non-driven wheels and the Sth & €th sensors as the driven wheels

if{micros() - fallTime[i] > 300000) //if there is no operation for 0.3 seconds
{
now_speed[i] = 0; //if there is no operation for all the sensors, make them all zero

}
else
{

175 if {1 <= 3) { f/for the first 4 sensors calculate the speed of the non-driven wheels

76 now_speed[i]=((15E3 / (float) dt[i]) / 0.043) * (180.0 / 3.141) *(0.5/3.0):

77 !

else [//for the rest of the sensors calculate the speed of the driven wheels
now_speed[i]=((2.4p * 1000000}/{dt[i] * 42.5)) * (180.0 / 3.141) * {0.5/3.0};
} //Chain Speed with relation to the wheel's angular velocity

81}
a2 return now_speed[i];
83}
a4
553 wold Sensorl ()
86 |
a7 unsigned long Nowl = micros(); //when the ISR is activated, record the time
dc[0] = Nowl - fallTime[0];: //ecalculate the time since the last time the ISR was called.

i

//the first time the code runs, the falltime is taken from the setup.

o

fallTime[0] = Nowl;
}

o
=

g2

3 wvold Sensor2()

{
bDirectionl = digitalRead (pin2);
unsigned long Now2 = micros();
dt[l] = Now2 - fallTime[1l];

92 fallTime[1] = Nowl:

9

[P
=

R

o

18T
1
1
1
1
1
1
1
1
1
la0
1
1
1
1
1
1
1
1
1
20

201 |wvoid Sensor3()

202 |{

203 unsigned long Now3 = micros():
204 do[2] = Now3 - fallTime[2];
205 fallTime[2]= Now3:

wvold Sensord ()

bDirection2 = digitalResad (pind):
unsigned long Nowd = micros():
dt[3] = Nowd - fallTime[3]:
fallTime[3] = Nowd;

21¢ woid SensorS()

217 {

218 unsigned long Nowd = micros();
21% dt[4] = NowS - fallTime[4]:
220 fallTime[4] = NowS:

223 woid Sensoré()
224 {

unsigned long Nowé = micros();
dt[S] = Nowé - fallTime[S]:
fallTime[5] = Howe;

Appendix E — Arduino code (C++)

-h>
String command received="":

#include <Wire

WL R

5

String bytes_received="";

conat char * reply = "Hi Pi™;

f/Wire Library for i2c

/ffempty string for the first command receiwved
[ffempty string for the second command received
//character pointer array for the write function

7 conat char * error mag = "Unknown Event”:
[/ flag used
[/ flag used
//interrupt pin
conat uinté_t pin2=4; //interrupt pin
un3aigned long fallTimel; //used to calculate delta time for each falling edge of the sensor (abbereviation 1 means its the first sensor, 2 is second sensor)
unsigned long dtl; //delta time for the firat sensor

long previousl;

long Intervall = 100;

unsigned long fallTime2;

unsigned long dt2;

unsigned long previous2;
unsigned long Interval2 =
int Direction;

float now_speedl;

float now_speed2;

int avg_speed;

boolean Command: for request function
request function

the firat sensor

9 boolean error; for
0 conat uinté_t pinl=3:

for the second sensor
wolatile
wvolatile
unsigned
unsigned

volatile

)

.
1

T wolatile

100;

S ow oo

// This variable is multiplied by the speed equation

W R

ROROR R MM
j

&

void setup()

{
Wire.begin(S):
Serial.begin(2000000);
Wire.onReceive (rec);
Wire.onRequest (req);

//fjoin the i2c as slave on address S
//start the serial port at a baud rate of 2,000,000 bits/sec
//This function is activated everytime a transmission occurs on the bus

//This nction is activated after the onReceive function has finished

pinMode (pinl, INPUT) ; //ident ing that pinl is input
pinMode (pin2, INFUT) ;
fallTimel = micros();
previousl = milli=s():
fallTime2 = micros();
previous2 = millis();

attachInterrupt (digitalPinToInterrupt (pinl), Sensorl, FALLING) // interrupt function is activated everytime the sensor transitions from 1 to 0. Sensorl being ISR

38 attachInterrupt (digitalPinToInterrupt (pin2) ,Sensor2, FALLING)
3

L
40
41 woid loop()
a2 {
int senl = digitalRead(pinl); //this function and the next one are used to calculate the direction of movement
int sen? = digitalRead(pin2};
Direction = -1; //this line and the next functionm sets the direction, if senl is not leading sen2? then the direction is -1
if{senl != sen2)

{Direction =
if{millis{)
{

I3

- previousl > Intervall) //this functicn always calculates the speed every 0.1 seconds

m

previousl += Intervall;

51 now_speedl = speedl();
52
53 millis() - previous2 > Interval2)
54
previous? += Interval2;

o
N

o

now_speed2 = speed2();

o

5w om

void rec(int numBytes)

{
Serial.println("Receiving”);

//to empty the string to make it available

//nurBytes is the number of bytes received during the transmission

command_received=""; for the next transmissicn

oA

bytes_received="";
while(Wire.available()>0)
{

char c;

char b;

while (true)

{

c =

//a while loop to read the data on the bus when there i1s transmission

o oen e oen e oen oo

T

Wire.read();
//fthis ia the 3stop character to 3eparate the data inaide the message

[break:}
command_received += cr

//eoncat the character to the string
75 1
6 while (true)

77 [

a

b = Wire.read(};
if(b=="1")

{break;}
bytes_received += b;

-

1

Serial.print ("Command: "); //debugging
Serial.println(command_received):
Serial.print ("Secondary Command:
Serial.println(bytes_received);

gl s g)

A

"N

gs if{command_received == "reply" || command received == "Reply")

23 |

a0 Command = true; //this flag is used te di r what data to be sent in the conRequest functiom

a1| }

92 else if(command received == "speed” || command received == "Speed”)

as |

94 Command = false;

as

96 else if (cormand_received '= "reply” || command_received '= "Reply” || command_received '= "speed” || command_received '= "Speed”)

{

44

140
141
142
143
144
1435

l4a
147

149
150
151

152

el el
Gh A th R o
[JT R =T A

(=)}
=

oo oo o
[= I B R FL I S |

e e e e e i = e =
on

=
-1

error = true;

}
vold req()
{
if {error) f/if error is true

{
JfWire.write (0x00); //remove this line when using teensy the firat byte is sent ocut correctly
Wire.write{error_msg);
Serial.println{"Unknown Event Triggered"):
error = false; //if not set to false the onRequest function will keep on sending this case
}
else if(!Command) //the cemmand flag is used here to test for the cases <z if command is not true
{
//Wire.write (0x00) 7
if{now_speedl > 0 sz now_speed2 > 0)
{avg_speed = ({(int) now_speedl) + {(int) now_speed2)) / 2;} //caating the retrieved speed to calculate the average speed

if{now_speedl == || now_speed2 == 0) //sometimes the ISR interupts the other ISR thus, the speed might be zero
{ //This if function just checks if a speed walue is zero and sets the average speed to the non-zero value
if(now_speedl == 0 && now_speed?2 == 0) //if both speeds are zero, do nothing!

{1

if (now_speedl>0 s: now_speedZ==0)
{avg_speed = now_speedl;]

else if{now_speedl 0 sz now_speed2 >0)
{avg_speed = now_speed2;}

1 //next section is about sending a number over 255, since on the i2c its limited to 8 kits, 3o 9th bit will be
int z = avg_speed »>» &; //to capture the most significant bits
int y = avg_speed s OxFF; //fto capture the least signigicant kits

Wire.write(z);
Wire.write(y):;
Serial.print ("Sending Speed: "):
Serial.println(avg_speed):
}
elge if (Command) Af1f command is true
{
//Wire.write (0x00);
Wire.write (reply):
Serial.println("Sending Reply"):

voild Sensorl ()

{

unsigned long Nowl = micros({); //when the ISR is activated, reccrd the time
dtl = Nowl - fallTlimel; [//calculate the time since the last time the ISR was called.

//the first time the code runa, the falltime ia taken from the setup.
fallTimel = Nowl;

}
flocat speedl() //speed calculation functicon for the first sensor
{
if{micros() - fallTimel > 300000} //if there i3 no operation for 0.3 seconds
{return 0;} f/return speed as zZero
return {{15E3 / (flcat) dtl}) / 0.043) * (180.0 / 3.141) *{0.5/3.0); //otherwise, calculate the speed
}

wvold Sensor? ()

{
unsigned long Now2 = micros():
de2 = Now2 - £fallTime2;
fallTime2 = Nowi;

flcat speed2() //speed calculation functicon for the second sensor

{
if{micros() - fallTime2 > 300000}
{return 0;}
return ((15E3 / (flcat) dt2) / 0.043) * (180.0 /7 3.141) *({0.5/3.0);

45

ignored.

