

Final Report

Automation of a Rail Buggy

MEC8095-Mechanical & Systems Engineering Project

Supervisor: Dr. Franklin

Name: Abdulrahman Mahmoud

Student Number: 140362477

i

Declaration

I, Abdulrahman Mahmoud the author of this report, declare that this report is submitted

as a requirement from the Mechanical Engineering School towards the end of the

Mechatronics degree at Newcastle University, has not been submitted for any other

degree at any other Universities. It is solely the work of Abdulrahman Mahmoud unless

recognised otherwise in the text. It illustrates the work that was carried out at

Newcastle University which is recorded in a project logbook. I am aware that

plagiarism, fabricated results and the use of unacknowledged research, ideas or words

will be dealt under the University’s Assessment Irregularities Procedure and if needed

subjected to a disciplinary action. Thus, I declare that this report is free from

plagiarism, fabricated results and unacknowledged research.

Abdulrahman Mahmoud,

24/08/2018

ii

Acknowledgements

I would like to direct my utmost gratitude for the assistance of my supervisor Dr.

Francis Franklin for his guidance, vital care, encouragement, support and the

recommendations made by him throughout the progression of the project. His

continuous supervision upon my work was vital in the progression and completion of

the project successfully. I would like to extend my gratitude for the support of my family

members and friends particularly, Mohammad Al-Banna, Nicolas Abboud and Ajith

Thomas for their help during the project.

Thank you,

Abdulrahman Mahmoud.

iii

Abstract

Regular operation of trains will result in a progressive damage to railway tracks, even

though the steel used is very durable and can withstand high loads. Through constant

use the rails can develop small defects such as micro-cracks, gauge cornering

cracking, rolling contact fatigue, wear etc. These small defects if not detected can grow

and eventually cause a catastrophic failure if the rail breaks during operation.

The railway track buggy is a foldable lightweight vehicle that can be used to carry

equipment, e.g. monitoring equipment to detect defects in the rail. Although the track

buggy has motors, the control system is still being developed and the present report

develops systems for feedback, and control using speed sensors at both driving and

driven wheels.

The control system couples a Raspberry Pi with a Teensy, and a method of

communication over I2C developed for the system. Photo-interrupter sensors were

used as a way of measuring the speed of the track buggy on rail. An Arduino Leonardo

board was also used to test the system.

System testing is shown, and the results are laid out to present the main strengths of

the system whilst suggesting an improvement for the flaws. Results from both boards

are shown and a conclusion is based on these results. Overall system implementation

between all boards was a success, along with the speed feedback system.

iv

Contents

1 – Introduction .. 5

1.1 - Aims and Objectives: .. 5

2 - Literature Review .. 5

2.1 - Raspberry Pi ... 5

2.2 - Arduino Shield .. 6

2.3 – Teensy 3.2 ... 7

2.4 - Programming Languages Used .. 9

2.5 – Sharp GP1A57HRJ00F Photo Interrupter sensor .. 10

2.6 - I2C/IIC (Inter Integrated Circuit) Bus .. 10

3 – Mechanical Design ... 12

3.1 – Driven Wheel ... 12

3.2 – Driving Wheel .. 14

4 – System ... 15

4.1 – Raspberry Pi Code (Python) .. 15

4.2 – Arduino/Teensy Code (C++) .. 17

5 - System Test .. 20

5.1 – Sensors ... 20

5.1.1 – Driven Wheels ... 21

5.1.2 – Driving Wheel .. 23

5.2 – RPi – Teensy/Arduino Communication .. 24

6 – Discussion .. 27

7 – Conclusion ... 28

8 – Future Work ... 29

9 - References .. 31

Appendix A – Driven Wheel Components Engineering drawings 33

Appendix B – Driving Wheel Components Engineering drawings 37

Appendix C – Raspberry Pi code (Python) ... 40

Appendix D – Teensy code (C++) .. 41

Appendix E – Arduino code (C++) .. 44

5

1 – Introduction

According to the Office of Rail and Road, there has been a total of 438 million

passenger journeys made in Britain by a train operator in the 3rd quarter of the financial

year 2018 [1]. Due to this large volume of journeys the rail must be maintained

regularly and scanned for any defects that might cause disastrous events.

To inspect the rail, operators use various technologies and vehicles including hand-

pushed buggies. These buggies are loaded with monitoring equipment and the

operator manually pushes the buggy across the rail. The Track Buggy, being

developed at Newcastle University, is a foldable, lightweight, self-powered railway

vehicle that can be used to carry equipment e.g., monitoring equipment.

The Track Buggy is equipped with 2 MY1016 24V, 250W electric scooter motor. The

driving wheels are not directly driven using the motor, instead it uses an 11-tooth

sprocket to a 25-tooth sprocket that sits on an intermediate shaft. This intermediate

shaft contains a 28-tooth sprocket that drives a 42-tooth sprocket located on the

driving wheel. Chains are used to transmit the torque from the motors to the wheels.

This allows the Buggy to reach speeds up to 15km/h [2].

The Track Buggy needs an integrated system that will allow it to operate automatically

on the track. The system will have a speed feedback system to control the buggy’s

velocity on the track. The system can be controlled wirelessly.

1.1 - Aims and Objectives:

• Select optimum solution for control.

• Speed monitoring system.

• Establish an I2C1 bus between the Pi and the other boards for non-serial

communications.

• Build the system and test it.

2 - Literature Review

2.1 - Raspberry Pi

The Raspberry Pi is a cheap single board computer that can be used easily with a

keyboard, mouse, a monitor and the free operating system Raspbarian. The small

1 I2C: Inter Integrated Circuit communication protocol

6

computer supports multiple programming languages all aimed for programmers to

learn a new program or for experienced users, to be use in any project.

Raspberry Pi Model 3 is equipped with 1GB of RAM and a Quad Core 1.2GHz 64-bit

CPU. It has built in Wi-Fi and Bluetooth capabilities with a 40-pin extended GPIO

(General-Purpose Input/Output) that can be used for I2C, SPI2 or UART3

communication protocols, allowing the Pi to be versatile in communication. The Pi also

has some limitations such as, no built in ADC (Analogue to Digital Converter) and

cannot produce enough power to drive an inductive load, making it hard for the Pi to

control hardware components. However, these disadvantages can be overcome by

using a Teensy board or an Arduino Shield [3].

Figure 1: Raspberry Pi with pinout map [4]

2.2 - Arduino Shield

The Arduino is an open-source electronics platform based on easy-to-use hardware

and software [5]. Generally, an Arduino can be regarded as a microcontroller with its

I/Os, memory and CPU all integrated on one board. It uses an IDE (Integrated

Development Environment) that can be downloaded on a computer where the

2 SPI: Serial Peripheral Interface communication protocol
3 UART: Universal Asynchronous Receiver/Transmitter communication protocol

7

programmer can write and upload the code to the board with the use of a USB cable

[5]. This IDE uses a simpler version of C++ programming language, making it easier

to program the board [6]. This IDE can be downloaded on the Pi and then the codes

can be uploaded to the Arduino using the Pi.

The Arduino offers different variety of pins such as, Ground, 5V & 3.3V, Analogue,

Digital and PWM [6]. The board also supports the same communication protocols

offered by the Raspberry Pi. To keep the microcontroller cost to a minimum,

manufacturers did not include built in Wi-Fi or Bluetooth. However, it is good in

controlling hardware but inadequate for communications. Thus, by combining a

Raspberry Pi’s excellent communication and an Arduino’s ability to control hardware

and run them, the result is a complete system.

The Arduino shield in use is based on the Arduino Leonardo Chip with its on board

microcontroller chip being an ATmega32u4 with a clock speed of 16 MHz [7]. The

shield also offers different Raspberry Pi I/O pins.

Figure 2: Arduino Shield used with pinout map [8]

2.3 – Teensy 3.2

The Teensy is a complete USB-based microcontroller, with its small size, high

performance and large memory the board can manage many types of projects [9]. The

Teensy board can be programmed using the Arduino IDE software, by installing an

8

add-on called Teensyduino [10]. Teensyduino also allows the user to choose the

processor speed he would like to use.

The Teensy board offers multiple pins such as, Ground, 3.3V, Digital, Analogue and

PWM. However, the Teensy is equipped with the MK20DX256VLH7 processor with a

rated speed of 72 MHz which is faster than the Arduino Leonardo. Unlike the Arduino

board, Teensy 3.2 cannot supply 5 volts of output power, as it is limited to a maximum

of 3.3V [11]. Another important feature that is lacked in the Arduino is that on the

Teensy board, almost all the pins can be modified as attach interrupt pins, pins that

can pause the controller for a small amount of time to execute the Interrupt Service

Routine (ISR4).

Figure 3: Teensy 3.2 board with Pin layout [12]

With the high performance and the capability to overclock the processor’s speed,

combining a Teensy board with the Raspberry Pi will create a powerful system that

can operate at a fast rate. The following table compares the main features of a Teensy

3.2 board against an Arduino Leonardo board.

4 ISR: Software invoked process that interrupts the CPU from the current process. Once the ISR is
complete the CPU resumes the interrupted process

9

Table 1: Comparison Between Teensy 3.2 and Arduino Leonardo [11] [13]

 Teensy 3.2 Arduino Leonardo

Processor MK20DX256VLH7 ATmega32u4

Processor Speed (MHz) 72 (overclock-able to 95) 16

Length (mm) 17.78 68.6

Width (mm) 36.26 53.3

Digital I/O Pins 34 20

PWM Pins 12 7

Analogue Input Pins 21 12

Flash Memory (kbyte) 256 32

SPRAM (kbyte) 64 2.5

EEPROM (kbyte) 2 1

Interrupt Pins
All digital pins can be
used as Interrupt Pins

5

2.4 - Programming Languages Used

A programming language can be regarded as rules that can instruct a computer or an

electrical component on what to do and how to perform a task. There are many

different languages such as, C++, C, Python and Fortran, all these languages vary a

lot due to their syntax, which is the form of an instruction and how it should be set up

[14].

Arduino’s IDE is a simplified version of C++ with Libraries that can make writing a code

easier and shorter. C++ is an object-oriented high-level language developed by Bjarne

Stroustrup [15]. It is regarded as a compiled language. Compiled languages are

converted directly into machine code thus, they can run significantly faster and more

efficiently than interpreted languages [16]. This offers the developer control over the

hardware aspects. However, the code needs to compile each time new changes are

made which can make debugging, the process of identifying and removal of errors,

the code complicated and time-consuming. Teensyduino software is an add-on for the

Arduino IDE which allows the Teensy board to be programmed [10].

The Raspberry Pi offers different software for coding, but the easiest one to learn is

Python [17], due to its easy syntax readability. This makes debugging the code easier

as well, and the presence of multiple open-source libraries is a significant factor [18].

Python is an in interpreted, object-oriented, high-level programming language.

Interpreted languages do not require machine code to execute a program, instead they

10

will run through the program line by line and execute each command [16]. This is a

main disadvantage which will slower the program execution speed.

2.5 – Sharp GP1A57HRJ00F Photo Interrupter sensor

The sensor in use is a standard transmissive photointerrupter

with the emitter and detector in the same case but opposite to

each other. The sensor contains a diode on the emitter side.

The sensor requires a voltage input between -0.5 to 17 volts

with a peak current of 1 ampere [19], and the recommended

current for the emitter is 7mA. This sensor outputs 1 when

there is nothing crossing the slot and 0 when there is

something blocking the slot. A photo of the sensor can be

seen in figure 4.

2.6 - I2C/IIC (Inter Integrated Circuit) Bus

A Serial Protocol for two wire interfaces designed by Philips in the early 80’s to

facilitate communication between components on the same circuit board, hence the

name Inter Integrated Circuit [20].

I2C is a half-duplex protocol, this means that the data can be sent in both to and from

a device but not simultaneously. It uses two main wires for communication, a Serial

Data wire (SDA) and a Serial Clock wire (SCL). SDA is used to transfer data shared

between transmitters and receivers and SCL is used for synchronisation of the

electrical component clocks on the bus. The protocol can support speeds up to 3.4

Mega-Bits/Second [21].

There are two types of device profiles on the bus a Master and a Slave. A master

generates bus clock and begins a communication process on the bus, whereas a slave

will respond to the commands that appear on the bus. In case of multiple slaves

connected to the bus the master can address specific Slaves by their unique address

ID, usually master devices do not have an address to eliminate the possibility of a

slave transmitting commands to the masters. But in the case of having two or more

master devices and two of them initiate a transmission on the bus, bus arbitration takes

Figure 4: Sharp
GP1A57HRJ00F Sensor [19]

11

place. Bus arbitration means that both SDA signals from the masters are compared to

each other while the SCL signal is high, if one of the SDA signals is LOW and the other

one is HIGH the master with the low SDA signals wins the bus arbitration process and

thus, have access to use the bus. The other master will have to wait till a stop condition

appears on the bus. Each device can be a transmitter, a receiver or both [22].

The SCL and SDA signals are bidirectional. They are connected via resistors to a

positive power supply voltage, and they also have an open-collector to achieve a wired

AND bus connection. A wired AND connection means that when the bus is free both

the SCL and SDA signals are high (equivalent to 1) so to initiate a bus transmission,

both lines must be pulled down to low state (equivalent to 0). Only a master can pull

the clock signal into a low state to start the synchronisation of the clock and mark the

start of data transmission, the master keeps the clock low till it receives the data from

the receiver since the receiver cannot pull the SCL to the low state. To mark the end

of the data frame the master has a stop function to indicate that the bus is free for use

[22].

The typical data frame of the bus, see figure 5, shows the full data frame structure

used in the bus. The frame starts with a Start Condition, which is the start function on

the master. This is followed by a 7 or 10 bits address frame that is unique for different

slave devices on the bus. The Read/Write bit is set as 0 if the master is writing to the

slave and 1 if the master is reading from the slave. The data frame can send up to 8-

bits (1 byte) of data and there is no limit of how many bytes you send if every byte

ends with an Acknowledgement bit added by the receiver [22]. The I2C protocol is

governed by the SMBus, System Management Bus, on the Pi and by the Wire library

for the Teensy and Arduino boards. The SMBus & Wire library will manage the

message frame.

Figure 5: I2C data frame format [23]

12

3 – Mechanical Design

Mechanical components that will allow the mounting of the sensors to calculate the

speed of the buggy. Additional components were added to the buggy to use the sensor

with the recommended configuration.

3.1 – Driven Wheel

An arrangement of two sensors is used to get feedback about the direction of

movement of the buggy, in a way that one sensor will be slightly leading the other in

its reading. Please refer to section 4.2 for details about how the direction of the buggy

is determined. This arrangement required the design of a disk encoder with teeth to

not only get the direction, but the speed as well. The disk had to be designed and

manufactured in house since there were no suppliers to purchase a disk with the

desired dimensions.

The disk is made from 6mm black acrylic. The choice of black acrylic was to reduce

weather effects on the disk and to fully absorb the light from the sensor’s emitter. The

design can be seen in figure 6.

Figure 6: Disk Dimensions

The smallest diameter of the wheel is 93.2mm, therefore the diameter of the disk was

chosen as 92mm. This is so that the disk will not hit the rail whilst the buggy is moving.

For the sensor to have space, two 6mm spacers were added to push the disk away

from the wheel. The spacers are made from plywood. See Appendix A for the CAD

drawings.

13

The disk has a total number of 18 teeth, the number was calculated using the following

formula:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ =
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑃𝑖𝑡𝑐ℎ

Equation 1

The pitch is the slot width and the pitch circle circumference for 1 tooth. A pitch of

16mm will calculate a number of 18.06 teeth. The slot width was kept at 8mm and the

number of teeth to 18, this calculated a pitch circle circumference of 8.05mm.

A frame lip was designed to hold the components to the frame of the wheel, so that

the sensor is far away from the ground. An adjuster was added to be able to change

the height of the sensors from the disc. A small component was added to hold the

sensors together but separated by a small distance, so that one sensor will be leading

the other one. All these components were made from 3mm clear acrylic. The inventor

assembly can be seen in figure 7.

Figure 7: Inventor Assembly for the proposed arrangement

The assembly of this arrangement can be seen in figure 8 & 9. The engineering

drawings of the other components can be seen in Appendix A.

14

Figure 8: Arrangement for the driven wheel

Figure 9: Side view of the arrangement

3.2 – Driving Wheel

Due to the chains and the sprockets on the driving wheel, it was difficult to design the

same disk as the driven wheel. So, the sensors were mounted adjacent to the chains

for the chain links to break the sensors light. For this purpose, a different frame lip was

designed that will allow a plate to slot through it. This plate will have angular slots to

allow the sensor to slot inside. A tight fit lock is used to secure the sensor in its position.

The components are made from 3mm clear acrylic. Figure 10 shows the inventor

assembly of the arrangement.

Figure 10: Inventor Assembly for the arrangement of the Driving Wheels

The whole arrangement can be seen in figures 11 and 12. The engineering drawings

for the components can be seen in Appendix B.

15

Figure 11: Driving Wheel Arrangement

Figure 12: Driving Wheel Arrangement

4 – System

4.1 – Raspberry Pi Code (Python)

The Python code is simple and is understandable. The python code be seen in

Appendix C. The main library used is the pigpio library. This library runs using the

pigpio-daemon to facilitate the control of the general-purpose Input/Output pins

available on the Pi [24]. The following table shows the functions used from the library

along with their explanation.

Table 2: pigpio functions used [24]

Function Explanation

pigpio.pi()
It connects to the pigpio daemon to grant

access to the Pi's GPIO pins.

i2c_open(bus, address, flags)

Returns a "handle" to open the I2C

communications to a specified bus and

address. Currently there are no flags, so it’s

left empty.

pi.i2c_write_device(handle, data)

Sends data bytes to the device associated

with the handle. This function can send up

to 32 bytes of data.

(count, data) =

pi.i2c_read_device(handle, Number of

bytes to read)

This function reads up to 32 bytes of data

from the device associated with the handle.

Data received is presented as a bytearray.

Count represents the number of bytes

received.

16

The steps of the code can be seen in table 3.

Table 3: The logic of the code explained in steps

Step 1 Join address 5 as the master.

Step 2 Awaiting user input.

Step 3
Send the byte representation of the user input along with the stopping

character ‘!’.

Step 4
If the user input is “speed”, use the function “readingSpeed”. If not skip to step

10.

Step 5 Read 10 bytes from the transmission.

Step 6 Apply logical shift left by 8 bits to the first byte.

Step 7
Add the second byte from the transmission to the logically shifted first byte to

obtain the speed.

Step 8 Print the rest of the bytes received as the direction of movement for the buggy.

Step 9 Return the value of the speed back to the main loop.

Step 10 The user input is not “speed”, use the function “readingCharacter”.

Step 11 Read up to 14 bytes of data from the device.

Step 12 Return the received values to the main loop.

Step 13 Print the returned values from the functions and return to step 2.

Step 2 happens on line 20 which shows a while True loop, this is the main loop of the

code. Step 3 happens between lines 21 and 25. The command “str.encode()” returns

the byte representation of the user input, so that it can be sent over the SDA. The use

of a stop character “!” was to create a method to send two inputs from a single data

frame for example, this method can be used to adjust the voltage input of the motor to

alter its speed. In the other code, this stop character is recognised to separate the

input in the data frame.

For the 4th step, a separate read function is used to read the speed of the buggy due

to the logical shift section inside the function. The logical shift left is applied to the first

byte only, since this byte will be logically shifted right by 8 bits on the other board and

sent to the Pi as the first byte. So, to obtain the full speed value, the shifted first byte

is added to the second byte. This method was used since the maximum number the

byte can hold is 255 thus, using this method the maximum speed value that can be

17

sent is 65535. The received speed is then returned to the main loop to be printed for

the user.

4.2 – Arduino/Teensy Code (C++)

As mentioned in section 2.4 that both the Arduino and Teensy 3.2 boards can use the

same sketches, this means that the code written can work with Arduino and Teensy

3.2 board with few differences. The full code can be seen in Appendix D, this code

was used in the Teensy 3.2 testing and is the proposed code. As mentioned in section

2.5 the Wire library controls the I2C communications on the Arduino/Teensy board.

The Wire library offers a few functions that are used in the code, the following table

lists the used functions along with their explanation.

Table 4: List of used functions from the Wire library [25]

Function Explanation

Wire.begin(address)

Placed in the void setup, this function allows the device to

join the specified address as a slave. To join as a master

the function is left empty

Wire.onReceive(function)
Placed in the void setup, this function calls a function

when a slave device receives a transmission

Wire.onRequest(function)
Placed in the void setup, this function calls a function

when a master requests data from the slave

Wire.read() Reads a byte from the bus

Wire.write()
Writes data on the bus. Data sent can be in the form of a

string (character pointer) array.

The flow chart of the code can be seen in figure 13.

18

Figure 13: Flow chart of the C++ code

The following table presents the steps of the code and how it works.

Table 5: The logic implemented in the code

Step 1 Join address 5 as a slave.

Step 2
Identify the functions to be used for the Wire.onReceive and Wire.onRequest

commands.

Step 3
Record the time for the “fallTime” variables along with the ISRs used for each

sensor.

Step 4
If the wheel is moving, the speed is calculated till it is requested. If the wheels

don’t move for more than 0.3s then mark the speed as zero.

Step 5 Awaiting transmission from the master.

Step 6 Clear the variables to store incoming data.

Step 7 Loop for the stop character “!” and store the received data.

Step 8

Set a flag depending on the received data. If the received data is “reply” go to

step 9, else if the received data is “speed” go to step 10, else flag it as an

unknown event and go to step 13.

Step 9 Reply back with “Hi Pi” and then return back to step 5.

Step 10
Loop through all the speed values and add the values greater than zero then

divide by the number of speed values to calculate the average speed.

Step 11

Apply logical shift left by 8 zero bits to the average speed value and store in the

variable “z”, then apply logical AND with 0xFF (eight values of 1) to the average

speed value and store it in the variable “y”.

Step 12
First send variable “z” and then “y” to the master, then send the direction of

movement. Return back to step 5.

Step 13 Reply back with the message “Unknown event received” and go back to step 5.

19

For the 3rd step, the ISRs are activated using the “FALLING” condition, this condition

represents that a transition from the HIGH state to the LOW state occurred. When the

sensor goes through this transition the ISR will be activated. The variable “fallTime” is

used across the ISRs of the sensors, it is used to calculate the delta time between the

activation of the ISR for one sensor. The order of the ISRs is the same order that

appears in the flow chart on figure XX.

The 4th step is always active. The speed calculation depends on the movement of the

wheels, so when the wheels are moving the speed of the buggy is updated. Therefore,

if the wheels are not moving for more than 0.3 seconds, the speed is set as zero.

For the 7th step, the controller reads all the characters within the transmission looking

for the stop character to split the transmitted data. This is done because if another

transmission received, the Wire.onReceive function will be repeated again losing any

data from the previous transmission. The use of a second command in the system

was aimed to control the speed of the buggy, in a way that if the first command

received is “speed” and the second command is a number, then that number is used

to alter the speed of the buggy.

The 8th step sets a flag depending on the first command. This flag is used in the

Wire.onRequest function to set the correct data that is going to be sent back in reply

to the received transmission.

Steps 10, 11 and 12 occur within the Wire.onRequest function. The speed values are

obtained from a separate speed function that calculates the speed of the buggy every

0.1 seconds. The Teensy sends the Least Significant Bits (LSB) first, therefore in step

11 the average speed value is logically shifted to store the Most Significant Bits (MSB)

of the speed. The average speed undergoes logical AND with 0xFF to store the LSB

of the value. They are sent in the order of MSB first then LSB later since the Pi is

expecting the first byte to be the MSB of the speed value.

Inside the speed function the first four sensors are regarded as the driven wheels. The

following equation was used to calculate the speed from the sensor readings.

𝑆𝑝𝑒𝑒𝑑 = ((
𝑠 × 1000

ẟ𝑡
) ÷ 𝑟) × (

180

𝜋
) × (

0.5

3.0
) Equation 2

20

Where s (in mm) is the distance between the ‘falling’ edges on the encoder disk,

equivalent to 15mm (8mm gap width and approximately 7mm teeth width). The

position of the sensor to the centre of the wheel is represented as r (in mm), from

measurements the distance is 43mm. ẟ𝑡 is the time since the ISR got activated till the

next instance the ISR was activated again, its measured in milliseconds. The first

bracket will calculate the radians per second, then multiplying it by 180/π to calculate

it in degrees per second finally multiplying by 0.5/3.0 to calculate the speed in RPM. 3

degrees/second is equivalent to 0.5 RPM. The rest of the sensors, which are mounted

on the driving wheel, are calculated using the following formula.

𝑆𝑝𝑒𝑒𝑑 = ((
𝑃 × 1000000

ẟ𝑡
) ÷ 𝑃𝐶𝑅) × (

180

𝜋
) × (

0.5

3.0
)

Equation 3

Where p is the measured minimum distance between two chain links which is 2.40mm.

Whereas PCR is the Pitch Circle Radius of the 42 teeth sprocket which is 42.5mm

[26]. This calculation will calculate the angular velocity of the wheel. Multiplying the

angular velocity by 180/π and then by 0.5/3.0 will calculate the speed value in RPM.

5 - System Test

5.1 – Sensors

To follow the recommended input voltage and current. The sensor was connected to

3.3 volts and a resistor of value 660 ohms is chosen to limit the current to 5 mA through

the emitter only. The receiver did not have the resistor. Figure 14 shows how the

sensor should be connected, the “digital pin” refers to a Teensy digital pin.

Figure 14: Circuit diagram for the Sensor in use

21

5.1.1 – Driven Wheels

Several methods were tested to investigate for the smoothest speed profile. The

smoother the speed profile, the fewer the errors in the method used. The main aim

was to have a constant feedback of the speed, so counting the number of teeth of the

disk till it finishes a full cycle should not be implemented as the speed feedback method

since, it is slow when the buggy is moving at a slow speed.

The first method was to calculate the speed every time a tooth passes by, as in

measure the speed when the sensor changes state from 1 to 0 and then from 0 to 1.

The sensor pin was connected to a normal digital pin. The method also included

measuring the speed from one gap as well, same sensor logic as the tooth but

inverted. The results of 1 tooth vs 1 gap can be seen in figure 15. Sensor 1 was

measuring the teeth and Sensor 2 was measuring the gaps.

Figure 15: 1 Tooth vs 1 Gap Speed profile

From the graph, there is a huge difference between both speed profiles, this can be

due to the machine error. The laser cutter used to manufacture the disk had a

tolerance of 0.1mm, so the teeth of the disk may not have the same width. Moreover,

the tooth width used is 7mm and the gap width is 8mm, in real life the distance may

not be 15mm thus the rise of the huge difference between both speed profiles. The

distortions that appear on the graphs are periodic. Letter ‘a’ represents the full

a

22

revolution of the disk (18 teeth). The errors have the same profile every full revolution

of the disk, this can be due to machine error.

For the second method, instead of reading tooth by tooth or gap by gap, instead one

sensor will only look for transitions from 1 to 0, and once it counts 2 transitions, it

calculates the speed. The sensors were connected to a normal digital pin. This means

that sensor have crossed a tooth and a gap, from the actual arrangement the total

distance is approximately 15mm. The other sensor was left to calculate the speed

every gap. This was done to check which method produces the smoothest speed

profile. Sensor 1 was used to count the teeth transitions and sensor 2 was kept

measuring the speed per gap. The chart can be seen in figure 16.

Figure 16: 2 Teeth transition VS 1 Gap speed profile

There is still periodic appearance of the errors on both profiles, but for the first sensor

the distortions have been minimised. The difference between both profiles have been

reduced as well, the distance was not changed the method of calculating the speed

only changed.

The 2 teeth method is quick and produces a much smoother profile. To further

eliminate errors, it was decided to use interrupt pins and measure the speed every 0.1

seconds for the third method.

23

Finally, the last method was to test 2 teeth transitions and 2 gaps transitions (based

on interrupt pins) and check which provides the smoothest profile. Results are shown

in figure 17.

Figure 17: 2 Teeth transition VS 2 Gap transition speed profile

Both profiles seem similar, but the 2 teeth transition was chosen as the primary method

to calculate the speed of the buggy. This is because its profile seems to be the

smoothest, as it can be seen from the zoomed axes on figure 17. There are still

periodic errors, but they have decreased significantly when the interrupt method was

used. For this reason, the main method to calculate the speed of the driven wheels is

the 2 Teeth transition interrupt based.

5.1.2 – Driving Wheel

For the driving wheel, the method chosen was to mount the sensor adjacent to the

chain to measure the chain’s linear speed and consequently the wheel’s angular

velocity.

The speed profile can be seen in figure 18. There is a lot of distortion visible, this is

due to the vibration of the motor’s frame when it was running.

24

Figure 18: Speed profile of the Driving Wheel

5.2 – RPi – Teensy/Arduino Communication

There are two codes, both are fundamentally similar. The code that was used to test

the Arduino board can be seen in Appendix E. This code works perfectly on the Teensy

board with minimal errors.

 When testing the Arduino board, the first byte that is sent on the I2C bus is always

faulty. The results of the communication can be seen in figure 19.

25

Figure 19: System testing. Raspberry Pi (on the left-hand side - python) and Arduino (on the right-hand side -
Serial Monitor)

From the figure, it can be seen that from the Arduino’s side speed 2 is incorrect, even

when the wheel is not rotating. Furthermore, at higher speeds (approximately 300

RPM) the ISRs don’t have enough time to execute thus sometimes the speed might

be shown as a zero, partially because of the sensors being so close to each other and

partially caused by the Arduino’s processor speed. Thus, at higher RPMs the ISRs are

activated more frequently. Therefore, when one ISR is being processed and the next

ISR is triggered, this causes a slight delay and a prediction of a lower speed. This

effect is not seen at lower RPMs because the ISRs are not activated frequently.

The Arduino applies logical shift right by 8 bits to the average speed, to store the most

significant bits. It then sends the most significant bits as the second byte and the least

significant bits as the third byte. This way the Arduino can send up to 2 bytes of data.

First letter/byte

is incorrect

Received speed

value is incorrect

26

Hence, the Pi applies logical shift left by 8 bits and then adds it to the received third

byte. A value of 46 is expected to be the result of the transmission but a garbled

transmission of 2819 was received.

Figure 20: System testing. Raspberry Pi (on the left-hand side - python) and Teensy (on the right-hand side -
Serial Monitor)

For the Teensy board, the first byte is sent out correctly, therefore the Teensy can fully

use the 32-byte limit. The results of the tests can be seen in Figure 20. Add to that,

the Pi performs the logical shift to the corresponding byte and the expected speed

matches the received speed. Figure 21 shows the array that contains the speed along

with a provisional sign that represents the direction of movement.

Figure 21: The speed array that holds the speed from different sensors. The "+" means the direction is clockwise
and "-" is anti-clockwise

Speeds matched

Direction of the buggy

27

The test was carried out using two sensors (1 driven wheel), this is because they don’t

require an external power source to drive the motor. Moreover, the track buggy can’t

be unfolded inside the lab to take readings from all six sensors.

Operating the board at a processor speed of 72 MHz is fast enough to not allow one

ISR clashing with the other ISR. But at speeds exceeding 600 RPM the ISRs start to

clash with each other. The test was repeated using a processor speed of 96MHz

(overclock – running at higher speeds than what was intended by the manufacturers)

where this issue was not visible. However, overclocking reduces the processor’s life.

Both boards were able to join the I2C as a slave for the Pi, but the Teensy performance

is much better than the Arduino.

6 – Discussion

The method used for calculating the speed of the buggy for the driven wheel is the 2

teeth transition based on interrupt pins, due to the profile being the smoothest out of

the tested methods. When further investigating the errors for a trendline within this

method. The zoomed profile shown in figure 17 showed that there is a trendline. This

trendline may be due to the 0.1mm tolerance of the laser cutting machine that was

used to manufacture the disk.

Furthermore, for the driving wheel the suggested method showed a lot of distortion. It

is expected to have small distortions in the profile, due to the chain vibration. However,

when the test was carried out the wheel was not touching the ground and the motor

when turned on started to vibrate. Add to that, the sensors were not constrained to the

chains. There were difficulties in constraining the sensor mounts on the frame because

of the motor housing. Due to this, the sharp changes in speed and the extreme

distortions are visible on the profile presented.

When investigating the error when ISRs start to clash with each other. It was

discovered that the “micros()” timer function is updated using its own timer interrupt,

with multiple functions. Even when the ISRs are kept short to avoid long paused on

the CPU, they still clash due to the “micros()” command.

28

Finally, the communication between the Raspberry Pi and the Teensy 3.2 board via

I2C is error free. Whereas, for the Arduino board when the bus was checked for the

devices on the I2C bus, an address of 68 appeared. The address is still present even

when the Arduino joins the bus (please refer to pages 11 and 20 in the logbook). The

source of the address is unknown, and its removal was not possible. When the shield

is removed from the pins of the Pi the address disappears, which suggests that it

belongs to the shield itself. There is a possibility that this address is the source of

errors within the Arduino transmissions.

7 – Conclusion

Summarizing the report sections, the proposed system aims to automate a Track

Buggy. The Buggy is a lightweight vehicle that have foreseen design changes through

the years, but so far, the Buggy has never seen a system implementation. The

developed system aims to start the automation of the buggy. Keeping the cost as low

as possible, a combination of a Raspberry Pi and a Teensy 3.2 board is used to be

the main components of the system.

The Raspberry Pi with its support for multiple communication protocols, low cost (£32),

and it is a microcomputer with low power consumption, makes it the ideal board to be

the main interface of the system and the master on the bus.

The Teensy 3.2 is a development board that is small and low in cost (£16), paired up

with a powerful processor and a capability of controlling hardware effectively, makes

it an effective microcontroller. Communication between the Raspberry Pi and the

Teensy via I2C was free of errors. Yet the Teensy face a problem with ISR clashing

with each other at higher RPMs but when the CPU was overclocked, there was no

clashes. The Buggy’s maximum speed is 15km/h. Assuming that the radius of the

wheel that is in contact with the rail is 56.5mm, the angular velocity of the wheels is

73.7 rad/s or approximately 704 RPM. This speed will be an issue for the Teensy if the

CPU is not overclocked.

Whereas for the Arduino Leonardo shield, the slow processor speed, caused the ISRs

to clash at speeds over 300 RPMs. This meant that for the current arrangement the

use of an Arduino board to use interrupt pin to calculate the speed was difficult.

29

Moreover, the appearance of the board’s address when the shield is connected to the

pins of the Pi might be the cause of the errors appearing in the transmissions from the

Arduino to the Pi. Due to this, communication via I2C was not a success for the Arduino

Shield. Therefore, the Shield was not used.

Furthermore, a proposed method to calculate the speed of the driving wheel by

mounting the photo-interrupter adjacent to the chain. However, there were limitations

in constraining the sensor mount on the frame of the wheel to keep the sensor adjacent

to the chain. Yet, it was successful in calculating the speed of the driving wheel, but

the profile showed a lot of distortions due to the vibrations of the chain.

Overall, aims of the project have been met. A board to control the hardware has been

chosen to be the Teensy 3.2. The Teensy system testing was a success,

communications via I2C ran with no errors to account for, and the implementation of

an accurate method to calculate the speed of the Buggy was achieved.

8 – Future Work

To further to develop the system, wiring up of the motor to a battery pack is essential

to provide a power source for the motors and the electrical components of the buggy.

The use of a motor driver or a MOSFET Transistor could be used to drive the and

control the MY1016 motor used for the Buggy. The motor driver should be able to drive

up to 24V and 13.7A to the motor through the PWM pins of the Teensy board. The

suggested motor driver is the Pololu G2 high power motor driver, it can supply up to

13A and a range of 6.5V to 40V. This driver can user bidirectional control of the motor.

To avoid weather effects damaging the sensors on the driven wheel, a compartment

should be designed to cover the sensors and a part of the encoder disk. Furthermore,

for the driving wheel the proposed method can be improved by using optical encoders.

The readings of an optical encoders are accurate, and after revising the frame of the

intermediate shaft, it is possible to mount an optical encoder on the frame of the shaft

to record readings from the intermediate shaft. Kubler 8.3700.1322.1024 Incremental

Encoders were found inside the box of components for the buggy, they can be used

for such arrangement.

30

In terms of controlling the Raspberry Pi wirelessly, VNC Server is pre-installed on the

Pi. VNC Viewer software can be downloaded on any personal computer or mobile

phone for free. A small portable Wi-Fi should be used to connect the Pi to the internet

to be able to use VNC Server. This software will provide full wireless control on the Pi

from a computer or a mobile phone.

Moreover, to avoid ISRs interrupting each other a counter can be used inside the ISR

instead of calling the function “micros()”. The counter will initiate as zero and once an

ISR is activated, the counter will increment inside the ISR. Inside the loop an “if”

statement can be written to check when the counter reached 1, then the time can be

recorded. Within the first “if” statement, another “if” statement can be used to record

the stop time when the counter reaches 2 counts. The start time should now be equal

the stop time and the whole method is repeated. This will eliminate the use of

“micros()” within the ISR for the sensors, therefore the ISR should not interrupt each

other.

Finally, the implementation of all the improvements onto the code and testing the fully

developed track rail buggy on the rail.

31

9 - References

[1] ORR, “ORR,” [Online]. Available: http://orr.gov.uk/statistics/popular-

statistics/how-many-people-use-the-railway.

[2] A. Coley, “Design, Optimisation and Testing of a Portable Track Vehicle,”

2017.

[3] “Raspberry Pi 3,” [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

[4] “Raspberry Pi Pinout Diagram,” [Online]. Available:

https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-

note.html.

[5] “What is Arduino?,” [Online]. Available:

https://www.arduino.cc/en/Guide/Introduction.

[6] “What is an Arduino,” [Online]. Available:

https://learn.sparkfun.com/tutorials/what-is-an-arduino.

[7] “Arduino Shield,” [Online]. Available: https://www.dfrobot.com/product-

1211.html.

[8] “Raspberry Pi Meet Arduino Shield Pinout,” [Online]. Available:

https://www.dfrobot.com/wiki/index.php/Raspberry_Pi_Meet_Arduino_Shield_

SKU:DFR0311.

[9] “Teensy Board,” [Online]. Available: https://www.pjrc.com/teensy/.

[10] “Teensyduino,” [Online]. Available:

https://www.pjrc.com/teensy/teensyduino.html.

[11] “Teensy Features,” [Online]. Available:

https://www.pjrc.com/teensy/teensy31.html.

[12] “Teensy Picture,” [Online]. Available:

https://cdn.shopify.com/s/files/1/1093/9912/products/teensy-3_2-pinout-

05_2048x2048.png?v=1527181603.

[13] ArF, “Arduino Features,” [Online]. Available:

https://store.arduino.cc/usa/arduino-leonardo-with-headers.

[14] “Programming Languages,” [Online]. Available:

https://www.computerhope.com/jargon/p/proglang.htm.

32

[15] “C++,” [Online]. Available: https://www.computerhope.com/jargon/c/cplus.htm.

[16] “Programming Concepts,” [Online]. Available:

https://thesocietea.org/2015/07/programming-concepts-compiled-and-

interpreted-languages/.

[17] “Top Programming Language,” [Online]. Available:

https://www.webopedia.com/TERM/P/programming_language.html.

[18] “What is Python,” [Online]. Available:

https://www.python.org/doc/essays/blurb/.

[19] Sharp, “GP1A57HRJ00F,” [Online]. Available:

https://www.sparkfun.com/datasheets/Components/GP1A57HRJ00F.pdf.

[20] “What is i2c,” [Online]. Available: https://www.i2c-bus.org/.

[21] I2CvUARTvSPI. [Online]. Available: http://www.rfwireless-

world.com/Terminology/UART-vs-SPI-vs-I2C.html.

[22] “i2c bus specification,” [Online]. Available: http://i2c.info/i2c-bus-specification.

[23] “How i2c works,” [Online]. Available: http://www.circuitbasics.com/basics-of-

the-i2c-communication-protocol/.

[24] “PIgpiod,” [Online]. Available: http://abyz.me.uk/rpi/pigpio/python.html.

[25] “Wire Library,” [Online]. Available: https://www.arduino.cc/en/Reference/Wire.

[26] P. N. S.-4. 42 Teeth Sprocket Datasheet. [Online]. Available:

http://www.hpcgears.com/pdf_c33/13.12-13.13.pdf.

33

Appendix A – Driven Wheel Components Engineering drawings

34

35

36

37

Appendix B – Driving Wheel Components Engineering drawings

38

39

40

Appendix C – Raspberry Pi code (Python)

41

Appendix D – Teensy code (C++)

42

43

44

Appendix E – Arduino code (C++)

45

