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Abstract 

Regular operation of trains will result in a progressive damage to railway tracks, even 

though the steel used is very durable and can withstand high loads. Through constant 

use the rails can develop small defects such as micro-cracks, gauge cornering 

cracking, rolling contact fatigue, wear etc. These small defects if not detected can grow 

and eventually cause a catastrophic failure if the rail breaks during operation. 

The railway track buggy is a foldable lightweight vehicle that can be used to carry 

equipment, e.g. monitoring equipment to detect defects in the rail. Although the track 

buggy has motors, the control system is still being developed and the present report 

develops systems for feedback, and control using speed sensors at both driving and 

driven wheels. 

The control system couples a Raspberry Pi with a Teensy, and a method of 

communication over I2C developed for the system. Photo-interrupter sensors were 

used as a way of measuring the speed of the track buggy on rail. An Arduino Leonardo 

board was also used to test the system. 

System testing is shown, and the results are laid out to present the main strengths of 

the system whilst suggesting an improvement for the flaws. Results from both boards 

are shown and a conclusion is based on these results. Overall system implementation 

between all boards was a success, along with the speed feedback system.  
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1 – Introduction 

According to the Office of Rail and Road, there has been a total of 438 million 

passenger journeys made in Britain by a train operator in the 3rd quarter of the financial 

year 2018 [1]. Due to this large volume of journeys the rail must be maintained 

regularly and scanned for any defects that might cause disastrous events. 

To inspect the rail, operators use various technologies and vehicles including hand-

pushed buggies. These buggies are loaded with monitoring equipment and the 

operator manually pushes the buggy across the rail. The Track Buggy, being 

developed at Newcastle University, is a foldable, lightweight, self-powered railway 

vehicle that can be used to carry equipment e.g., monitoring equipment. 

The Track Buggy is equipped with 2 MY1016 24V, 250W electric scooter motor. The 

driving wheels are not directly driven using the motor, instead it uses an 11-tooth 

sprocket to a 25-tooth sprocket that sits on an intermediate shaft. This intermediate 

shaft contains a 28-tooth sprocket that drives a 42-tooth sprocket located on the 

driving wheel. Chains are used to transmit the torque from the motors to the wheels. 

This allows the Buggy to reach speeds up to 15km/h [2]. 

The Track Buggy needs an integrated system that will allow it to operate automatically 

on the track. The system will have a speed feedback system to control the buggy’s 

velocity on the track. The system can be controlled wirelessly. 

1.1 - Aims and Objectives: 

• Select optimum solution for control. 

• Speed monitoring system. 

• Establish an I2C1 bus between the Pi and the other boards for non-serial 

communications. 

• Build the system and test it. 

2 - Literature Review 

2.1 - Raspberry Pi 

The Raspberry Pi is a cheap single board computer that can be used easily with a 

keyboard, mouse, a monitor and the free operating system Raspbarian. The small 

                                            
1 I2C: Inter Integrated Circuit communication protocol 



6 
 

computer supports multiple programming languages all aimed for programmers to 

learn a new program or for experienced users, to be use in any project.  

Raspberry Pi Model 3 is equipped with 1GB of RAM and a Quad Core 1.2GHz 64-bit 

CPU. It has built in Wi-Fi and Bluetooth capabilities with a 40-pin extended GPIO 

(General-Purpose Input/Output) that can be used for I2C, SPI2 or UART3 

communication protocols, allowing the Pi to be versatile in communication. The Pi also 

has some limitations such as, no built in ADC (Analogue to Digital Converter) and 

cannot produce enough power to drive an inductive load, making it hard for the Pi to 

control hardware components. However, these disadvantages can be overcome by 

using a Teensy board or an Arduino Shield [3].  

 

Figure 1: Raspberry Pi with pinout map [4] 

 

2.2 - Arduino Shield 

The Arduino is an open-source electronics platform based on easy-to-use hardware 

and software [5]. Generally, an Arduino can be regarded as a microcontroller with its 

I/Os, memory and CPU all integrated on one board. It uses an IDE (Integrated 

Development Environment) that can be downloaded on a computer where the 

                                            
2 SPI: Serial Peripheral Interface communication protocol 
3 UART: Universal Asynchronous Receiver/Transmitter communication protocol 
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programmer can write and upload the code to the board with the use of a USB cable 

[5]. This IDE uses a simpler version of C++ programming language, making it easier 

to program the board [6]. This IDE can be downloaded on the Pi and then the codes 

can be uploaded to the Arduino using the Pi.  

The Arduino offers different variety of pins such as, Ground, 5V & 3.3V, Analogue, 

Digital and PWM [6]. The board also supports the same communication protocols 

offered by the Raspberry Pi. To keep the microcontroller cost to a minimum, 

manufacturers did not include built in Wi-Fi or Bluetooth. However, it is good in 

controlling hardware but inadequate for communications. Thus, by combining a 

Raspberry Pi’s excellent communication and an Arduino’s ability to control hardware 

and run them, the result is a complete system.  

The Arduino shield in use is based on the Arduino Leonardo Chip with its on board 

microcontroller chip being an ATmega32u4 with a clock speed of 16 MHz [7]. The 

shield also offers different Raspberry Pi I/O pins. 

 

Figure 2: Arduino Shield used with pinout map [8] 

 

2.3 – Teensy 3.2 

The Teensy is a complete USB-based microcontroller, with its small size, high 

performance and large memory the board can manage many types of projects [9]. The 

Teensy board can be programmed using the Arduino IDE software, by installing an 
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add-on called Teensyduino [10]. Teensyduino also allows the user to choose the 

processor speed he would like to use. 

The Teensy board offers multiple pins such as, Ground, 3.3V, Digital, Analogue and 

PWM. However, the Teensy is equipped with the MK20DX256VLH7 processor with a 

rated speed of 72 MHz which is faster than the Arduino Leonardo. Unlike the Arduino 

board, Teensy 3.2 cannot supply 5 volts of output power, as it is limited to a maximum 

of 3.3V [11]. Another important feature that is lacked in the Arduino is that on the 

Teensy board, almost all the pins can be modified as attach interrupt pins, pins that 

can pause the controller for a small amount of time to execute the Interrupt Service 

Routine (ISR4). 

 

Figure 3: Teensy 3.2 board with Pin layout [12] 

With the high performance and the capability to overclock the processor’s speed, 

combining a Teensy board with the Raspberry Pi will create a powerful system that 

can operate at a fast rate. The following table compares the main features of a Teensy 

3.2 board against an Arduino Leonardo board. 

 

                                            
4 ISR: Software invoked process that interrupts the CPU from the current process. Once the ISR is 
complete the CPU resumes the interrupted process 
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Table 1: Comparison Between Teensy 3.2 and Arduino Leonardo [11] [13] 

 Teensy 3.2 Arduino Leonardo 

Processor MK20DX256VLH7 ATmega32u4 

Processor Speed (MHz) 72 (overclock-able to 95) 16 

Length (mm) 17.78 68.6 

Width (mm) 36.26 53.3 

Digital I/O Pins 34 20 

PWM Pins 12 7 

Analogue Input Pins 21 12 

Flash Memory (kbyte) 256 32 

SPRAM (kbyte) 64 2.5 

EEPROM (kbyte) 2 1 

Interrupt Pins 
All digital pins can be 
used as Interrupt Pins 

5 

 

2.4 - Programming Languages Used 

A programming language can be regarded as rules that can instruct a computer or an 

electrical component on what to do and how to perform a task. There are many 

different languages such as, C++, C, Python and Fortran, all these languages vary a 

lot due to their syntax, which is the form of an instruction and how it should be set up 

[14].  

Arduino’s IDE is a simplified version of C++ with Libraries that can make writing a code 

easier and shorter. C++ is an object-oriented high-level language developed by Bjarne 

Stroustrup [15]. It is regarded as a compiled language. Compiled languages are 

converted directly into machine code thus, they can run significantly faster and more 

efficiently than interpreted languages [16]. This offers the developer control over the 

hardware aspects. However, the code needs to compile each time new changes are 

made which can make debugging, the process of identifying and removal of errors, 

the code complicated and time-consuming. Teensyduino software is an add-on for the 

Arduino IDE which allows the Teensy board to be programmed [10]. 

The Raspberry Pi offers different software for coding, but the easiest one to learn is 

Python [17], due to its easy syntax readability. This makes debugging the code easier 

as well, and the presence of multiple open-source libraries is a significant factor [18]. 

Python is an in interpreted, object-oriented, high-level programming language. 

Interpreted languages do not require machine code to execute a program, instead they 
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will run through the program line by line and execute each command [16]. This is a 

main disadvantage which will slower the program execution speed. 

 

2.5 – Sharp GP1A57HRJ00F Photo Interrupter sensor 

The sensor in use is a standard transmissive photointerrupter 

with the emitter and detector in the same case but opposite to 

each other. The sensor contains a diode on the emitter side. 

The sensor requires a voltage input between -0.5 to 17 volts 

with a peak current of 1 ampere [19], and the recommended 

current for the emitter is 7mA. This sensor outputs 1 when 

there is nothing crossing the slot and 0 when there is 

something blocking the slot. A photo of the sensor can be 

seen in figure 4. 

 

2.6 - I2C/IIC (Inter Integrated Circuit) Bus 

A Serial Protocol for two wire interfaces designed by Philips in the early 80’s to 

facilitate communication between components on the same circuit board, hence the 

name Inter Integrated Circuit [20].  

I2C is a half-duplex protocol, this means that the data can be sent in both to and from 

a device but not simultaneously. It uses two main wires for communication, a Serial 

Data wire (SDA) and a Serial Clock wire (SCL). SDA is used to transfer data shared 

between transmitters and receivers and SCL is used for synchronisation of the 

electrical component clocks on the bus. The protocol can support speeds up to 3.4 

Mega-Bits/Second [21]. 

There are two types of device profiles on the bus a Master and a Slave. A master 

generates bus clock and begins a communication process on the bus, whereas a slave 

will respond to the commands that appear on the bus. In case of multiple slaves 

connected to the bus the master can address specific Slaves by their unique address 

ID, usually master devices do not have an address to eliminate the possibility of a 

slave transmitting commands to the masters. But in the case of having two or more 

master devices and two of them initiate a transmission on the bus, bus arbitration takes 

Figure 4: Sharp 
GP1A57HRJ00F Sensor [19] 
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place. Bus arbitration means that both SDA signals from the masters are compared to 

each other while the SCL signal is high, if one of the SDA signals is LOW and the other 

one is HIGH the master with the low SDA signals wins the bus arbitration process and 

thus, have access to use the bus. The other master will have to wait till a stop condition 

appears on the bus. Each device can be a transmitter, a receiver or both [22].  

The SCL and SDA signals are bidirectional. They are connected via resistors to a 

positive power supply voltage, and they also have an open-collector to achieve a wired 

AND bus connection. A wired AND connection means that when the bus is free both 

the SCL and SDA signals are high (equivalent to 1) so to initiate a bus transmission, 

both lines must be pulled down to low state (equivalent to 0). Only a master can pull 

the clock signal into a low state to start the synchronisation of the clock and mark the 

start of data transmission, the master keeps the clock low till it receives the data from 

the receiver since the receiver cannot pull the SCL to the low state. To mark the end 

of the data frame the master has a stop function to indicate that the bus is free for use 

[22]. 

The typical data frame of the bus, see figure 5, shows the full data frame structure 

used in the bus. The frame starts with a Start Condition, which is the start function on 

the master. This is followed by a 7 or 10 bits address frame that is unique for different 

slave devices on the bus. The Read/Write bit is set as 0 if the master is writing to the 

slave and 1 if the master is reading from the slave. The data frame can send up to 8-

bits (1 byte) of data and there is no limit of how many bytes you send if every byte 

ends with an Acknowledgement bit added by the receiver [22]. The I2C protocol is 

governed by the SMBus, System Management Bus, on the Pi and by the Wire library 

for the Teensy and Arduino boards. The SMBus & Wire library will manage the 

message frame. 

 

Figure 5: I2C data frame format [23] 
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3 – Mechanical Design 

Mechanical components that will allow the mounting of the sensors to calculate the 

speed of the buggy. Additional components were added to the buggy to use the sensor 

with the recommended configuration. 

 

3.1 – Driven Wheel  

An arrangement of two sensors is used to get feedback about the direction of 

movement of the buggy, in a way that one sensor will be slightly leading the other in 

its reading. Please refer to section 4.2 for details about how the direction of the buggy 

is determined. This arrangement required the design of a disk encoder with teeth to 

not only get the direction, but the speed as well. The disk had to be designed and 

manufactured in house since there were no suppliers to purchase a disk with the 

desired dimensions. 

The disk is made from 6mm black acrylic. The choice of black acrylic was to reduce 

weather effects on the disk and to fully absorb the light from the sensor’s emitter. The 

design can be seen in figure 6.  

 

Figure 6: Disk Dimensions 

The smallest diameter of the wheel is 93.2mm, therefore the diameter of the disk was 

chosen as 92mm. This is so that the disk will not hit the rail whilst the buggy is moving. 

For the sensor to have space, two 6mm spacers were added to push the disk away 

from the wheel. The spacers are made from plywood. See Appendix A for the CAD 

drawings. 
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The disk has a total number of 18 teeth, the number was calculated using the following 

formula:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ =  
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑃𝑖𝑡𝑐ℎ
 

 

Equation 1 

 

The pitch is the slot width and the pitch circle circumference for 1 tooth. A pitch of 

16mm will calculate a number of 18.06 teeth. The slot width was kept at 8mm and the 

number of teeth to 18, this calculated a pitch circle circumference of 8.05mm. 

A frame lip was designed to hold the components to the frame of the wheel, so that 

the sensor is far away from the ground. An adjuster was added to be able to change 

the height of the sensors from the disc. A small component was added to hold the 

sensors together but separated by a small distance, so that one sensor will be leading 

the other one. All these components were made from 3mm clear acrylic. The inventor 

assembly can be seen in figure 7. 

 

Figure 7: Inventor Assembly for the proposed arrangement 

 

The assembly of this arrangement can be seen in figure 8 & 9. The engineering 

drawings of the other components can be seen in Appendix A.  
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Figure 8: Arrangement for the driven wheel 

 

Figure 9: Side view of the arrangement 

 

3.2 – Driving Wheel 

Due to the chains and the sprockets on the driving wheel, it was difficult to design the 

same disk as the driven wheel. So, the sensors were mounted adjacent to the chains 

for the chain links to break the sensors light. For this purpose, a different frame lip was 

designed that will allow a plate to slot through it. This plate will have angular slots to 

allow the sensor to slot inside. A tight fit lock is used to secure the sensor in its position. 

The components are made from 3mm clear acrylic. Figure 10 shows the inventor 

assembly of the arrangement. 

 

Figure 10: Inventor Assembly for the arrangement of the Driving Wheels 

The whole arrangement can be seen in figures 11 and 12. The engineering drawings 

for the components can be seen in Appendix B. 
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Figure 11: Driving Wheel Arrangement 

 

Figure 12: Driving Wheel Arrangement 

 

4 – System 

4.1 – Raspberry Pi Code (Python) 

The Python code is simple and is understandable. The python code be seen in 

Appendix C. The main library used is the pigpio library. This library runs using the 

pigpio-daemon to facilitate the control of the general-purpose Input/Output pins 

available on the Pi [24]. The following table shows the functions used from the library 

along with their explanation. 

Table 2: pigpio functions used [24] 

Function Explanation 

pigpio.pi() 
It connects to the pigpio daemon to grant 

access to the Pi's GPIO pins. 

i2c_open(bus, address, flags) 

Returns a "handle" to open the I2C 

communications to a specified bus and 

address. Currently there are no flags, so it’s 

left empty. 

pi.i2c_write_device(handle, data) 

Sends data bytes to the device associated 

with the handle. This function can send up 

to 32 bytes of data. 

(count, data) = 

pi.i2c_read_device(handle, Number of 

bytes to read) 

This function reads up to 32 bytes of data 

from the device associated with the handle. 

Data received is presented as a bytearray. 

Count represents the number of bytes 

received. 
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The steps of the code can be seen in table 3. 

Table 3: The logic of the code explained in steps 

Step 1 Join address 5 as the master. 

Step 2 Awaiting user input. 

Step 3 
Send the byte representation of the user input along with the stopping 

character ‘!’. 

Step 4 
If the user input is “speed”, use the function “readingSpeed”. If not skip to step 

10. 

Step 5 Read 10 bytes from the transmission. 

Step 6 Apply logical shift left by 8 bits to the first byte. 

Step 7 
Add the second byte from the transmission to the logically shifted first byte to 

obtain the speed. 

Step 8 Print the rest of the bytes received as the direction of movement for the buggy. 

Step 9 Return the value of the speed back to the main loop. 

Step 10 The user input is not “speed”, use the function “readingCharacter”. 

Step 11 Read up to 14 bytes of data from the device. 

Step 12 Return the received values to the main loop. 

Step 13 Print the returned values from the functions and return to step 2. 

 

Step 2 happens on line 20 which shows a while True loop, this is the main loop of the 

code. Step 3 happens between lines 21 and 25. The command “str.encode()” returns 

the byte representation of the user input, so that it can be sent over the SDA. The use 

of a stop character “!” was to create a method to send two inputs from a single data 

frame for example, this method can be used to adjust the voltage input of the motor to 

alter its speed. In the other code, this stop character is recognised to separate the 

input in the data frame. 

For the 4th step, a separate read function is used to read the speed of the buggy due 

to the logical shift section inside the function. The logical shift left is applied to the first 

byte only, since this byte will be logically shifted right by 8 bits on the other board and 

sent to the Pi as the first byte. So, to obtain the full speed value, the shifted first byte 

is added to the second byte. This method was used since the maximum number the 

byte can hold is 255 thus, using this method the maximum speed value that can be 
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sent is 65535. The received speed is then returned to the main loop to be printed for 

the user.  

 

4.2 – Arduino/Teensy Code (C++) 

As mentioned in section 2.4 that both the Arduino and Teensy 3.2 boards can use the 

same sketches, this means that the code written can work with Arduino and Teensy 

3.2 board with few differences. The full code can be seen in Appendix D, this code 

was used in the Teensy 3.2 testing and is the proposed code. As mentioned in section 

2.5 the Wire library controls the I2C communications on the Arduino/Teensy board. 

The Wire library offers a few functions that are used in the code, the following table 

lists the used functions along with their explanation. 

Table 4: List of used functions from the Wire library [25] 

Function Explanation 

Wire.begin(address) 

Placed in the void setup, this function allows the device to 

join the specified address as a slave. To join as a master 

the function is left empty 

Wire.onReceive(function) 
Placed in the void setup, this function calls a function 

when a slave device receives a transmission 

Wire.onRequest(function) 
Placed in the void setup, this function calls a function 

when a master requests data from the slave 

Wire.read( ) Reads a byte from the bus 

Wire.write( ) 
Writes data on the bus. Data sent can be in the form of a 

string (character pointer) array. 

 

The flow chart of the code can be seen in figure 13. 
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Figure 13: Flow chart of the C++ code 

The following table presents the steps of the code and how it works. 

Table 5: The logic implemented in the code 

Step 1 Join address 5 as a slave. 

Step 2 
Identify the functions to be used for the Wire.onReceive and Wire.onRequest 

commands. 

Step 3 
Record the time for the “fallTime” variables along with the ISRs used for each 

sensor.  

Step 4 
If the wheel is moving, the speed is calculated till it is requested. If the wheels 

don’t move for more than 0.3s then mark the speed as zero. 

Step 5 Awaiting transmission from the master. 

Step 6 Clear the variables to store incoming data. 

Step 7 Loop for the stop character “!” and store the received data. 

Step 8 

Set a flag depending on the received data. If the received data is “reply” go to 

step 9, else if the received data is “speed” go to step 10, else flag it as an 

unknown event and go to step 13. 

Step 9 Reply back with “Hi Pi” and then return back to step 5. 

Step 10 
Loop through all the speed values and add the values greater than zero then 

divide by the number of speed values to calculate the average speed. 

Step 11 

Apply logical shift left by 8 zero bits to the average speed value and store in the 

variable “z”, then apply logical AND with 0xFF (eight values of 1) to the average 

speed value and store it in the variable “y”. 

Step 12 
First send variable “z” and then “y” to the master, then send the direction of 

movement. Return back to step 5. 

Step 13 Reply back with the message “Unknown event received” and go back to step 5. 
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For the 3rd step, the ISRs are activated using the “FALLING” condition, this condition 

represents that a transition from the HIGH state to the LOW state occurred. When the 

sensor goes through this transition the ISR will be activated. The variable “fallTime” is 

used across the ISRs of the sensors, it is used to calculate the delta time between the 

activation of the ISR for one sensor. The order of the ISRs is the same order that 

appears in the flow chart on figure XX. 

The 4th step is always active. The speed calculation depends on the movement of the 

wheels, so when the wheels are moving the speed of the buggy is updated. Therefore, 

if the wheels are not moving for more than 0.3 seconds, the speed is set as zero. 

For the 7th step, the controller reads all the characters within the transmission looking 

for the stop character to split the transmitted data. This is done because if another 

transmission received, the Wire.onReceive function will be repeated again losing any 

data from the previous transmission. The use of a second command in the system 

was aimed to control the speed of the buggy, in a way that if the first command 

received is “speed” and the second command is a number, then that number is used 

to alter the speed of the buggy. 

The 8th step sets a flag depending on the first command. This flag is used in the 

Wire.onRequest function to set the correct data that is going to be sent back in reply 

to the received transmission. 

Steps 10, 11 and 12 occur within the Wire.onRequest function. The speed values are 

obtained from a separate speed function that calculates the speed of the buggy every 

0.1 seconds. The Teensy sends the Least Significant Bits (LSB) first, therefore in step 

11 the average speed value is logically shifted to store the Most Significant Bits (MSB) 

of the speed. The average speed undergoes logical AND with 0xFF to store the LSB 

of the value. They are sent in the order of MSB first then LSB later since the Pi is 

expecting the first byte to be the MSB of the speed value.  

Inside the speed function the first four sensors are regarded as the driven wheels. The 

following equation was used to calculate the speed from the sensor readings. 

𝑆𝑝𝑒𝑒𝑑 =  ((
𝑠 × 1000

ẟ𝑡
)  ÷ 𝑟) × (

180

𝜋
) × (

0.5

3.0
) Equation 2 
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Where s (in mm) is the distance between the ‘falling’ edges on the encoder disk, 

equivalent to 15mm (8mm gap width and approximately 7mm teeth width). The 

position of the sensor to the centre of the wheel is represented as r (in mm), from 

measurements the distance is 43mm. ẟ𝑡 is the time since the ISR got activated till the 

next instance the ISR was activated again, its measured in milliseconds. The first 

bracket will calculate the radians per second, then multiplying it by 180/π to calculate 

it in degrees per second finally multiplying by 0.5/3.0 to calculate the speed in RPM. 3 

degrees/second is equivalent to 0.5 RPM. The rest of the sensors, which are mounted 

on the driving wheel, are calculated using the following formula. 

𝑆𝑝𝑒𝑒𝑑 =  ((
𝑃 × 1000000

ẟ𝑡
)  ÷ 𝑃𝐶𝑅) × (

180

𝜋
) × (

0.5

3.0
) 

 

Equation 3 

Where p is the measured minimum distance between two chain links which is 2.40mm. 

Whereas PCR is the Pitch Circle Radius of the 42 teeth sprocket which is 42.5mm 

[26]. This calculation will calculate the angular velocity of the wheel. Multiplying the 

angular velocity by 180/π and then by 0.5/3.0 will calculate the speed value in RPM. 

 

5 - System Test 

5.1 – Sensors 

To follow the recommended input voltage and current. The sensor was connected to 

3.3 volts and a resistor of value 660 ohms is chosen to limit the current to 5 mA through 

the emitter only. The receiver did not have the resistor. Figure 14 shows how the 

sensor should be connected, the “digital pin” refers to a Teensy digital pin. 

 

Figure 14: Circuit diagram for the Sensor in use 
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5.1.1 – Driven Wheels 

Several methods were tested to investigate for the smoothest speed profile. The 

smoother the speed profile, the fewer the errors in the method used. The main aim 

was to have a constant feedback of the speed, so counting the number of teeth of the 

disk till it finishes a full cycle should not be implemented as the speed feedback method 

since, it is slow when the buggy is moving at a slow speed. 

The first method was to calculate the speed every time a tooth passes by, as in 

measure the speed when the sensor changes state from 1 to 0 and then from 0 to 1. 

The sensor pin was connected to a normal digital pin. The method also included 

measuring the speed from one gap as well, same sensor logic as the tooth but 

inverted. The results of 1 tooth vs 1 gap can be seen in figure 15. Sensor 1 was 

measuring the teeth and Sensor 2 was measuring the gaps. 

 

Figure 15: 1 Tooth vs 1 Gap Speed profile 

From the graph, there is a huge difference between both speed profiles, this can be 

due to the machine error. The laser cutter used to manufacture the disk had a 

tolerance of 0.1mm, so the teeth of the disk may not have the same width. Moreover, 

the tooth width used is 7mm and the gap width is 8mm, in real life the distance may 

not be 15mm thus the rise of the huge difference between both speed profiles. The 

distortions that appear on the graphs are periodic. Letter ‘a’ represents the full 

a 
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revolution of the disk (18 teeth). The errors have the same profile every full revolution 

of the disk, this can be due to machine error. 

For the second method, instead of reading tooth by tooth or gap by gap, instead one 

sensor will only look for transitions from 1 to 0, and once it counts 2 transitions, it 

calculates the speed. The sensors were connected to a normal digital pin. This means 

that sensor have crossed a tooth and a gap, from the actual arrangement the total 

distance is approximately 15mm. The other sensor was left to calculate the speed 

every gap. This was done to check which method produces the smoothest speed 

profile. Sensor 1 was used to count the teeth transitions and sensor 2 was kept 

measuring the speed per gap. The chart can be seen in figure 16. 

 

Figure 16: 2 Teeth transition VS 1 Gap speed profile 

There is still periodic appearance of the errors on both profiles, but for the first sensor 

the distortions have been minimised. The difference between both profiles have been 

reduced as well, the distance was not changed the method of calculating the speed 

only changed. 

The 2 teeth method is quick and produces a much smoother profile. To further 

eliminate errors, it was decided to use interrupt pins and measure the speed every 0.1 

seconds for the third method. 
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Finally, the last method was to test 2 teeth transitions and 2 gaps transitions (based 

on interrupt pins) and check which provides the smoothest profile. Results are shown 

in figure 17. 

 

Figure 17: 2 Teeth transition VS 2 Gap transition speed profile 

Both profiles seem similar, but the 2 teeth transition was chosen as the primary method 

to calculate the speed of the buggy. This is because its profile seems to be the 

smoothest, as it can be seen from the zoomed axes on figure 17. There are still 

periodic errors, but they have decreased significantly when the interrupt method was 

used. For this reason, the main method to calculate the speed of the driven wheels is 

the 2 Teeth transition interrupt based. 

 

5.1.2 – Driving Wheel 

For the driving wheel, the method chosen was to mount the sensor adjacent to the 

chain to measure the chain’s linear speed and consequently the wheel’s angular 

velocity. 

The speed profile can be seen in figure 18. There is a lot of distortion visible, this is 

due to the vibration of the motor’s frame when it was running.  
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Figure 18: Speed profile of the Driving Wheel 

 

5.2 – RPi – Teensy/Arduino Communication 

There are two codes, both are fundamentally similar. The code that was used to test 

the Arduino board can be seen in Appendix E. This code works perfectly on the Teensy 

board with minimal errors.  

 When testing the Arduino board, the first byte that is sent on the I2C bus is always 

faulty. The results of the communication can be seen in figure 19.  
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Figure 19: System testing. Raspberry Pi (on the left-hand side - python) and Arduino (on the right-hand side - 
Serial Monitor) 

 

From the figure, it can be seen that from the Arduino’s side speed 2 is incorrect, even 

when the wheel is not rotating. Furthermore, at higher speeds (approximately 300 

RPM) the ISRs don’t have enough time to execute thus sometimes the speed might 

be shown as a zero, partially because of the sensors being so close to each other and 

partially caused by the Arduino’s processor speed. Thus, at higher RPMs the ISRs are 

activated more frequently. Therefore, when one ISR is being processed and the next 

ISR is triggered, this causes a slight delay and a prediction of a lower speed. This 

effect is not seen at lower RPMs because the ISRs are not activated frequently. 

The Arduino applies logical shift right by 8 bits to the average speed, to store the most 

significant bits. It then sends the most significant bits as the second byte and the least 

significant bits as the third byte. This way the Arduino can send up to 2 bytes of data. 

First letter/byte 

is incorrect 

Received speed 

value is incorrect 



26 
 

Hence, the Pi applies logical shift left by 8 bits and then adds it to the received third 

byte. A value of 46 is expected to be the result of the transmission but a garbled 

transmission of 2819 was received. 

 

Figure 20: System testing. Raspberry Pi (on the left-hand side - python) and Teensy (on the right-hand side - 
Serial Monitor) 

For the Teensy board, the first byte is sent out correctly, therefore the Teensy can fully 

use the 32-byte limit. The results of the tests can be seen in Figure 20. Add to that, 

the Pi performs the logical shift to the corresponding byte and the expected speed 

matches the received speed. Figure 21 shows the array that contains the speed along 

with a provisional sign that represents the direction of movement. 

 

Figure 21: The speed array that holds the speed from different sensors. The "+" means the direction is clockwise 
and "-" is anti-clockwise 

Speeds matched 

Direction of the buggy 
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The test was carried out using two sensors (1 driven wheel), this is because they don’t 

require an external power source to drive the motor. Moreover, the track buggy can’t 

be unfolded inside the lab to take readings from all six sensors.  

Operating the board at a processor speed of 72 MHz is fast enough to not allow one 

ISR clashing with the other ISR. But at speeds exceeding 600 RPM the ISRs start to 

clash with each other. The test was repeated using a processor speed of 96MHz 

(overclock – running at higher speeds than what was intended by the manufacturers) 

where this issue was not visible. However, overclocking reduces the processor’s life. 

Both boards were able to join the I2C as a slave for the Pi, but the Teensy performance 

is much better than the Arduino. 

 

6 – Discussion 

The method used for calculating the speed of the buggy for the driven wheel is the 2 

teeth transition based on interrupt pins, due to the profile being the smoothest out of 

the tested methods. When further investigating the errors for a trendline within this 

method. The zoomed profile shown in figure 17 showed that there is a trendline. This 

trendline may be due to the 0.1mm tolerance of the laser cutting machine that was 

used to manufacture the disk. 

Furthermore, for the driving wheel the suggested method showed a lot of distortion. It 

is expected to have small distortions in the profile, due to the chain vibration. However, 

when the test was carried out the wheel was not touching the ground and the motor 

when turned on started to vibrate. Add to that, the sensors were not constrained to the 

chains. There were difficulties in constraining the sensor mounts on the frame because 

of the motor housing. Due to this, the sharp changes in speed and the extreme 

distortions are visible on the profile presented. 

When investigating the error when ISRs start to clash with each other. It was 

discovered that the “micros()” timer function is updated using its own timer interrupt, 

with multiple functions. Even when the ISRs are kept short to avoid long paused on 

the CPU, they still clash due to the “micros()” command. 
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Finally, the communication between the Raspberry Pi and the Teensy 3.2 board via 

I2C is error free. Whereas, for the Arduino board when the bus was checked for the 

devices on the I2C bus, an address of 68 appeared. The address is still present even 

when the Arduino joins the bus (please refer to pages 11 and 20 in the logbook). The 

source of the address is unknown, and its removal was not possible. When the shield 

is removed from the pins of the Pi the address disappears, which suggests that it 

belongs to the shield itself. There is a possibility that this address is the source of 

errors within the Arduino transmissions. 

 

7 – Conclusion 

Summarizing the report sections, the proposed system aims to automate a Track 

Buggy. The Buggy is a lightweight vehicle that have foreseen design changes through 

the years, but so far, the Buggy has never seen a system implementation. The 

developed system aims to start the automation of the buggy. Keeping the cost as low 

as possible, a combination of a Raspberry Pi and a Teensy 3.2 board is used to be 

the main components of the system.  

The Raspberry Pi with its support for multiple communication protocols, low cost (£32), 

and it is a microcomputer with low power consumption, makes it the ideal board to be 

the main interface of the system and the master on the bus. 

The Teensy 3.2 is a development board that is small and low in cost (£16), paired up 

with a powerful processor and a capability of controlling hardware effectively, makes 

it an effective microcontroller. Communication between the Raspberry Pi and the 

Teensy via I2C was free of errors. Yet the Teensy face a problem with ISR clashing 

with each other at higher RPMs but when the CPU was overclocked, there was no 

clashes. The Buggy’s maximum speed is 15km/h. Assuming that the radius of the 

wheel that is in contact with the rail is 56.5mm, the angular velocity of the wheels is 

73.7 rad/s or approximately 704 RPM. This speed will be an issue for the Teensy if the 

CPU is not overclocked. 

Whereas for the Arduino Leonardo shield, the slow processor speed, caused the ISRs 

to clash at speeds over 300 RPMs. This meant that for the current arrangement the 

use of an Arduino board to use interrupt pin to calculate the speed was difficult. 
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Moreover, the appearance of the board’s address when the shield is connected to the 

pins of the Pi might be the cause of the errors appearing in the transmissions from the 

Arduino to the Pi. Due to this, communication via I2C was not a success for the Arduino 

Shield. Therefore, the Shield was not used. 

Furthermore, a proposed method to calculate the speed of the driving wheel by 

mounting the photo-interrupter adjacent to the chain. However, there were limitations 

in constraining the sensor mount on the frame of the wheel to keep the sensor adjacent 

to the chain. Yet, it was successful in calculating the speed of the driving wheel, but 

the profile showed a lot of distortions due to the vibrations of the chain. 

Overall, aims of the project have been met. A board to control the hardware has been 

chosen to be the Teensy 3.2. The Teensy system testing was a success, 

communications via I2C ran with no errors to account for, and the implementation of 

an accurate method to calculate the speed of the Buggy was achieved. 

 

8 – Future Work 

To further to develop the system, wiring up of the motor to a battery pack is essential 

to provide a power source for the motors and the electrical components of the buggy. 

The use of a motor driver or a MOSFET Transistor could be used to drive the and 

control the MY1016 motor used for the Buggy. The motor driver should be able to drive 

up to 24V and 13.7A to the motor through the PWM pins of the Teensy board. The 

suggested motor driver is the Pololu G2 high power motor driver, it can supply up to 

13A and a range of 6.5V to 40V. This driver can user bidirectional control of the motor. 

To avoid weather effects damaging the sensors on the driven wheel, a compartment 

should be designed to cover the sensors and a part of the encoder disk. Furthermore, 

for the driving wheel the proposed method can be improved by using optical encoders. 

The readings of an optical encoders are accurate, and after revising the frame of the 

intermediate shaft, it is possible to mount an optical encoder on the frame of the shaft 

to record readings from the intermediate shaft. Kubler 8.3700.1322.1024 Incremental 

Encoders were found inside the box of components for the buggy, they can be used 

for such arrangement. 
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In terms of controlling the Raspberry Pi wirelessly, VNC Server is pre-installed on the 

Pi. VNC Viewer software can be downloaded on any personal computer or mobile 

phone for free. A small portable Wi-Fi should be used to connect the Pi to the internet 

to be able to use VNC Server. This software will provide full wireless control on the Pi 

from a computer or a mobile phone. 

Moreover, to avoid ISRs interrupting each other a counter can be used inside the ISR 

instead of calling the function “micros()”. The counter will initiate as zero and once an 

ISR is activated, the counter will increment inside the ISR. Inside the loop an “if” 

statement can be written to check when the counter reached 1, then the time can be 

recorded. Within the first “if” statement, another “if” statement can be used to record 

the stop time when the counter reaches 2 counts. The start time should now be equal 

the stop time and the whole method is repeated. This will eliminate the use of 

“micros()” within the ISR for the sensors, therefore the ISR should not interrupt each 

other. 

Finally, the implementation of all the improvements onto the code and testing the fully 

developed track rail buggy on the rail. 
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Appendix A – Driven Wheel Components Engineering drawings 
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Appendix B – Driving Wheel Components Engineering drawings 
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Appendix C – Raspberry Pi code (Python) 
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Appendix D – Teensy code (C++) 
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Appendix E – Arduino code (C++) 
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