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[1] The nonhomogeneous spatial activation of raincells (NSAR) model is presented
which provides a continuous spatial‐temporal stochastic simulation of rainfall exhibiting
spatial nonstationarity in both amounts and occurrence. Spatial nonstationarity of
simulated rainfall is important for hydrological modeling of mountainous catchments
where orographic effects on precipitation are strong. Such simulated rainfall fields support
the current trend toward distributed hydrological modeling. The NSAR model extends the
Spatial Temporal Neyman‐Scott Rectangular Pulses (STNSRP) model, which has a
homogeneous occurrence process, by generating raincells with a spatially nonhomogeneous
Poisson process. An algorithm to simulate nonhomogeneous raincell occurrence is
devised. This utilizes a new efficient and accurate algorithm to simulate raincells from an
infinite 2‐D Poisson process, in which only raincells relevant to the application are
simulated. A 4009 km2 Pyrenean catchment exhibiting extreme orographic effects
provides a suitable case study comprising seven daily rain gauge records with hourly
properties estimated using regional downscaling relationships. Both the NSAR and the
STNSRP models are fitted to five calibration rain gauges. Simulated hourly fields are
validated using the remaining two rain gauges providing the first validation of time series
sampled from STNSRP or NSAR processes at locations not used in model fitting. The
NSAR model exhibits considerable improvement over the STNSRP model particularly
with respect to nonhomogeneous rainfall occurrence at both daily and hourly resolutions.
Further, the NSAR simulation provides an excellent match to the spatially nonhomogeneous
observed daily mean, proportion dry, variance, coefficient of variation, autocorrelation,
skewness coefficient, cross correlation and extremes, and to the hourly proportion dry and
variance properties.
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1. Introduction

[2] As catchment size increases, both rainfall amounts
and occurrence become more spatially variable until mod-
eling assumptions of spatial homogeneity of rainfall become
unsuitable for hydrological applications [e.g., Fowler et al.,
2005]. This increased variability is often due to the inter-
action of mountainous terrain with the atmosphere, creating
orographic effects, which typically include increased rainfall
amounts and occurrence on the windward side of mountains
and reduced amounts and occurrence downwind [e.g., seeHill
et al., 1981; Wheater et al., 2000; Barros and Lettenmaier,
1993, 1994; Roe, 2005].
[3] Stochastic models of rainfall in mountainous catch-

ments are needed for hydrology, e.g.,Barros and Lettenmaier
[1993] report that 70% of annual runoff in the western

United States is disproportionately controlled by the dura-
tion and distribution of high elevation precipitation. In
addition to amounts, the simulation of realistic rainfall
occurrence is important because runoff generation is non-
linear (i.e., the same rainfall depth in fewer days produces
higher runoff) and when conditioning a stochastic weather
generator [e.g., Wilks and Wilby, 1999; Kilsby et al., 2007]
occurrence is crucial as wet days are cooler and have lower
potential evapotranspiration than dry days.
[4] A number of multisite methodologies exist that can

simultaneously simulate differing expected amounts and
occurrence at a finite number of rain gauges: multisite
Markov chains [e.g., Wilks, 1998; Mehrotra and Sharma,
2007; Srikanthan and Pegram, 2009], multivariate auto-
regressive approaches [e.g., Bárdossy and Plate, 1992;
Stehlík and Bárdossy, 2002], generalized linear models
(GLMs) [e.g., Chandler and Wheater, 2002; Segond et al.,
2006], resampling from historical records using K‐nearest
neighbors (KNN) [Buishand and Brandsma, 2001], GLM
plus KNN [Mezghani and Hingray, 2009] and best match to
rainfall probability and mean rainfall amount estimated
using regression of atmospheric state variables [Wilby et al.,
2003]. However, Markov chain and autoregressive models
may have a large number of parameters and the resampling
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schemes cannot generate spatial rainfall patterns that have
not been observed in the historical record. Further, these
methodologies typically generate time series with daily time
steps and at a finite number of locations (rather than gen-
erating spatial fields). Exceptions include the potential to
spatially interpolate the GLM methodologies (with a
potential loss of spatial heterogeneity) and the Mezghani
and Hingray [2009] resampling of daily sets of hourly
data, albeit with an underestimate of autocorrelation (at 6 h
daily aggregation levels) and a limitation of repeating sub-
daily multisite patterns seen in the observed record.
[5] However, the current trend toward distributed hydro-

logical modeling requires continuous spatial rainfall fields to
capture heterogeneities and subdaily time steps for rapid
processes. Spatial extensions to point process stochastic
rainfall models such as the BLRP or NSRP models [e.g.,
Cowpertwait, 1995; Onof et al., 2000] provide the requisite
continuous temporal and spatial simulation processes that
can be sampled at arbitrary temporal aggregations (e.g.,
hourly), spatial integrations (e.g., for the grid squares of a
distributed model), or spatial locations (e.g., at rain gauge
network locations or grid nodes). Additionally, such
approaches can be easily reparameterized and used to
downscale climate change scenarios [e.g.,Kilsby et al., 2007].
[6] The Spatial Temporal Neyman‐Scott Rectangular

Pulses (STNSRP) model [e.g., Burton et al., 2008] was
formulated analytically by Cowpertwait [1995], extending
the single‐site NSRP process [Rodriguez‐Iturbe et al.,
1987]. This model has a spatially heterogeneous amounts
process to account for orographic enhancement but is lim-
ited to a homogeneous occurrence process. The STNSRP
model has been demonstrated in a number of practical
applications [e.g., Cowpertwait et al., 2002; Fowler et al.,
2005; Burton et al., 2008]. However, for a downscaling
application to a 15,000 km2 region in Yorkshire, UK, Fowler
et al. [2005] found it necessary to develop two separate
subregional rainfall models to reduce the modeling errors
arising from the assumption of spatial homogeneity in
rainfall occurrence.
[7] Orographic effects lead to an increase in the number

and duration of precipitation events [Barros and Lettenmaier,
1994] and rainfall in mountains is associated with the pas-
sage of preexisting precipitation systems, some of which
may be too slight to be recorded by upwind rain gauges [Hill
et al., 1981]. These observations suggest two possible
modifications of the spatial BLRP or spatial NSRP models to
account for nonhomogeneous orographic effects: (1) modi-
fying the storm incidence process; (2) modifying the num-
ber, properties or behavior of the raincells. The former may
be more appropriate where the type of event giving rise to
rainfall varies spatially, as may happen over a large region,
and the latter when large scale events trigger local rainfall in
accordance with the physical geographical setting.
[8] Following the latter alternative Cowpertwait [1995]

suggested a possible analytical extension to the STNSRP
model to represent spatially heterogeneous rainfall occur-
rence for a multisite application. Each sample location was
considered to have an associated survival probability which
modulated a homogeneous STNSRP raincell generation
process. A raincell may therefore be observed at some
locations and not at others across its disc. While such an
approach is analytically appealing, no application of such a
model has been demonstrated and it is not clear if the pro-

cedure can be extended to a spatial process. An approach
based on the single‐site NSRP process was however dem-
onstrated by Favre et al. [2002]. Simulated storms followed
a master Poisson process, but raincells were generated at
two rain gauges using bivariate distributions of number,
intensity, and duration. Fitting yielded models with different
expected numbers of raincells and the ability to simulate
different precipitation occurrence probabilities at each rain
gauge. Generalization of this approach to more sample
locations may not be straightforward. Wheater et al. [2000]
also provided an extension to the spatial BLRP model where
the mean duration of raincells was adjusted spatially. Non-
homogeneous amounts and hourly occurrence were well
fitted. However, the fit to daily and 6 hourly occurrences
was typically biased low and the spatial nonstationarity of
the daily and 6 hourly occurrence was not well modeled.
[9] Here the nonhomogeneous spatial activation of rain-

cells (NSAR) model is developed and demonstrated to
provide a single process which addresses the need for sto-
chastic models able to simulate continuous spatial‐temporal
rainfall with spatially heterogeneous occurrence and amounts
properties. This is achieved by extending the STNSRP
model so that raincell occurrence within storms follows a
spatially nonhomogeneous Poisson process.

2. The NSAR Model Structure

[10] The spatial‐temporal NSAR model provides a sto-
chastic conceptualization of rainfall in which a sequence of
“storm events,” each of which may represent for example
frontal rainfall or a mesoscale convective system, provide
spatially large scale initiation of localized rainfall. Such
localized rainfall exhibits both high variability and short
range correlation in both space and time. Orographic
enhancement may also significantly affect both the occur-
rence and amounts of rainfall at specific locations. For
hourly and daily temporal scales and for spatial scales from
point to ∼10,000 km2 the localized rainfall is conceptualized
as occurring as circular raincells with uniform intensity
throughout their lifetime and extent. These are distributed
unevenly across the region of interest to account for geo-
graphic location effects on rainfall occurrence and clustered
in time following each storm event. A final scaling of
raincell intensity further accounts for location specific
effects on rainfall amounts.
[11] The stochastic model structure is illustrated in Figure 1

and its detailed construction follows.
[12] 1. Storm events are modeled as storm origins,

instants at which spatially large scale triggers of raincell
events occur. Storm origins occur following a stationary
Poisson process in time with rate l (1/h).
[13] 2. Each storm origin generates a set of immobile

circular raincells whose centers follow a nonhomogeneous
spatial Poisson process, with density r(x) (1/km2) over an
infinite planar simulation region x2R2, and whose radii are
exponentially distributed, with parameter g (1/km).
[14] 3. Each raincell begins producing rainfall at its origin

time, which follows the storm origin after a waiting time
interval. Waiting time is exponentially distributed with
parameter b (1/h).
[15] 4. Each raincell produces a uniform rainfall rate

across its disc and throughout its lifetime. The duration and
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the intensity of the raincell are exponentially distributed
with parameters h (1/h) and x (h/mm), respectively.
[16] 5. The rainfall intensity field at any instant is the sum

of the intensities of all active raincells scaled by a spatially
nonuniform intensity scaling field, y(x). This field models
geographically varying raincell intensities.
[17] Time series of spatially distributed fields of accu-

mulated rainfall depths may be obtained numerically by
integrating the intensity field over regular time steps for a
grid of sampling locations. Similarly, multisite time series
may be obtained by sampling the process at several loca-
tions, e.g., corresponding to rain gauges, and integrating the
field over regular time steps. The NSAR model’s parameters
are summarized in Table 1 and consist of five parameters
and two fields {l,b,r(x),g,h,x,y(x)} all of which are non-
negative. Different parameterizations for each calendar
month provide an annual cycle of rainfall properties.
[18] The newNSARmodel is developed from the STNSRP

stochastic rainfall model described by Cowpertwait [1995]
and Burton et al. [2008]. Both models utilize a nonuni-
form intensity scaling field which models spatially varying
rainfall amounts. However, the models differ in that the
STNSRP model uses a homogeneous Poisson process to
generate raincells in space with a uniform parameter r in
step 2. Consequently rainfall occurrence is simulated as a
spatially homogeneous process which takes no account of
geographic effects and for each month the STNSRP
model is parameterized by six parameters and one field
{l,b,r,g,h,x,y(x)} (see Table 1). In contrast, the new

methodology has the advantage that varying incidence of
raincells at different geographic locations can additionally
model spatially varying rainfall occurrence and storm
duration. Both the NSAR and the STNSRP models provide
a simplistic stochastic representation of the rainfall process:
for example, raincells do not move and have a simplistic
geometry, and storms are all considered to arise from the
same process. However, the STNSRP process has been
found useful at the spatial and temporal scales of particular
relevance to hydrological investigations of catchments of up
to ∼10,000km2 [see Burton et al., 2008].
[19] In the single‐site NSRP process [e.g., Cowpertwait,

1991], the sampling of spatial properties, step 2, is omit-
ted altogether and instead the number of raincells that affect
the single rain gauge may be sampled directly for each storm
(a Poisson random variable with mean n). Typically step 5 is
also omitted as it is redundant. So for each month the NSRP
model has five parameters {l,b,n,h,x}. Here, however, it is
convenient to consider an NSRP process at a location xm
with intensity field scaling (i.e., atypically including step 5)
which has the six parameters {l,b,n,h,x,ym} where
ym ≡ y(xm) (see Table 1). A useful property of this
model [e.g., Cowpertwait, 1995] is that it is equivalent to
an STNSRP process sampled at location xm provided
common parameters are equal and

� ¼ 2��

�2
: ð1Þ

3. Fitting the NSAR Model

3.1. Fitting the STNSRP Model

[20] The fitting scheme of the NSAR model uses many
properties of the STNSRP model and so the STNSRP fitting
procedure is briefly summarized. First the intensity scaling
field, y(x), is estimated at rain gauge locations {xm} in
proportion to the mean daily rainfall, producing the vector
Y ≡ [ym] ≡ [y(xm)]. During a spatial simulation the inten-
sity scaling field may be estimated by interpolation of these
values so that the full STNSRP process is parameterized by
{l,b,r,g,h,x,Y}, (6 + M) parameters where M is the number
of rain gauges, for each calendar month in turn. The same
parameter set is used for multisite simulations, where time
series are sampled at rain gauge record locations, but interpo-
lation of the field is unnecessary [e.g., Cowpertwait, 1995;
Cowpertwait et al., 2002].
[21] Second, a numerical optimization scheme is used to

find the best choice of the remaining parameters to minimize
an objective function, equation (2) [see Burton et al., 2008],
which describes the degree to which a simulation is expected
to correspond to observed rainfall statistics for a givenmonth,

D �; �; �; �; �; 	 j Yð Þ ¼
X
g2W

w2
g

g2s
ĝ � g �; �; �; �; �; 	;Yð Þð Þ2; ð2Þ

where W is the set of rainfall statistics each with an aggre-
gation period and a location (such as 24 h variance at rain
gaugem2), ĝ is the observed sample estimate of each statistic,
and g(·) is the corresponding expected statistic from the
simulation process expressed analytically in terms of the
model’s parameters. The weight applied to each statistic wg is
set by the user to control the relative accuracy with which

Figure 1. The conceptual structure of the stochastic NSAR
model shown by means of a possible realization which is
sampled at two rain gauges m1 and m2. Steps are labeled
(1–5) (1) a time series of storm origins; (2) the spatially non-
homogeneous distribution of raincells generated by one such
storm origin over a hypothetical catchment; (3) time series
of raincell origins relevant to each rain gauge for this storm;
(4) intensity and duration properties of these raincells; (5)
scaled intensity time series generated at each rain gauge.
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each statistic is fitted, in accordance with the uncertainty of
each observed statistic or as most appropriate for a particular
hydrological application. The scaling term gs is either one for
a probability dry or correlation statistic or the annual mean of
the statistic. Analytical expressions for g(·) are available for
expected statistics of any accumulation period of the
STNSRP process at any location: for the mean, variance, lag‐
autocovariance and probability of a dry period (PDry) by
Cowpertwait [1995]; dry‐dry and wet‐wet transition proba-
bilities by Cowpertwait [1994]; and the third order central
moment by Cowpertwait [1998]. Expressions relating the
expected covariance between two locations are also available
[Cowpertwait, 1995]. For the model to be identifiableWmust
include at least the same number of statistics as there are
parameters to be fitted, both first and second order statistics,
PDry and cross‐correlation, and either the transition proba-
bilities or the autocorrelation.

3.2. Analytical Properties of the NSAR Model

[22] The vector Y is used to parameterize the NSAR
model’s intensity scaling field as for the STNSRP model.
Similarly the spatially varying raincell density field is
characterized by point values rm at nodes positioned at the
locations {xm} of the M rain gauges. The NSAR model
parameterization is then {l,b,r,g,h,x,Y}, where r ≡ [rm],
requiring a total of (5 + 2M) parameters. The raincell density
field has a more complex influence on the expected statistics
of the model than the intensity scaling field, and so it is
necessary to specify the form of the spatial interpolation
used prior to fitting the model. Interpolation of nodal values
using inverse square distance was chosen as it is a simple
scheme which provides a smooth but responsive density
field, r(x∣r), at any location x. The interpolated field is
given by equation (3) with interpolation weights given by
equation (4).

� x j rð Þ ¼
XM
m¼1

wm xð Þ�m; ð3Þ

wm xð Þ ¼ j x� xm j�2

PM
k¼1

j x� xk j�2ð Þ
: ð4Þ

[23] Analytical expressions for the expected statistics of
the NSAR process sampled at any point are now derived in
terms of the expressions available for the STNSRP process.
The NSAR process generates the storm origin and the
raincell origin, duration, intensity, and radius in the same
way as for the STNSRP process. Both the NSAR and the
STNSRP models’ Poisson raincell generation processes lead
to a Poisson random number of raincells that all influence a
rain gauge located at x, Cx. However, for the NSAR model
Cx is nonhomogeneous in space whereas for the STNSRP
model it is homogeneous. The NSAR process sampled at x
is therefore equivalent to an NSRP process at x with com-
mon parameters equal and n = E(Cx). An STNSRP process
sampled at x, with common parameters equal, is also
equivalent provided r, n, and g are related by equation (1).
[24] The probability of a raincell with center x and

exponentially distributed radius (with parameter g) influ-
encing a rain gauge at xm is the survivor function of the
radius random variable at the distance ∣x−xm∣, i.e., the
probability of the radius being greater than the distance from
x to xm. The expected number of raincells reaching xm,
E(Cxm), in a storm due to raincells with centers following a
nonhomogeneous 2‐D Poisson process defined by r(x∣r)
may then be evaluated as

E Cxmð Þ ¼
ZZ
x2<2

e��jx�xmj� x j rð Þdx: ð5Þ

[25] Equations (3), (4), and (5) may be combined and the
order of integration and summation swapped to obtain an
expression for the NSRP raincell number parameter at rain
gauge m equivalent to the NSAR process sampled there,

�m �;rð Þ ¼
XM
n¼1

amn �ð Þ�n; ð6Þ

where

amn �ð Þ ¼
ZZ
x2<2

e��jx�xmj j x� xn j�2

PM
k¼1

j x� xk j�2ð Þ
dx ð7Þ

is the expected number of raincells affecting a rain gauge at
xm due to a unit density at the node located at xn.

Table 1. The Parameters of the NSAR, STNRSP, and NSRP Models as Described in the Texta

Parameter
or Field

Model Usage

Description UnitNSAR STNSRP NSRP

l • • • Storm origin arrival rate (1/h)
b • • • 1/(mean waiting time) (1/h)
r(x) • Spatially varying raincell density field (1/km2)
r • Uniform raincell density field (1/km2)
n • Number of raincells affecting a rain gauge (−)
g • • 1/(mean raincell radius) (1/km)
h • • • 1/(mean raincell duration) (1/h)
x • • • 1/(mean raincell intensity) (h/mm)
y(x) • • Spatially varying intensity scaling field (−)
ym • Intensity scaling at a specific location (−)
aCircles indicate the parameters used by each model. The fields r(x) and y(x) are functions of location, x.
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[26] From these considerations, it follows that at rain
gauge m the analytical expression for an expected single‐site
statistic, gNSAR,m( ), of the NSAR process may be related to
the equivalent analytical expressions for the expected
STNSRP process, gST,m( ), and the single‐site NSRP pro-
cess, gSS,m( ), as shown in equation (8),

gNSAR;m �; �;r; �; �; 	;Yð Þ ¼ gST;m �; �;
�m �;rð Þ�2

2�
; �; �; 	;Y

� �

¼ gSS;m �; �; �m �;rð Þ; �; 	;ymð Þ: ð8Þ

[27] The expected cross correlation with distance relation
is not a single‐site statistic in the interpretation used for
equation (8). Instead the cross‐correlation between two rain
gauges, m1 and m2, a distance d apart may be approximated
by two different estimates (using equation (8)) of the cross
correlation, at distance d, evaluated at each of the two rain
gauges. The arithmetic mean of these estimates provides
a good approximation of the NSAR cross‐correlation
properties,

corrNSAR;m1 ;m2 � � �ð Þ � 1

2
corrST d;�; �;

�m1ðÞ�2
2�

; �; �; 	;Y

� ��

þ corrST d; � � � ; �m2ðÞ�2
2�

; � � �
� ��

; ð9Þ

where corrST (d;l,b,r,g,h,x,Y) is the analytically expected
cross‐correlation at distance d for the equivalent STNSRP
process at any location. Together the model properties
described in equations (8) and (9) form the basis of the
fitting algorithm of the NSAR process.

3.3. The NSAR Fitting Algorithm

[28] The algorithm to fit the NSAR model to a set of
statistics W consists of five steps applied independently for
each calendar month. NSAR model parameters are identified
using numerical fits of the NSRP and STNSRP processes in
accordance with the analytical relationships identified in
section 3.2. First the best fit STNSRP process is identified
(step 1). Then, allowing only the raincell number parameter
and scaling field parameter to vary, the best fit NSRP pro-
cess is identified for each rain gauge location (steps 2 and 3).
Finally, the raincell density field and scaling field parameters
are fitted (steps 4 and 5).
[29] In step 1, an STNSRP multisite fit is made to the

sample estimates of the rainfall statistics W estimated from
the observed records apart from PDry statistics which are
fitted to the midpoint of the range of values across the rain
gauges. This produces the parameter set P1 = {l,b,r,g,h,x,Y},
which provides a close homogeneous raincell occurrence fit
to the observed rainfall statistics. It is assumed that the
parameters l, b, g, h, and x remain close to optimal despite
the introduction of spatial variation described in the fol-
lowing steps.
[30] In step 2, the parameter set, P2,m, is calculated for the

single‐site NSRP process that is equivalent to a sample at xm
of the STNSRP process parameterized in step 1. The
parameter n replaces both r and g according to equation (1)
and the relevant intensity scaling field parameter is selected,

so P2,m = {l,b,n,h,x,ym}. This is repeated for each rain
gauge, m.
[31] Step 3 concerns the identification of the optimal

raincell number parameter, n3,m, and scaling field parameter,
y3,m, for each rain gauge m. These are fitted conditional on
the other parameters, {l,b,h,x}, remaining fixed and the
requirement that the mean rainfall at rain gauge m remaining
unchanged.
[32] Since the mean is typically fitted well by step 1 the

latter condition arises from the assumption that the STNSRP
intensity scaling field contains a compensation for the
imposed stationarity of rainfall occurrence, which may be
removed, as raincell occurrence is allowed to vary. In terms
of the model’s analytical properties the condition may be
written as


m
h �; �; �3;m; �; 	;y3;m

� � ¼ 
m
h �; �; �; �; 	;ymð Þ; ð10Þ

where mh
m( ) is the analytical expression for the mean h hour

rainfall at rain gauge m as a function of the model’s para-
meters. Using the expression given by Cowpertwait [1995],
this may be expanded as

h�y3;m�3;m

�	
¼ h�ym�

�	
; ð11Þ

so that the condition may be written as

y3;m�3;m ¼ ym�: ð12Þ

[33] The raincell number parameter and the intensity
scaling field are therefore fitted using a separate conditional
NSRP numerical optimization for each rain gauge m in turn
subject to equation (12) and keeping the remaining para-
meters fixed. Only the statistics from W relevant to m are
used in this single‐site fit, but a higher weight is applied to
the dry period statistics to emphasize the precision with
which spatial variability of rainfall occurrence is modeled.
The analytical expressions used to fit each of the statistics
are obtained using equation (8). Cross‐correlation statistics
relevant to m are also included by considering the equivalent
STNSRP process at m (which forms part of equation (9)).
The full approximation described by equation (9) is
achieved separately at the two rain gauges. The NSRP
parameter set for each rain gauge following step 3 is then
P3,m = {l,b,n3,m,h,x,y3,m}.
[34] In step 4 the vector r parameterizing the spatially

varying raincell density field, r(x∣r), is fitted to the raincell
number fits, {n3,m}, from the previous step. Simply setting
rm at each rain gauge using equation (1) is inappropriate as
this would assume a uniform density field. Instead equation
(6) describes both the nonuniform density field and the
spatial influence of the raincells. Using this the fitted vector
r4 may be obtained by fitting the {nm(g,r)} properties of
the NSAR process to the fitted {n3,m}, by minimizing the
magnitude of the error term "m in the expression

�3;m ¼ �m �;rð Þ þ "m: ð13Þ

[35] For practical applications equation (13) may be
solved using standard matrix inversion to find an exact
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solution. This is summarized in equation (14) in vector
notation where n3 = [n3,m], the matrix A = [amn], and the
error e = ["m] is zero valued. The parameter set following
step four is then P4 = {l,b,r4,g,h,x,Y3},

r4 ¼ A�1n3: ð14Þ

[36] Step 5 concerns the identification of the optimum
feasible spatially varying raincell density field and the cor-
responding intensity scaling field. While step 4 guarantees
an optimal fit to the raincell number parameters, fitted in
step 3, it does not guarantee a feasible solution, i.e., one that
conforms to the standard definition of a Poisson density
field. By definition the density field of a Poisson process
must be nonnegative, i.e., r(x∣r) ≥ 0. For the field
description given by equations (3) and (4), this is equivalent
to requiring that rn ≥ 0 for all nodes n. If r4 satisfies this
constraint it is confirmed to be the optimal feasible solution,
i.e., r5 = r4 and Y5 = Y3.
[37] For other cases the field of quadratic programming

(QP) [e.g., Hillier and Liberman, 1974], an extension of
linear programming with the useful property that it is con-
strained to a nonnegative domain, provides an appropriate
algorithm to find an optimum feasible solution to equation
(13). QP has previously been used in hydrology to devise
correctly constrained parameterizations for unit hydrograph
linear models [Natale and Todini, 1976]. Expanding the
squared magnitude of the error vector e2 using equation (6)
and reorganizing terms we can write

D2 rð Þ � 1

2
n3ð Þ2 � e2

� �
¼ ATn3

� �Tr� 1

2
rT ATA

� �
r; ð15Þ

in which we define the objective function D2(r). This
objective function increases with decreasing e vector mag-
nitude (because n3 is constant for this step) and presents
step 5 in the form of a standard QP maximization problem.
Optimum nonnegative parameters, r5, are then determined
using a standard algorithm. Finally, equation (12) is updated
for the current step,

y5;m ¼ y3;m�3;m

�5;m
; ð16Þ

where

n5 ¼ Ar5: ð17Þ

[38] The fi t ted NSAR parameter set is then
P5 = {l,b,r5 ,g,h,x,Y5}.

4. Simulating the Raincell Generation Process

4.1. An Efficient Algorithm for the Simulation
of STNSRP Raincells

[39] Both the NSAR and the STNSRP processes simulate
raincell centers according to a Poisson process on an infinite
plane. To simulate such a process an algorithm is therefore
required to reduce this infinite process to a finite one, as
infinite processes are not computable.
[40] Consider an STNSRP spatially homogeneous raincell

generation process over an infinite plane partitioned into
inner and outer simulation regions. The inner region is a

finite rectangular area containing all of the calibration rain
gauges and all locations at which the simulation process is to
be sampled. The outer region is infinite and comprises the
rest of the plane.
[41] Here a new finite, exact, and efficient algorithm is

used, the derivation of which is provided in Appendix A. An
algorithm with similar properties was demonstrated by
Leonard et al. [2006] for a circular inner region. In contrast
a rectangular region is likely to be more computationally
efficient than a circular region as a circle containing a ran-
domly positioned set of rain gauges is likely to have greater
area (and therefore require greater computational effort) than
a similarly defined rectangle. Further, the new derivation is
more general and easily adapted to other geometric shapes.
[42] The efficient simulation of the homogeneous spatial

raincell process proceeds separately for the inner and outer
regions. The simulation of raincell centers in the rectangular
inner region is finite and straightforward, and the radii are
sampled from an exponential distribution with parameter g
as usual. For the outer region, the total number of relevant
raincells is first sampled as a Poisson random variable with
mean ry (see equation (A9)). For each such raincell, the
distance of the raincell’s center from the inner region, x, is
sampled from the cumulative distribution function given by
equation (A8), its location is fully realized by uniform
sampling from all locations at this distance, and its radius is
exponentially distributed, with parameter g, conditional on
it being greater than x. Details of the derivation of the
algorithm are presented in Appendix A and the algorithm is
demonstrated in section 5.

4.2. Nonhomogeneous Spatial Simulation of Raincells

[43] For an NSAR simulation an algorithm is required
to sample raincell incidence within a storm according to
an infinite nonhomogeneous 2‐D Poisson process. Here
the algorithm for a homogeneous process described in
section 4.1 is extended using an acceptance‐rejection algo-
rithm to provide a finite and exact simulation of relevant
raincells arising from a nonhomogeneous 2‐D Poisson
process. For the purposes of this description, we will con-
sider the simulation of relevant raincells (with radius
parameter g) sampled according to a nonhomogeneous and
infinite Poisson process with a density field, r(x∣r), as
described in section 3.2.
[44] For each node, m, in turn, the relevant raincells

corresponding to a homogeneous occurrence process with
density rm are generated for both the inner and outer regions
using the algorithm described in section 4.1. Once the
location of each raincell is known, x say, an acceptance‐
rejection rule is imposed. The raincell is discarded with
probability (1 − wm(x)), where wm(x) is the interpolation
weight as described in equation (4), and which is indepen-
dent of the model parameters.
[45] The set of raincells generated and accepted for all of

the nodes provides an accurate simulation of relevant rain-
cells of the field, r(x∣r), parameterized by the vector r ≡ [rm].
This may be shown from first principles as follows. Consider
a small area, dA, located at x. This area will receive an
accepted raincell according to node m with probability
wm(x)rmdA. The total number of accepted raincells contrib-
uted from all nodes will then be r(x∣r)dA (from equation (3)),
which is the required nonhomogeneous Poisson density. The
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accuracy of the simulation algorithm is demonstrated for the
case study application in section 5.

5. Application to the Gallego

5.1. The Gallego Catchment Case Study

[46] The Gallego catchment was selected for the
AQUATERRA project [Gerzabek et al., 2007] as a suitable
case study for interdisciplinary investigation of the combined

effects of climate change, land use management, river reg-
ulation, and pollution. These investigations required a suit-
able model of the rainfall regime which was found to exhibit
extreme orographic effects. Therefore, the catchment pro-
vided a challenging case study for the evaluation of the new
NSAR methodology. A successful application in such an
extreme environment would imply that the model would be
suitable for a wide range of European catchments with
important, but smaller, magnitude orographic effects.
[47] The Gallego catchment (4009 km2) lies to the south

of the Pyrenees (Figure 2) and is a subcatchment of the Ebro
River (85,000 km2). The Ebro is a typical Mediterranean
River characterized by low summer flows and higher winter
flows and has a semiarid climate with a mean annual pre-
cipitation of ∼350 mm. Rainfall in the Gallego is particularly
influenced by orography: the daily occurrence more than
doubles and the monthly amounts increase between 2 and
7 times across the catchment.
[48] Seven daily and four 15 min time series were selected

after error checking and considering location and record
length (Table 2). Their distribution throughout the catch-
ment is shown in Figure 2. The seven daily rain gauges were
partitioned into calibration, {Ayer, Ltpl, Sabi, Sale, Zaad},
and validation, {Bies, Laso}, groups for model evaluation.
[49] The 6 years of available 15 min rainfall observations

were insufficient to establish reliable sample estimates of
rainfall statistics or extremes at each rain gauge. Instead it
proved possible to establish catchment‐wide nonlinear
downscaling regression relationships between hourly and
daily statistics estimated for each complete month of records
for all six of the four 15 min records together. The hourly
variance may be estimated as VarH = (0.016797) VarD0.87418

and the proportion of dry hours (with less than 0.1 mm
accumulation), PDH, may be estimated from equation (18).
These relationships have R2 values, of 88% and 82%,
respectively, where VarD is daily variance and PDD1.0 is the
proportion of dry days with less than 1.0 mm of rainfall.

ln
PDH

1� PDH

� �
¼ 1:4310ð Þ þ 0:98659ð Þ ln PDD1:0

1� PDD1:0

� �
: ð18Þ

[50] The observed rainfall properties were then summa-
rized as a set of daily and hourly rainfall statistics. For each
of the seven daily rain gauges, the daily mean, variance,

Figure 2. Locations of the seven daily and four 15 min
rain gauges in the Gallego catchment above Zaragoza,
Spanish Pyrenees. Laso and E038 lie close to each other.

Table 2. Properties of the (a) Seven Daily and (b) Four 15 min Rain Gauge Datasets Used in the Gallego Catchment Case Studya

Identifier Name
Easting
(m)

Northing
(m)

Altitude
(m) First Year

Length
(years)

Annual Rainfall
(mm)

(a) Daily Data
Calibration

Ayer Ayerbe 690,578 4,682,490 582 1945 48 651
Ltpl El Temple 686,242 4,649,530 335 1943 50 392
Sabi Sabiñanigo 716,824 4,710,850 790 1941 52 807
Sale Sallent de Gallego la Sarra 718,562 4,741,140 1460 1960 33 1490
Zaad Zaragoza Aula Dei 682,093 4,621,640 225 1950 42 367

Validation
Bies Biescas “E.I.A.” 720,026 4,723,670 855 1941 39 855
Laso La Sotonera “Embalse” 692,654 4,664,422 413 1941 62 471

(b) 15 min Data
E035 720,084 4,729,052 1085 2000 6
E037 685,698 4,672,628 423 2000 6
E038 692,715 4,664,605 415 2000 6
E039 694,826 4,684,074 653 2000 6

aThe calibration and validation groupings of the daily rain gauges are indicated. Easting and northing are given in UTM coordinates.
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proportion of dry days (less than 0.2mm, PDD), lag‐1
autocorrelation (AC), skewness coefficient and spatial cross
correlation between the rain gauges were estimated. Hourly
rainfall properties, VarH and PDH, were also estimated for
each daily rain gauge by applying the downscaling regres-
sion relationships established for the catchment. These sta-
tistics were then partitioned into calibration and validation
datasets according to the originating daily rain gauge. The
10 intergroup daily cross‐correlation statistics were assigned
to the validation dataset. The calibration and validation
datasets then comprised 45 and 25 unique statistics,
respectively, for each calendar month and so provide a good
basis for the calibration, validation, and evaluation of the
stochastic rainfall simulation models.

5.2. Test of the Efficient STNSRP Simulator

[51] First, the accuracy of the efficient STNSRP raincell
simulation scheme described in section 4.1 is demonstrated.
A rectangular inner region was prepared for the Gallego rain
gauges. A test parameter set was chosen: each parameter
with a constant value for all calendar months; using a mean
raincell radius of 5 km (i.e., g = 0.2 km−1); with all ym

parameters equal; and with typical values for the other
parameters. The STNSRP process was then simulated twice
for 1000 years with these parameters: (1) simulating rain-
cells only within the rectangular inner region (Inner) and
(2) additionally simulating relevant raincells occurring in the
outer region using the efficient simulation procedure
(Complete). The two simulations were sampled at 24 loca-
tions along a north‐south transect through the mid‐point of
the inner simulation region. Figure 3 compares the mean

rainfall amounts simulated at each location with the values
expected for the STNSRP process. The missing contribu-
tions from the outer region clearly lead to a low bias in the
simulated rainfall amounts for the Inner simulation with the
bias increasing as the region’s boundary is approached.
Even in the center of the inner region the proximity of the
region’s eastern and western boundaries has an influence.
The Complete simulation is shown to be an excellent match
to the expected properties of the STNSRP process; this
provides a practical demonstration of the efficient algorithm
and illustrates the need for an efficient means to sample the
process in the outer simulation region.

5.3. The STNSRP Model Calibration

[52] To provide a comparison with the NSAR model and
to illustrate the limitations of the STNSRP process for
catchments exhibiting widely varying rainfall occurrence, a
fit was made to the observed properties of the five calibra-
tion rain gauges (see Table 2). The observed calibration
statistics and the STNSRP model fit to these are shown in
Figure 4. For validation purposes, the intensity scaling field
values at the two validation rain gauges were estimated by
averaging the values at their two nearest rain gauges to
provide a simple interpolation. A 1000 year simulation was
then generated and sampled at the daily rain gauges loca-
tions. Analysis of the simulated time series sampled at the
calibration rain gauge locations (not shown) confirmed that
the model’s behavior was an excellent match to the fits
shown in Figure 4.
[53] From Figure 4 the observed mean, variance and

proportion dry statistics are seen to vary considerably across

Figure 3. Comparison of the mean daily rainfall amounts sampled from two spatial simulation algo-
rithms along a north‐south transect through the center of the inner region with the value expected for
the STNSRP process (Expected). For the “Inner” simulation raincell centers were generated with a uni-
form rate but only within the inner region. The “Complete” simulation additionally generated relevant
raincells in the outer region using the efficient algorithm. The inner region boundaries are also indicated
(Region boundary).
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the catchment. The STNSRP process fits the mean rainfall
well as it is able to represent the nonhomogeneous amounts
process. The two spatial cross‐correlation plots show how
rainfall is less correlated in summer for nearby rain gauges
than in winter, possibly due to an increase in convective
compared to frontal activity. This pattern is well fitted by the
model. However, the fitted PDD, PDH, lag‐1 autocorrela-
tion and skewness coefficient statistics are spatially uniform
and so each month’s fit for these statistics is the same for all
rain gauges.
[54] Of particular note for hydrological applications is the

observed daily rainfall occurrence, as indicated by (1 ‐ PDD).
At the wetter rain gauges this is at least double that at the
drier rain gauges. Therefore the STNSRP model conceptu-
alization of homogeneous rainfall occurrence in space is
clearly not appropriate for this catchment. Further, the use of
the intensity scaling field in the STNSRP model implicitly
assumes that dimensional statistics vary in proportion to an
appropriate power of the mean (e.g., that the daily coeffi-
cient of variation [CV] is spatially uniform). However, as
Figure 5 shows, the observed data exhibits a seasonally var-
iable spatially nonhomogeneous CV, the driest rain gauges
and summer months having the highest CVs. Amounts scal-
ing therefore results in fitted daily variance statistics with
excessive spatial variability as shown in Figures 4c and 4g
for VarD and VarH.

5.4. The NSAR Model Calibration

[55] The parameters of the NSAR process were fitted to
the observed calibration dataset according to the procedure
described in section 3.3. The fitted raincell density field for
December is shown in Figure 6. This illustrates how
equations (3) and (4) interpolate the fitted nodal parameters,
the differing influences of the calibration and validation rain
gauges on the field and the increase of the raincell density
field toward the North of the catchment. Raincells, with a

mean radius of 12.3 km (g = 0.0813 km−1), were generated
for 250 simulated storms using the nonhomogeneous algo-
rithm described in section 4.2. These raincell centers are
illustrated as points in Figure 6. Within the inner region,
which contains all seven daily rain gauges, the density was
found to be consistent with the contours. As required for the
outer region, the density can be seen to increase with the
fitted field, decrease with distance from the inner region (as
fewer relevant raincells are simulated) and match the density
of the inner region at the boundary.
[56] For validation purposes, intensity scaling field values

were estimated at the two validation rain gauges by simply
averaging the values at the two neighboring rain gauges. A
1000 year spatial‐temporal NSAR simulation was then
generated and sampled at the daily rain gauge locations. The
sample statistics of the time series sampled at the five cal-
ibration rain gauges are shown in Figures 7 and 8. The
simulated mean and proportion dry statistics (Figures 7a, 7b,
and 7f) are excellent matches to the observed. These dem-
onstrate successful modeling of the observed spatial het-
erogeneity of both rainfall occurrence and amounts at daily
and hourly scales using a spatially and temporally contin-
uous process, despite the extreme orographic effects present
in the Gallego catchment. Comparison with Figures 4a, 4b,
and 4f clearly shows the improvement of the NSAR model
over the STNSRP model. It should also be noted that the
simulated results for the mean (Figure 7a) closely match the
observed (shown) and the fitted NSAR model properties
(not shown) and so demonstrate that the simulation process
is correctly implemented.
[57] The simulation accuracy of the daily variance sta-

tistics is also excellent (Figure 7c) and the systematic biases
noted for the STNSRP model (Figure 4c) have been elimi-
nated. The NSAR model is therefore able to correctly sim-
ulate the observed spatially nonhomogeneous CV (Figure 5),
overcoming the homogeneous CV limitation of the
STNSRP model. The simulated hourly variance also seems
improved (Figures 7g and 4g). The skewness coefficient
typically has a large sample variability and is biased by the
length of observations (short records generally have lower
skewness coefficients than longer records) [Wallis et al.,
1974]. The NSAR simulated skewness coefficient follows
the spatial pattern of the observations but appears to be over
simulated for the lower altitude rain gauges. In contrast the
STNSRP fit simply matched the spatially averaged skew-
ness (Figure 4e). The lag‐1 autocorrelation statistic improves
upon the uniform value fitted for the STNSRP model. The
cross correlations for pairs of calibration rain gauges
(Figure 8) are seen to match observations well and to exhibit
similar variability to the observed data whereas a smooth
curve is typically produced by the STNSRP process (e.g.,
Figure 4h and Burton et al. [2008]). This application
demonstrates 12 independent monthly calibrations following
a seasonal cycle and a corresponding simulation of the
NSAR methodology and so provides confidence that the
fitting methodology is not data dependent.

Figure 5. The annual cycles of the coefficient of variation
(CV) for each calibration rain gauge (colors as for Figure 4).

Figure 4. Observed and STNSRP model fits to (a–e, h, i) daily and (f, g) hourly calibration rainfall statistics for the
Gallego. The colors in plots a–g indicate statistics relevant to individual rain gauges as shown in the key. Note that the
y axis is logarithmic for mean, variance, and skewness coefficient statistics. Daily cross correlation between pairs of rain
gauges is shown as a function of separation for (h) January and (i) July.
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5.5. Validation Results

[58] A validation of the stochastic rainfall models is now
presented in which properties of the simulated rainfall fields
are compared with observed rainfall properties that were not
included in the model calibration. Previously, Cowpertwait
[2006] demonstrated the sampling of an STNSRP process
at locations which were not used in the calibration of the
model. Here we use this property as the basis of a validation

of the both the NSAR and the STNSRP models by testing
such samples against historical records that were not
included in model calibration. The observed and simulated
rainfall statistics are shown in Figure 9 for time series
sampled at the validation rain gauge locations. Despite the
rain gauge location being the only property used to obtain
the time series, excellent matches are obtained for the mean,
PDD, VarD, and PDH, providing a successful validation of

Figure 6. The fitted raincell density field for December shown as contours with an interval of 0.002 km−2.
The points indicate raincell centers generated for 250 storms simulated using the nonhomogeneous algo-
rithm described in section 4.2. Daily rain gauges (diamonds) and the inner region boundaries (dashed line)
are also shown.
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Figure 7. Comparison of the calibration dataset and the NSAR simulated rainfall statistics. The calibration
dataset comprises (a–e) observed daily statistics and (f, g) estimated hourly statistics. Colors correspond to
rain gauges.
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the model’s heterogeneous rainfall occurrence properties.
However, the model’s representation of VarH, AC, and
skew appears slightly worse than for the calibration results.
Finally, Figure 8 shows the simulated cross correlation of
pairs of rain gauges where the pairing was not used in the
calibration: the simulated values are an excellent match to
the observed datasets.
[59] Table 3 provides a summary analysis of the accuracy

with which the observed statistics are matched by time
series sampled at the locations of the calibration and vali-
dation rain gauges for both the STNSRP and the NSAR
models. Since the validation dataset has less variance than
the calibration data for most statistics, the calibration and
validation scores cannot be directly compared in this table.
However, a reference value is provided, “Reference”, in
which observations are similarly compared to the mean of
the observed calibration statistics. The Reference, NSAR,
and STNSRP scores may be compared for each group of
sites. Table 3 shows quantitatively that the NSAR model
significantly improves the representation of the mean, PDD,
VarD, AC, PDH, and VarH for the calibration dataset
compared with the STNSRP model. Of these statistics the
validation results confirm an improvement in the mean,
PDD, VarD, and PDH statistics. Of the remaining validation
statistics AC, VarH, and cross correlation appear to be
modeled with a similar quality whilst skew may not be
modeled as well as for the STNSRP model. The STNSRP
model’s validation results are shown to improve on the
Reference value for the mean, VarD, and VarH results.
Additionally, the NSAR model improves on the PDD and
PDH results. While improved calibration results alone could
simply be a consequence of an increase in the number of
model parameters, the validation results demonstrate that the
NSAR model has a significantly improved representation of
the rainfall field compared with the STNSRP model as the
new model demonstrates an improved predictive ability.
[60] To test the ability of the NSAR model to simulate

realistic rainfall extremes, the time series of annual maxi-
mum daily rainfall was extracted from the observed record
for three rain gauges (with high, medium and low annual
rainfall), discarding years containing missing data. The
maxima were ranked and are shown on a Gumbel proba-

bility plot in Figure 10. The simulated 1000 year time series
corresponding to each rain gauge location was then parti-
tioned into subseries with equal length to the observed
series. For each subseries the annual maxima were extracted
and ranked. The 10th and 90th percentiles of the distribution
of each ranking was then evaluated across all subseries and
plotted in Figure 10 for each rain gauge, providing a mea-
sure of the variability of the simulated extreme value curve.
These plots show an excellent agreement of the observed
and simulated daily extreme value properties of the rainfall
field, which were not used in model calibration. This
strongly suggests that the model provides an excellent rep-
resentation of the rainfall regime of the catchment.

6. Discussion and Conclusions

[61] The nonhomogeneous spatial activation of raincells
(NSAR) model is the first spatially and temporally contin-
uous stochastic rainfall model demonstrated to successfully
simulate long hourly time series exhibiting both spatially
nonhomogeneous occurrence as well as nonhomogeneous
amounts. Previous spatial‐temporal models, such as the
STNSRP model, have successfully modeled only the non-
homogeneous amounts process. However, the NSAR model
implements a modified STNSRP process in which raincell
incidence follows a spatially nonhomogeneous Poisson
process, under the assumption that rainfall occurrence at all
locations is triggered by a single initiating event. The new
model is able to simulate rainfall regimes in which rainfall
amounts, rainfall occurrence and storm duration properties
are spatially nonhomogeneous.
[62] The new NSAR model was evaluated against the

STNSRP model, using the Gallego catchment in the Spanish
Pyrenees which has a rainfall regime exhibiting extreme
orographic influences. The models were calibrated to a set
of observed daily statistics and to hourly statistics, estimated
using regionalized relationships, for five rain gauges. Vali-
dation data was not used in model calibration and comprised
extreme value statistics and daily and hourly statistics for
two additional rain gauges. This provides the first validation
of an STNSRP or NSAR process at a location not used in
model fitting.

Figure 8. The daily cross‐correlation statistics estimated from the NSAR simulation for the calibration
and validation rain gauge pairings. These are compared with the observed dataset and plotted against rain
gauge separation for January and July.
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Figure 9. Comparison of observations and the corresponding samples from the NSAR simulation for
two validation rain gauges, which were not used in the model calibration. Colors correspond to rain
gauges.
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[63] The STNSRP model, which has a homogeneous
rainfall occurrence process, was shown to be too inflexible
to model the catchment’s nonhomogeneous rainfall regime.
Spatial heterogeneities in the mean, daily, and hourly pro-
portion dry, daily variance, and daily coefficient of variation
were shown to be better simulated by the NSAR model
compared with the STNSRP model for both calibration and
validation datasets. Other statistics were found to be of a
similar quality for both models. Extreme value statistics
were shown to be well simulated by the NSAR model
providing a further validation. The new model is therefore
demonstrated to significantly improve on the spatial mod-
eling of orographically influenced rainfall compared with
the STNSRP model. Sampling the process at subdaily time
steps and for locations not included in model calibration also
show that the new methodology goes considerably beyond
daily multisite approaches.
[64] The increased complexity of the NSAR model

requires more parameters (a total of 15 for the Gallego
application) than the STNSRP model (11) both of which
were fitted to 45 calibration statistics. This number of
parameters is comparable with the closest models demon-
strated in the literature by Favre et al. [2002] and Wheater
et al. [2000]. The validation results suggest that the NSAR
model is not overparameterized, overfitted or poorly iden-
tified as such models have limited ability to interpolate or
extrapolate. Therefore, the additional model complexity is
shown to improve the representation of the rainfall regime.

[65] The spatial interpolation property of the model,
demonstrated by the validation results, suggests that the
number of model parameters indicated by the linear
expression in section 3.2 is likely to be an overestimate as
the number of calibration rain gauges increases. Further, the
potential to relate spatial parameters to catchment topo-
graphic properties may also lead to a substantial reduction in
the number of model parameters.
[66] An algorithm was presented which improves the

efficiency and accuracy of the simulation of circular rain-
cells arising according to a homogeneous Poisson process
on an infinite plane, as required for the STNSRP model.
Raincells are conditionally simulated at any distance outside
an inner rectangular region, containing all locations at which
the process may be sampled. The condition being that the
raincells are large enough to affect the inner region. The
algorithm was demonstrated to provide an accurate STNSRP
process for a rectangular inner region and may be slightly
more efficient than an alternative algorithm appropriate for a
circular inner region [Leonard et al., 2006]. The derivation of
the properties of the conditional process may be easily
adapted to other geometric shapes and the algorithm may be
relevant to other models using spatial or volumetric Poisson
processes.
[67] The new NSAR methodology can provide simulated

heterogeneous rainfall fields which represent unobserved
variability at locations between the rain gauges used in the
calibration. Therefore, process sampling may vary according

Table 3. A Comparison of the Statistics of the Time Series Simulated by the STNSRP and the NSAR Models for the Calibration and
Validation Groups of Rain Gaugesa

Model Group

Daily Hourly

Mean
(mm)

PDD
(–)

Variance
(mm2)

AC
(–)

Skew
(–)

XCorr
(–)

PDH
(–)

Variance
(mm2)

Reference Calibration 1.248 0.081 33.6 0.067 1.49 – 0.027 0.29
STNSRP Calibration 0.101 0.078 25.8 0.069 1.61 0.09 0.027 0.25
NSAR Calibration 0.065 0.019 5.2 0.058 1.53 0.11 0.012 0.14
Reference Validation 0.998 0.067 25.7 0.063 1.00 – 0.020 0.24
STNSRP Validation 0.285 0.062 17.7 0.069 1.06 0.10 0.022 0.15
NSAR Validation 0.259 0.025 11.6 0.071 1.60 0.10 0.017 0.19

aEach value is the root mean square difference between the observed and simulated statistics of the relevant rain gauges for all months. “Reference” is a
similar evaluation of the monthly mean of the observed calibration statistics.

Figure 10. Gumbel plots comparing observed and simulated extreme daily rainfall for Zaad, Ayer, and
Sale. The error bars show the 10th and 90th percentiles of the distribution simulated for each statistic.
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to the application, e.g., as multisite time series or on a grid
for distributed hydrological modeling. In contrast, existing
stochastic rainfall models found to successfully represent
both nonhomogeneous occurrence and amounts are limited
to multisite and/or use discrete daily time steps. The new
methodology is an extension of the NSRP model, a well‐
tested rainfall simulator that has been used in a wide variety
of climatic zones, application types and for downscaling
climate change scenarios [e.g., see Burton et al., 2008;
Kilsby et al., 2007]. Therefore, it provides an important
extension to the tools available for distributed hydrological
modeling in large river catchments or where orographic
effects are important.

Appendix A: Efficient and Accurate Simulation
of Raincell Centers for a Rectangular Inner
Simulation Region

[68] This appendix provides the derivation of the new
finite algorithm for the simulation of circular raincells
occurring with a homogeneous Poisson process over an
infinite plane as part of the STNSRP simulation algorithm.
A summary of the algorithm is provided in section 4.1.
[69] Consider raincells occurring across an infinite plane

following a homogeneous Poisson process with density r. A
finite inner rectangular simulation region R is chosen so as to
contain all of the calibration rain gauges and all locations at
which the simulation process is to be sampled (Figure A1).
Thus, R has a defined area AR and sides of length w and z.
The outer simulation region is the rest of the infinite plane.
Simulation of raincells with centers within R is straightfor-
ward: the number of centers is sampled as a discrete Poisson
random variable with mean rAR; the location of each center
is sampled uniformly over the region; their radii are inde-
pendent and exponentially distributed with parameter g.
[70] Simply ignoring raincell occurrence in the outer

region may considerably underestimate the true STNSRP
process at locations where it is sampled, as raincells have
spatial extent. Typically a finite approximate algorithm has
therefore been used [see Leonard et al., 2006] whereby the
inner region is expanded to include a buffer zone of all
locations where a generated raincell is likely to affect the
original inner region. This approach suffers from two key
drawbacks: (1) exponentially generated raincell radii can
exceed any finite distance and (2) the increased simulation
area significantly increases the computational effort required
for the simulation [see Leonard et al., 2006]. The buffer zone
approach therefore under‐simulates the STNSRP raincell
occurrence process and is computationally inefficient, as it
generates many irrelevant raincells.
[71] Here an alternative algorithm is derived and dem-

onstrated whereby raincells are only simulated in the outer
region if they are relevant to the inner region. This reduces
the sampling of the infinite spatial raincell occurrence pro-
cess to a finite, exact and efficient algorithm.
[72] Consider a thin rectangular “annulus” a distance x

from Rwith thickness dx, within the outer region (Figure A1).
The probability of a raincell center occurring in the annulus
can be approximated as

P raincell centre in annulusð Þ � 2 wþ zþ 4xð Þ��x ðA1Þ

for terms of up to first order in dx. Such a raincell is con-
sidered relevant to R if its radius, an exponential random
variable with parameter g, is greater than x. The probability
of such a raincell being relevant is therefore

Z 1

x
�e��xdx ¼ e��x: ðA2Þ

[73] The probability that a raincell will occur in the annulus
and be relevant, pr, is then the product of equations (A1)
and (A2). An unknown monotonically increasing function
of x is then considered, y(x). Substituting

�x � dx

dy
�y ðA3Þ

into pr we obtain

pr � 2 wþ zþ 4xð Þ�e��x dx

dy
�y: ðA4Þ

[74] Should y(x) be chosen to make pr into a constant
multiple of dy then equation (A4) simply describes a
homogeneous Poisson process over y. This is satisfied if

wþ zþ 4xð Þe��x dx

dy
¼ c1 ðA5Þ

for some constant c1. Separating variables and integrating
provides the relationship that

c2 � wþ zþ 4xð Þe��x

�
� 4e��x

�2
¼ c1y ðA6Þ

for another constant c2. Choosing y(0) = 0 and y(∞) = 1 as
boundary conditions on y implies that

c1 ¼ c2 ¼ � wþ zð Þ þ 4

�2
ðA7Þ

Figure A1. Illustration of a rectangular inner region R with
area AR over which homogeneous generation of circular
raincells is required. A rectangular “annulus” lies at a dis-
tance x from R with a small width dx. Two circular raincells
are illustrated: one, rc1, of no consequence to R and a sec-
ond rc2, which affects R.
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and so y(x) may be expressed as

y xð Þ ¼ 1� 1þ 4x�

� wþ zð Þ þ 4

� 	
e��x: ðA8Þ

[75] The chosen definition and boundary conditions of the
function y(x) allow it to be interpreted as the cumulative
distribution function (CDF) of the distance of relevant
raincells occurring in the outer region. Since a suitable
expression has been found for y(x), all relevant raincells in
the outer region may be sampled as a homogeneous Poisson
process on the interval y2[0,1] with a density, ry, given by
equation (A9), which derives from equations (A4), (A5),
and (A7),

�y ¼ 2�c1 ¼ 2�

�2
� wþ zð Þ þ 4ð Þ: ðA9Þ

[76] Thus, for the outer region, the total number of rele-
vant raincells is a Poisson random variable with mean ry.
For each such raincell, the distance x of its center from the
inner region may be sampled from the CDF given by
equation (A8), its location is sampled uniformly from all
points at this distance, and finally its radius is exponentially
distributed, with parameter g, conditional on it being greater
than x.
[77] The flexibility of this derivation with respect to other

geometric shapes may be demonstrated by comparison with
the derivation of Leonard et al. [2006] who used a circular
inner region. Consider a circular inner region with radius r
and a thin annulus with radius r + x with thickness dx. The
equivalent expression, to equation (A4), for the probability,
pr, of a raincell occurring in the annulus and reaching the
inner region is given by equation (A10). The substitution
of y(x) and the constant, c3, is also shown,

pr � 2�� r þ xð Þe��x�x � 2�� r þ xð Þe��x dx

dy

� 	
�y ¼ 2��c3�y:

ðA10Þ

[78] Solving for y(x) as for the rectangular region gives

y xð Þ ¼ 1� 1þ x�

r� þ 1

� 	
e��x ðA11Þ

and

c3 ¼ 1þ r�

�2
: ðA12Þ

[79] The number of relevant raincells in the outer region
will then be a Poisson random variable with mean ry = 2prc3.
Each raincell’s location may be sampled uniformly on the
circumference of a circle with radius (r + x) where the CDF of
x is given by equation (A11). These two properties confirm
the results of Leonard et al. [2006] (the parameter n in
paragraph 18 and equation (12) respectively).

Notation

A the M × M matrix [amn],‐.
AR the area of an inner region, km2.

dA a small area, km2.
amn(g) the expected number of raincells affecting rain

gauge m due to a unit density at a node n,‐.
ci constants used for derivation, i2{1,2,3},‐.

corr( ) the expected cross‐correlation between two lo-
cations at a given distance apart: corrST( ) for
the STNSRP process; corrNSAR,m1,m2

( ) for the
NSAR process;‐.

Cx the number of raincells occurring over a loca-
tion x, ‐.

d a distance between two locations, km.
D( ), D2( ) objective functions used in model fitting, ‐.

g an arbitrary rainfall statistic, varies.
ĝ an observed sample estimate of g, varies.

g( ) analytical estimate of the expected mean value
of g for simulated rainfall in terms of model
parameters, varies.

gL,m( ) specific form of g( ) for a specific rainfall model,
L2{NSAR (NSAR); STNSRP (ST); NSRP (SS)},
varies.

gs scaling term used to standardize each statistic g
for model fitting, varies.

h aggregation period used in the evaluation of a
statistic, h.

m an index describing a rain gauge or a node, ‐.
m1, m2 rain gauges used to illustrate the model struc-

ture, ‐.
n an index describing a node, ‐.
M the number of nodes or equally, the number of

calibration rain gauges, ‐.
PDH proportion of dry hours with less than 0.1mm

accumulation, ‐.
PDDt proportion of dry days with less than t mm accu-

mulation, if t is omitted then it is 0.2mm, ‐.
Pi parameter set generated by steps i2{1,4,5} of

the NSAR fitting procedure.
Pi,m parameter set generated by step i2{2,3} of the

NSAR fitting procedure for rain gauge/node m.
pr probability that a raincell will occur in an annu-

lus about the inner region and be relevant to the
region, ‐.

R finite inner rectangular region.
r radius of a finite inner circular region, km.

VarD variance of the daily rainfall accumulation, mm2.
VarH variance of the hourly rainfall accumulation,

mm2.
w length of a side of the rectangular inner region,

R, km.
wg weight applied to statistic g for model fitting, ‐.

wn(x) the inverse square distance weighting of node n
at location x, ‐.

x distance to an annulus around an inner region,
km.

dx thickness of a thin annulus around an inner re-
gion, km.

x an arbitrary location on the infinite simulation
surface, km.

xm the location of rain gauge m, km.
y(x) a monotonically increasing function of x, ‐.
dy the change in y corresponding to the change dx, ‐.
z length of a side of the rectangular inner region,
R, km.

b raincell waiting time parameter, h−1.
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g raincell radius parameter, km−1.
"m an error term used in the derivation of the fitting

scheme for the raincell density field, ‐.
e the vector ["m] , ‐.
h raincell duration parameter, h−1.
l storm origin arrival rate parameter, h−1.


m
h ðÞ expected h hour rainfall at rain gauge m as a

function of model parameters, mm.
n expected number of raincells affecting a rain

gauge parameter, ‐.
ni,m expected number of raincells per storm at rain

gauge m fitted by step i2{3,5} of the NSAR fit-
ting procedure, ‐.

ni the vector [ni,m] for i2{3,5}, ‐.
nm(g,r) expected number of raincells per storm overlap-

ping rain gauge m, ‐.
x raincell intensity parameter, h/mm.
r uniform spatial density of raincells parameter,

km−2.
r(x) spatially varying raincell density, km−2.
rn raincell density fitted at the node n, km−2.
r the vector [rn], km

−2.
ri the best choice of r obtained in step i2{4,5},

km−2.
ry the expected number of relevant raincells occur-

ring in an outer region, ‐.
y(x) intensity scaling field for spatially varying rain-

fall amounts, ‐.
ym intensity scaling field at rain gauge m, ‐.
Y a vector of intensity scaling field values for a set

of rain gauges, −.
Yi the value of Y fitted by step i2{3,5} of the fit-

ting procedure, −.
y i,m the intensity scaling field at rain gauge m fitted

by step i2{3,5} of the NSAR fitting procedure,
‐.

W a set of rainfall statistics used in fitting a rainfall
model.
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