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[1] Using the results from multimodel ensembles enables the assessment of model
uncertainty in present and future estimates of extremes and the production of probabilities
for regional or local-scale change. Six regional climate model (RCM) integrations from
the PRUDENCE ensemble are used together with extreme value analysis to assess
changes to precipitation extremes over Europe by 2070–2100 under the SRES A2
emissions scenario, investigating the contribution of the formulations of global (GCM)
and regional climate models to scenario uncertainty. RCM ability to simulate precipitation
extremes is evaluated for a UK case study. RCMs are shown to underestimate 1 day return
values but reasonably simulate longer-duration (5 or 10 day) extremes. A multimodel
approach by which probabilities can be produced for regional or local-scale change in
extremes is then developed. A key result is that all RCMs project increases in the
magnitude of short- and long-duration extreme precipitation for most of Europe.
Individual model projections vary considerably but are independent of changes in mean
precipitation. The magnitude of change is strongly influenced by the driving GCM but
moderated by the RCM, which also influences spatial pattern. Therefore, when designing
future ensemble experiments (1) the number of GCMs should at least equal the number
of RCMs and (2) if spatial pattern is important then integrations from different RCMs
should be incorporated. For impact studies, both the resolution and number of models in
the ensemble will influence projections of change. The use of a multimodel approach
therefore provides more robust estimates.
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1. Introduction

[2] Global analyses of precipitation intensities in observed
data [e.g., Frich et al., 2002; Alexander et al., 2006] indicate
that high latitudes of the Northern Hemisphere are currently
experiencing a trend toward increased rainfall and enhanced
variability [e.g., Easterling et al., 2000; Meehl et al., 2005],
particularly in winter. This is supported by regional studies
in Europe [e.g., Fowler and Kilsby, 2003a, 2003b; Brunetti
et al., 2000; Frei and Schär, 2001] which show significant
positive trends in intensity over the past decade. Such a
trend is likely to continue into the future as modeling studies
with global climate models (GCMs) [e.g., Giorgi et al.,
2001; Palmer and Räisänen, 2002; Tebaldi et al., 2006]
consistently suggest that under enhanced greenhouse con-
ditions there will be increases in the frequency and intensity
of heavy precipitation.

[3] Coarse resolution global climate models are unable to
simulate realistic extreme events, particularly in areas of
complex topography [Mearns et al., 2001]. Regional detail
on extremes can however be obtained by using simple
interpolation, statistical downscaling or high-resolution
dynamical modeling using Regional Climate Models
(RCMs) [Haylock et al., 2006]. Dynamical modeling con-
fers advantages over other methods as it still represents
physical processes but at a higher resolution. Therefore
much recent attention has been focused on the simulation
of extremes by RCMs [e.g., Christensen and Christensen,
2003, 2004; Pal et al., 2004; Räisänen et al., 2004; Ekström
et al., 2005; Frei et al., 2006].
[4] Estimates of future precipitation are, however, subject

to several sources of uncertainty [Allen and Ingram, 2002;
Covey et al., 2003; Collins and Allen, 2002; Jenkins and
Lowe, 2003]. Two major sources are related to model
structure and parameterization scheme and are likely to be
reduced by further research. In addition, major uncertainties
result from the emission rates of greenhouse gases which
are determined by society through policies. When using
RCM data the sources of uncertainty increase, as outputs are
influenced by RCM resolution, numerical scheme, physical
parameterizations and the forcing boundary conditions
[Rummukainen et al., 2001; Déqué et al., 2007]. Recently,
results from multimodel ensembles have become available
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in projects such as PRUDENCE (Prediction of Regional
scenarios and Uncertainties for Defining European Climate
change risks and Effects [Christensen et al., 2007]),
ENSEMBLES and NARCCAP (North American Regional
Climate Change Assessment Program), enabling assessment
of model uncertainty in present and future estimates of
extremes. Although ENSEMBLES used only four GCMs to
drive nine RCMs, NARCCAP will use a better balance of
GCMs and RCMs, including some of the same GCMs as
PRUDENCE [Mearns and the NARCCAP Team, 2006].
[5] Multimodel ensembles have also allowed the gener-

ation of probability density functions (pdfs) of the impacts
of global warming. Despite the global emphasis taken by
most probabilistic climate change assessments, there are
now examples in the literature of the production of pdfs for
regional-scale [e.g., Tebaldi et al., 2004, 2005; Greene et
al., 2006; Ekström et al., 2007] and even point-scale [Furrer
et al., 2007] changes. Although most studies concentrate on
mean changes, Palmer and Räisänen [2002] used 19 global
climate models to quantify the increases in the probability
of extreme precipitation for different regions of the world
under global warming using equal weighting of the results
from different models. However, more recent approaches,
e.g., Tebaldi et al. [2004, 2005] or Lopez et al. [2006],
suggest that nonuniform weighting may be more appropri-
ate as models have unequal skill in the simulation of
contemporary climate.
[6] There are several different methods available to define

extreme events. Many studies have focused on ‘‘soft’’
extremes [Klein Tank and Können, 2003], typically 90th
or 95th percentiles, principally because the detection prob-
ability of trends decreases for even moderately rare events
[Frei and Schär, 2001]. For the European continent, there
have been a number of recent studies summarized by Frei et
al. [2006]. Other studies have used extreme value analysis
to examine more rare events. A series of publications have
assessed different versions of Hadley Centre RCMs for the
United Kingdom [e.g., Jones and Reid, 2001; Huntingford
et al., 2003; Fowler et al., 2005; Buonomo et al., 2007].
Most recently, for HadRM3H, Ekström et al. [2005] found a
10% increase in 1 day precipitation intensities for return
values from 10 to 50 years across the UK, estimating more
spatially variable changes for 5 and 10 day events. The most
extensive European study, by Frei et al. [2006], used six
RCMs driven by the HadAM3H atmosphere-only GCM and
found that in winter, precipitation extremes tend to increase
north of about 45�N while there are insignificant changes or
decreases to the south. In summer, the models produce
divergent estimates of change, with RCM structure
and parameterization contributing significantly to scenario
uncertainty.
[7] Here, we use PRUDENCE integrations from four

models: three RCMs and an atmosphere-only GCM with a
similar spatial resolution, with lateral boundary conditions
taken from two different GCMs. Regional Frequency Analysis
[Hosking and Wallis, 1997] is used to fit the Generalized
Extreme Value (GEV) distribution to annual maxima using
the method of L-moments, to define extremes with
return values from 5 to 25 years. We then compare return
values for the current (1961–1990) and future (2070–2100)
climate, under the SRES A2 emissions scenario, to analyze
changes to precipitation extremes over Europe. This work

builds on Frei et al. [2006] by investigating the contribution
of the formulation of the driving GCM to scenario uncer-
tainty in extremes. This was found to be greater than that
from the RCM for mean climate response, particularly
temperature, by Déqué et al. [2007].
[8] The RCMs are also evaluated with respect to their

ability to simulate precipitation extremes. To complement
previous evaluations focusing on the Alps [Frei et al., 2006]
and southern Germany [Beniston et al., 2007] using some of
the same models, we focus on the UK; approximately 20 �
18 0.5� grid cells, updating a study by Fowler et al. [2005].
We then consider how estimates from different models may
be combined. We develop a method using nonparametric
bootstrap resampling by which probabilities can be pro-
duced for regional or local-scale change in extremes.
[9] The paper is divided into the following sections:

Section 2 presents the data and descriptions of the climate
models used in the study; section 3 introduces the statistical
methods used for analysis; section 4 presents an evaluation
of the models’ ability to simulate mean and extreme
precipitation statistics using a UK case study; section 5
presents future scenarios of precipitation extremes over
Europe; section 6 explores how probabilistic estimates of
change in extremes may be developed for homogeneous
rainfall regions in the UK; and section 7 provides a
discussion of the results and concludes the study.

2. Model Descriptions and Data

[10] Within the FP5 PRUDENCE project [Christensen et
al., 2007], four atmosphere-ocean and atmosphere-only
GCMs were used to drive nine RCMs and one variable
resolution global atmospheric model over a European do-
main for two time slice integrations: control (1961–1990;
CTRL) and future (2071–2100; SCEN). Daily grid point
values for a range of climatic variables are available at
http://prudence.dmi.dk. Here, we examine integrations from
four models within the PRUDENCE ensemble, three RCMs
and one variable resolution global atmospheric model,
driven by two different GCMs for the IPCC SRES A2
emissions scenario [Intergovernmental Panel on Climate
Change (IPCC), 2000]. This subset of available model
integrations was chosen to evaluate the relative contribution
to RCM uncertainty in future projections by assessing (1)
same bounding GCM in combination with different RCMs
and (2) same RCM in combination with different bounding
GCMs.
[11] Two of the RCM integrations analyzed in this study,

HIRHAM and RCAO, were conducted by nesting into the
atmosphere-only high-resolution GCM HadAM3H of the
UK Hadley Centre. One RCM, HadRM3P, is nested into
HadAM3P, a more recent version of the same atmosphere-
only GCM. The latter version contains changes to the
moisture parameterizations which affect biases seen in parts
of the globe outside Europe; therefore HadRM3H and
HadRM3P can be considered as essentially the same model
for Europe [Haylock et al., 2006]. Additionally, the variable
resolution global atmospheric model, ARPEGE, with a
resolution of 50 km to 70 km over Europe [Hagemann et
al., 2004], is nested directly within HadCM3.
[12] HadCM3 [Gordon et al., 2000; Johns et al., 2003] is

a coupled ocean-atmosphere GCM at a resolution of ap-
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proximately 300 km from which both HadAM3H and
HadAM3P take their boundary conditions. HadAM3H
[Pope et al., 2000] and HadAM3P [Jones et al., 2005]
have a resolution of about 150 km in the midlatitudes. For
CTRL, they were forced by observed sea surface conditions
from the same period. For SCEN, sea surface conditions
were constructed by adding anomalies from a transient
simulation of HadCM3 to observations. Atmosphere-only
GCMs were favored over HadCM3 for driving RCMs in
PRUDENCE, as their higher resolution provides an im-
proved control climate, particularly with respect to the
positioning of storm tracks in the Northern Hemisphere
[Hudson and Jones, 2002]. Furthermore, the representation
of clouds and condensation are substantially improved
[Stratton, 2004].
[13] Additionally, two RCM integrations analyzed here,

HIRHAM and RCAO, are driven by lateral boundary and
sea surface conditions from the ECHAM4/OPYC3 coupled
ocean-atmosphere GCM [Roeckner et al., 1996, 1999]
developed in cooperation between the Max-Planck-Institute
for Meteorology (MPI) and the German Climate Computing
Centre (DKRZ) in Hamburg, Germany. These are included
to sample the dependence of results on the driving GCM.
[14] The HadAM3H/P and ECHAM4/OPYC3 global

mean temperature responses are similar for the IPCC SRES
A2 emissions scenario (3.1�C and 3.56�C respectively; Tim
Osborn, personal communication); midrange in the climate
sensitivities presented by IPCC [2001].
[15] The RCMs considered in this study are listed below

with further details in Table 1. All operate with grid spacing
of about 0.5� longitude by 0.5� latitude (approximately
50 km spatial resolution) over a European domain. More
details on the experimental design of the PRUDENCE
integrations are given by Jacob et al. [2007].
[16] 1. The HadRM3P model of the UK Hadley Centre

[Jones et al., 2004b] is an updated version of the
HadRM3H model [Hudson and Jones, 2002]. Precipitation
extremes for the UK for HadRM3H are described by
Fowler et al. [2005] and Ekström et al. [2005]. The main
changes in HadRM3P are related to the calculation of
large-scale cloud and assumptions made about the radia-
tive effects of convective clouds. Changes were also made
to precipitation efficiency parameters to ensure reasonable
vertical cloud profiles, cloud forcing and radiation fields
[Déqué et al., 2007];
[17] 2. The HIRHAMmodel of the Danish Meteorological

Institute is an updated version of HIRHAM4 [Christensen
et al., 1996, 1998], incorporating high-resolution physio-
graphical data sets of surface topography and land use
classification [Hagemann et al., 2001; Christensen et al.,

2001]. Regional simulations of extreme precipitation by
HIRHAM are described by Christensen and Christensen
[2003, 2004] and for the whole of Europe by May [2007];
[18] 3. The RCAO model of the Swedish Meteorological

and Hydrological Institute consists of an atmospheric part
RCA2 [Jones et al., 2004a] and an ocean model RCO
[Meier et al., 2003], described by Döscher et al. [2002]. The
simulation of extreme precipitation over part of northern
Europe is described by Räisänen et al. [2004];
[19] 4. The global ARPEGE/IFS variable resolution

model of the French Meteorological Service, an updated
version of Déqué et al. [1998], is not strictly a RCM. Within
PRUDENCE, however, it is used with maximum resolution
over the Mediterranean Sea [Gibelin and Déqué, 2003] and
so its resolution over Europe is approximately the same as
the other RCMs. The simulation of extreme precipitation
over France is described by Déqué [2007].
[20] Daily precipitation data for CTRL and SCEN inte-

grations were regridded onto the common 0.5� � 0.5� CRU
grid to allow direct comparison between models. Suffixes E
and H denote RCMs driven by ECHAM4/OPYC3 and
HadAM3H/P/HadCM3 GCMs respectively.
[21] For the UK evaluation, a daily observed 5 km

precipitation grid produced by the UK Meteorological
Office [Perry and Hollis, 2005a, 2005b] was aggregated
to the common CRU grid by taking a daily average across
the 5 km boxes contained within each 0.5� � 0.5� grid cell
for each day of 1961–1990. This daily data set is referred to
as UKMO. No similar daily observational data set is
available for Europe, although one is under construction
in the FP6 ENSEMBLES project (M. Haylock, personal
communication, 2006).

3. Statistical Analysis

[22] The statistical analysis of extreme precipitation is
based on daily precipitation totals. First, diagnostics of
mean precipitation and wet day frequency are used to
characterize the frequency distribution of precipitation. A
threshold of 1 mm d�1 is used to discriminate wet days as
lower daily totals may be sensitive to underrecording in
observed series. Secondly, we analyze return values of
precipitation intensities with average recurrence of 5 to
25 years. The return value for a return period of T years
is defined as the precipitation intensity that is exceeded by
an annual extreme with a probability of 1/T. Return values
for return periods in excess of 25 years were considered less
reliable because of the short (30 year) length of climate
model integrations and so results are not presented here.
Return values are examined for 1, 2, 5 and 10 day
precipitation totals. Here, results are presented only for

Table 1. Selection of PRUDENCE Regional Climate Models for Which Integrations Are Analyzed in This Studya

Model Acronym Institution RCM GCM Driving Data

HIRHAMH Danish Meteorological Institute (DMI) HIRHAM HadAM3H
HIRHAME ECHAM4/OPYC3
RCAOH Swedish Meteorological and Hydrological Institute (SMHI) RCAO HadAM3H
RCAOE ECHAM4/OPYC3
HADH Hadley Centre–UK Meteorological Office HadRM3P HadAM3P
ARPEGEH Météo-France, France ARPEGE HadCM3
aThe first part of each model acronym refers to the RCM and the second to the GCM data used to provide the boundary conditions, either from Hadley

Centre models (HadRM3H/P or HadCM3; suffix H) or ECHAM4/OPYC3 (suffix E).
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illustrative low (5 year) and high (25 year) return periods
using 1 and 10 day sums, representing short- and long-
duration precipitation events respectively.

3.1. Return Period Estimation

[23] For each RCM integration, annual maximum (AM)
series are extracted for 1, 2, 5 and 10 day precipitation totals
for each grid cell. The AM series are standardized by their
median (Rmed; following Fowler et al. [2005]) and a GEV
distribution is fitted using L-moments [Hosking and Wallis,
1997]. Grid cell return period magnitudes are then derived
for each model by multiplying the fitted GEV growth factor
by its respective Rmed.
[24] For the UK case study, regional frequency analysis

(RFA) is used to estimate return values of precipitation
intensities for nine UK rainfall regions (Figure 1) devel-
oped by Wigley et al. [1984]. The homogeneity of these
regions for extreme precipitation was tested by Fowler and
Kilsby [2003a]. Within each region, standardized AM data
for each grid cell is pooled and a GEV distribution fitted
using regionally averaged L-moment ratios. The return
values of precipitation intensities are then estimated by
multiplying the fitted growth factor by the regional aver-
age Rmed. This technique is used to estimate regional
return values for UKMO, CTRL and SCEN. The method-
ology is explained in more detail by Fowler and Kilsby
[2003a].
[25] We use the return value estimates for UKMO and

CTRL to evaluate the RCMs with respect to their represen-
tation of precipitation extremes across the UK. We then
consider the difference between CTRL and SCEN to give

estimates of change in the return values of precipitation
intensities across Europe.

3.2. Confidence Intervals

[26] For the UK case study regional confidence intervals
on return values were estimated using a nonparametric
bootstrap resampling method [Efron, 1979]. If each data
set of AM is based on n data points then, as defined by
Efron and Tibshirani [1993], bootstrapping samples the
original data set with replacement multiple times to produce
multiple independent samples of size n. Thus 10000 boot-
strap samples, each of 30 values are drawn from each
pooled standardized regional AM data set for the RCMs
and UKMO. For each bootstrap sample, a GEV distribution
is fitted and the 5 and 25 year return values estimated by
multiplying the growth factor by the regional average
Rmed. This allows the construction of 5th and 95th percen-
tiles for return value estimates for individual regions and
RCMs. More detail on this method is given by Fowler et al.
[2005].

3.3. Multimodel Estimates

[27] Multimodel estimates of change were generated
using the nonparametric bootstrap samples. Using the 5 year
return value as an example; for each RCM, region and
aggregation, e.g., HADH for CEE at 1 day, a random
number generator is used to sample the return values from
the CTRL and SCEN regional pools. The percentage change
in the return value between CTRL and SCEN is then
calculated. This procedure is repeated 10000 times, giving
10000 estimates of change in the 5 year return value for
each RCM and each region. A kernel density function is
then fitted to visualize the estimated change.
[28] Assuming that the models have equal skill, the 10000

estimates from each RCM are then pooled and the distri-
butional properties examined using box plots for each UK
region for the 5 and 25 year return values of 1 and 10 day
precipitation extremes.

4. Evaluation in the UK

[29] This section presents an evaluation of the simulation
of UK precipitation extremes; comparing CTRL to UKMO.
UKMO has the same grid resolution as the RCMs and
therefore the resulting statistics are directly comparable
[Osborn and Hulme, 1997].
[30] First, we compare mean precipitation and wet day

frequency to characterize the frequency distribution of
precipitation across the UK. Subsequently, we compare
the mean and standard deviation of AM series and Rmed
for each region. Finally, we compare the estimated return
values for individual grid cells and regions.

4.1. Mean and Frequency Diagnostics

[31] The CTRL integrations broadly simulate the observed
annual cycle of precipitation over the UK (Figure 2a).
However, model skill differs throughout the year and is
most influenced by choice of RCM, except in autumn when
precipitation tends to be greatest. Here, the driving GCM
provides significant differences: CTRL integrations driven
by ECHAM4/OPYC3 overestimate precipitation and those
driven by Hadley GCMs underestimate precipitation. This

Figure 1. RCM 50 km grid (all regridded to the common
CRU grid) and the nine coherent rainfall regions. The
regions are North Scotland (NS), East Scotland (ES), South
Scotland (SS), Northern Ireland (NI), Northwest England
(NWE), Northeast England (NEE), Central and Eastern
England (CEE), Southeast England (SEE) and Southwest
England (SWE).
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perhaps suggests a seasonal disparity in model ability to
simulate precipitation mechanisms. In contrast, most
RCMs overestimate the wet day frequency (WD, >1 mm,
Figure 2b) and the lack of clustering of RCMs according to

driving GCM suggests that RCMs have a large influence
over the precipitation occurrence process. Frei et al. [2003]
identified similar problems with simulations of WD over the
European Alps using ARPEGE and HIRHAM models

Figure 2. Observed (UKMO) and RCM modeled (CTRL) (a) mean daily precipitation, (b) wet day
frequency (>1 mm), (c) spatial distribution of mean winter precipitation for the UK for the control period,
1961–1990. The shaded area in Figure 2a represents the 95% confidence interval for the 30-year sample
mean, and the shaded area in Figure 2b indicates the 95% confidence interval for the sample proportion
assuming the Gaussian approximation to the binomial distribution as described by Wilks [1995].
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driven by observed data. However, a selection of other RCM
simulations including HadRM3H performed reasonably
well. The simulations of WD for the UK would seem to
confirm their speculation that the errors are not region
specific but are inherent to specific model parameterizations.
[32] Some models that provide good estimates of areal

average precipitation show poor skill in the simulation of
its spatial distribution (Figure 2c). Figure 2a shows that
HIRHAME simulates the seasonal pattern of areal average
precipitation well. However, this is due to the compensating
large underestimates over the north and west and over-
estimates over central and eastern England (Figure 2c). In
contrast, although ARPEGEH performs poorly in simulat-

ing areal average precipitation, the lack of a clear pattern to
its spatial anomalies in Figure 2c suggests that it may be
better at representing physical precipitation processes than
models which produce errors with a well-defined spatial
structure.

4.2. Annual Maxima

[33] The regional mean AM and standard deviation of
AM within a region were calculated to identify percentage
differences between pooled 1 and 10 day AM series for
UKMO and CTRL (Tables 2 and 3).
[34] At 1 day, all CTRL integrations underestimate the

regional mean AM. At 10 days, differences between CTRL

Table 2. Percentage Differences in Mean and Standard Deviation of 1 Day AM Between UKMO and CTRL Integrations for Each UK

Regiona

Statistic UKMO ARPEGEH HADH HIRHAME HIRHAMH RCAOE RCAOH

Mean
SEE 32.1 �20.1 �20.9 �19.5 �26.8 �21.3 �23.4
SWE 37.6 �25.1 �25.2 �22.5 �31.3 �22.6 �27.0
CEE 29.5 �17.2 �8.0 �16.0 �27.0 �15.1 �18.8
NEE 33.2 �18.9 �14.7 �25.4 �29.2 �24.2 �27.1
NEW 38.7 �26.3 �24.8 �24.8 �31.4 �28.0 �32.5
SS 40.9 �24.0 �12.5 �27.3 �37.0 �31.5 �33.9
ES 34.6 �18.1 �17.9 �27.8 �34.7 �25.2 �30.1
NS 44.4 �30.0 �14.4 �26.5 �38.2 �34.5 �40.1
NI 33.6 �15.9 �13.9 �14.7 �27.9 �19.8 �24.1
Mean anomaly �21.7 �16.9 �22.7 �31.5 �24.7 �28.6

Standard Deviation
SEE 9.7 �5.5 �16.4 �27.5 �16.9 �42.7 �34.0
SWE 12.2 �42.7 �31.4 �33.6 �27.4 �48.6 �47.8
CEE 10.1 �33.4 �13.7 �32.9 �46.8 �42.9 �35.5
NEE 10.5 �39.0 �16.0 �41.8 �31.8 �55.7 �46.8
NEW 12.7 �47.8 �28.9 �38.3 �35.8 �54.7 �56.4
SS 11.7 �53.1 �13.8 �40.5 �30.5 �62.1 �55.5
ES 10.4 �33.2 �18.7 �41.1 �38.9 �41 �56.1
NS 17.3 �53.0 �9.3 �42.2 �48.0 �66.6 �63.3
NI 10.9 �45.0 �36.9 �41.4 �51.4 �59.6 �46.0
Mean anomaly �39.2 �20.6 �37.7 �36.4 �52.7 �49.0

aUKMO values are given in mm.

Table 3. Percentage Differences in Mean and Standard Deviation of 10 Day AM Between UKMO and CTRL Integrations for Each UK

Regiona

Statistic UKMO ARPEGEH HADH HIRHAME HIRHAMH RCAOE RCAOH

Mean
SEE 85.5 �12.7 �26.7 �7.3 �10.8 �1.7 0.2
SWE 111.0 �15.7 �25.7 �12.1 �22.2 �5.5 �8.8
CEE 68.6 �7.2 �4.4 8.5 �6.8 16.0 10.4
NEE 86.1 �6.7 �17.3 �13.8 �21.8 0.4 �9.1
NEW 114.3 �11.1 �26.0 �16.5 �23.1 �10.0 �15.9
SS 135.0 �16.1 �18.0 �19.8 �30.0 �17.4 �21.8
ES 93.9 �9.7 �15.7 �12.8 �19.2 �3.6 �8.3
NS 154.0 �19.1 �16.5 �20.8 �34.4 �20.2 �26.1
NI 93.0 �8.7 �11.1 �0.3 �12.8 8.7 �0.8
Mean anomaly �11.9 �17.9 �10.5 �20.1 �3.7 �8.9

Standard Deviation
SEE 23.5 �30.5 �34.6 �1.2 �16.2 �21.7 �26.2
SWE 29.3 �26.4 �22.8 �10.3 �28.1 �38.2 �44.0
CEE 17.1 �31.6 �4.3 7.6 �28.8 �2.8 6.6
NEE 26.2 �27.6 �1.5 �40.2 �40.5 �38.5 �47.5
NWE 37.3 �35.4 �35.4 �41.5 �32.1 �47.5 �58.8
SS 40.9 �49.0 �17.4 �32.7 �38.2 �57.8 �61.9
ES 30.8 �30.2 �17.7 �45.6 �36.2 �47.0 �49.6
NS 58.6 �46.1 1.7 �39.3 �47.8 �62.0 �60.9
NI 17.0 �7.6 1.2 3.5 �9.1 �10.2 �16.7
Mean anomaly �31.6 �14.5 �22.2 �30.8 �36.2 �39.9

aUKMO values are given in mm.
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and UKMO are smaller and, for some regions, the CTRL
integrations overestimate the regional mean AM (Table 2).
At both 1 and 10 days, the largest differences between
CTRL and UKMO are simulated for northern Scotland (NS)
and the smallest for CEE.
[35] The standard deviation of AM within a region gives

an indication of the ability of an RCM to reproduce the
observed spatial variability in extremes. At 1 day, RCAOE
and RCAOH produce large underestimates. At 10 days,
RCAOH and RCAOE still underestimate the standard
deviation of AM in most regions (Table 3). At both 1 and
10 days, HADH provides the most similar or lowest mean
model anomaly value (Tables 2 and 3). The largest differ-
ence in standard deviation of AM between CTRL and
UKMO is found for NS.

4.3. Rmed

[36] Here we illustrate how Rmed distributions, used to
rescale from the fitted GEV growth factor to the return value

and equivalent to the 2 year return value, differ for each
region. The mean and standard deviation of Rmed by model
and region is compared for CTRL and UKMO in Figure 3.
Color represents the CTRL and UKMO data sets while
symbols represent regions, i.e., clustering of colors indicates
similarity among models, while clustering of symbols
indicates similarity within regions.
[37] For 1 day AM, there is more similarity between

Rmed values from the same RCM than Rmed values from
the same region (Figure 3a). However, for 10 day AM,
regional clusters suggest that the mean and standard devi-
ation of Rmed values from models within the same region
are more similar (Figure 3b).
[38] Differences between 1 and 10 day Rmed distribu-

tions for CTRL and UKMO are clearly identified in
Figure 3. The UKMO estimates are placed further to the
right than the CTRL markers in both plots. This shows that
the CTRL integrations underestimate mean Rmed, although
less so for the 10 day totals. Furthermore, with some
exceptions, mainly for HADH, the CTRL markers show
less vertical spread compared to UKMO markers, particu-
larly at 1 day. This suggests that, in general, the CTRL
integrations underestimate the spatial variability of Rmed.
[39] Box plots of Rmed distributions for CTRL and

UKMO were plotted to illustrate the two regions showing
the smallest (CEE) and largest (NS) differences (Figure 4).
The larger spatial variability of precipitation in NS is illus-
trated by the wider range of Rmed when compared to CEE
(Figure 4). There are larger intermodel and CTRL-UKMO
differences for NS than CEE, where the range of RCAOE/H
is much smaller than the range of observed Rmed values.

4.4. Return Values

[40] Figure 5 shows the estimated 1 day, 5 year return value
for UKMO and each of the CTRL integrations for individual
grid cells (Figure 5a) and regions (Figure 5b). At the 1 day
resolution, all CTRL integrations underestimate extreme pre-
cipitation amounts for both low (Figures 5a and 5b) and high
return values (not shown). This was noted by Fowler et al.
[2005] for HadRM3H and may be a result of the poor
performance of RCMs in resolving convective precipitation
processes. As precipitation is aggregated to the regional level,
return value estimates are improved because of the effect of
data pooling and use of the regional average Rmed (Figure 5b).
[41] There is considerable variability in model perfor-

mance over time and space. The RCAO models, in partic-
ular, show little spatial variation in 1 day, 5 year return
values, with a UK range from 25 to 37 mm (Figure 5a).
In comparison, the range estimated from UKMO is 32 to
87 mm. Better estimates are made for longer-duration
precipitation. For the 10 day, 5 year return value all RCMs
show a reduction in simulation error when compared to the
1 day estimate, but a lack of spatial variability is still evident
for the RCAO models (Figure 5c). Results for higher return
values are comparable (not shown). The improvement in the
simulation of longer-duration precipitation extremes may
reflect the models’ ability to better capture large-scale
atmospheric processes or be due to the reduced influence
of model parameterization when using temporal smoothing.
Despite the dry bias in mean precipitation across the UK
simulated by HADH, it produces the best estimates of return
values for CTRL.

Figure 3. Scatterplots of the mean and standard deviation
of Rmed values, comparing the UKMO and CTRL
integrations for (a) 1 day and (b) 10 day. The CTRL data
sets are denoted by different colors, UKMO is shown in
bold black, while symbols represent regions.
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Figure 4. Box plots of distributions of Rmed for CTRL integrations and observed (UKMO) for (a) CEE
region, 1 day; (b) CEE region, 10 day; (c) NS region, 1 day; and (d) NS region, 10 day. The observed
distribution is shown in bold.
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Figure 5. Estimates of return value (in mm) for (a) 1 day, 5 year event for grid cells; (b) 1 day, 5 year
event for regions; and (c) 10 day, 5 year event for grid cells.
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[42] While simulated return values for CTRL cannot be
assessed relative to observations for the whole of Europe
because of the lack of a gridded daily precipitation series,
some useful indicators may be inferred from a comparison
of the RCMs. Models agree that the largest 1 day, 5 year
return values occur over the Alps, western Scandinavia,
northwest Spain and the north Mediterranean coast
(Figure 6). As for the UK case study, the RCAO simulations
show less spatial variability in 1 day return values than the
other RCMs. In general, the models are in closer agreement
on the distribution of high and low return values and the
range of variability across Europe for longer-duration pre-
cipitation events (5 or 10 days), with the main differences
found over central and eastern Europe (not shown).

5. Projected Change in Precipitation Extremes

[43] Increases in short-duration extreme precipitation are
projected over most of Europe (Figure 7), with projected
changes for higher return levels generally larger but dis-
playing more intermodel variability. GCM boundary con-
ditions are important in generating differences in projected
changes since large-scale circulation patterns within RCMs
depend on the lateral boundary conditions inherited from
their driving GCMs. These not only influence the simula-
tion of mean precipitation changes over northern Europe

[Beniston et al., 2007] but also the extremes. For some
regions, this results in different directions of change, e.g.,
moderate decreases in the magnitude of extreme precipita-
tion events (<40%) over southern Iberia are projected by
Hadley-driven models whereas ECHAM-driven models
project increases.
[44] Increases also predominate for longer-duration

extremes, e.g., 10 day precipitation intensities show modest
increases in 5 year return values over most of Europe
(Figure 8a). For 25 year return values, larger areas are
projected to experience decreases (Figure 8b). However, the
dominant pattern suggests larger increases over northern
Europe, with smaller increases or potentially decreases in
extremes over southern Europe. The uncertainty in the
spatial pattern of change is strongly influenced by driving
GCM, with ECHAM-driven models projecting much larger
increases in return values than Hadley-driven models.
Overall, there is a more coherent intermodel signal
in projections for longer-duration precipitation extremes,
perhaps reflecting the better simulation of these types of
events by RCMs.
[45] Changes in extremes are not directly related to

changes in mean precipitation. Models show much greater
consistency in projections of mean precipitation change,
with decreases over southern Europe and increases over the
north [Blenkinsop and Fowler, 2007]. Over northern
Europe, increases in extremes are likely to be related to
proportionately more precipitation in areas of existing storm
tracks and associated dynamical moisture convergence
resulting simply from the greater moisture holding capacity
of warmer air together with a slight poleward shift of the
midlatitude storm tracks [Meehl et al., 2005; Tebaldi et al.,
2006]. However, over parts of southern Europe, increases in
extremes are associated with decreases in mean precipita-
tion. This inconsistency may be a result of an increased
number of dry days together with more intense convective
extremes, despite lower mean precipitation.

6. Estimating Changes Using a Multimodel
Approach: UK Example

[46] Probability distributions of change in extreme pre-
cipitation were generated using the 10000 return value
estimates generated for each model, aggregation period (1,
2, 5 or 10 days) and UK homogenous rainfall region by the
nonparametric bootstrapping exercise. The methodology
used is detailed in section 3.3.
[47] Figures 9 and 10 show estimates of the percentage

change in the 1 day 5 year and 10 day 25 year return values
respectively for each RCM under the SRES A2 2071–2100
emissions scenario. Model projections of change vary
considerably; estimates range from �20 to +60% across
the UK with a greater spread for higher return periods, and
intraregional differences are almost as large. What is strik-
ing is that few models predict decreases in any region;
HADH proves the outlier by projecting decreases or no
change. A distinct split between projections from Hadley-
and ECHAM-driven models is seen at 1 day, except in
southeast England (SEE) and central east England (CEE).
However, at 10 days, this is less distinct. ECHAM-driven
models project large increases in extreme precipitation in all
UK regions; generally larger than increases projected by

Figure 6. Estimates of return value (in mm) for 1 day,
5 year event for all European grid cells.
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Hadley-driven models, which also show large intraensemble
differences.
[48] Assuming that the models have equal skill, the 10000

estimates from each RCM were pooled to produce proba-
bility distributions of change for each UK region. Figure 11
shows box plots of the estimated percentage change in 1 and
10 day, 5 and 25 year return values. Data pooling produces
large uncertainties in projections, particularly for 1 day
extremes. Less spatial variability in change is estimated
for 10 day extremes; all regions show median increases
from 10–20%, with greater uncertainty surrounding esti-
mates for the southern UK. At 1 day, larger changes are
projected for northern regions (�20% increase), with 10–
20% increases estimated for southern regions. At higher
return levels there is greater uncertainty, as would be
expected. However, it is likely that the choice of models
in the pool heavily influences the results.
[49] Estimates of change were then pooled by driving-

GCM to examine uncertainty resulting from GCM boundary
conditions and the structure and parameterization of RCMs.
Figures 12 and 13 show three box plots of probability
distributions of change estimated for 1 and 10 day, 5 and
25 return values. First, all Hadley-driven model results were
pooled to give an estimate of change using four ensemble
members, HADH, ARPEGEH, HIRHAMH and RCAOH.
Secondly, a strict comparison was made of pooled results
from a 4 � 4 ensemble: RCAO and HIRHAM driven
by HadAM3H and ECHAM4/OPYC3. The second plot

(Hadley_sub) shows results for this pooled subset of
Hadley-driven models: HIRHAMH and RCAOH. The third
plot in each row shows pooled results for the same RCMs
driven by ECHAM4/OPYC3: HIRHAME and RCAOE.
[50] Figures 12 and 13 clearly illustrate the large effect of

the driving GCM on the magnitude of estimated changes.
For 1 day 5 year return values, median increases of
between 0 to 15% are estimated for all Hadley-driven
RCMs (Figure 12a) but median increases for the Hadley
subset (Figure 12b) are much lower for southern UK
regions, from 0 to 5%. Median increases projected by the
ECHAM-driven RCMs are significantly larger, from 25 to
45% (Figure 12c). At higher return levels, greater increases
of up to 60% are projected. Projected increases are largest
in east and south Scotland (ES and SS) and smallest in
southern regions. For short-duration precipitation extremes,
the size of the RCM ensemble heavily influences change
projections, with the spread significantly increasing with
the inclusion of additional RCMs.
[51] For 10 day extremes (Figure 13), differences be-

tween ECHAM- and Hadley-driven projections and the
range of uncertainty are both smaller. Changes estimated
from the subset do not differ significantly from estimates
using all Hadley-driven models, suggesting increases of 10
to 15% in the 5 year return value (Figures 13b and 13a).
Thus ensemble size is much less important. ECHAM-driven
models suggest greater increases, from25 to 35% (Figure 13c).

Figure 7. Estimates of percentage change in return values for (a) 1 day, 5 year events and (b) 1 day,
25 year events for all European grid cells.

D18104 FOWLER ET AL.: MULTIMODEL PROJECTIONS OF EXTREME PRECIPITATION

11 of 20

D18104



For the 25 year return value, increases are projected to be of
similar magnitude.

7. Discussion and Conclusions

[52] A selection of three RCMs and a variable resolution
atmosphere-only GCM, with forcing from two different
GCMs, were compared for the simulation of European
precipitation extremes. A UK case study demonstrated each
model’s ability to reproduce observed climate statistics for
the 1961–1990 control integration (CTRL) for nine rainfall
regions. The study also examined some of the uncertainties
associated with model structure and parameterization.
Results showed that the driving GCM has a strong influence
on the magnitude of change in extremes; similar results
were obtained for mean change in precipitation and tem-
perature over Europe by Déqué et al. [2007]. However,
RCM structure influences the spatial pattern of change in
extreme precipitation and moderates the median magnitude
of change; shown by the, sometimes large, differences
between projections from Hadley-driven models.
[53] All models were found to reproduce the form of the

annual precipitation cycle over the UK. However, the lack
of expected spatial patterns in mean precipitation suggests
that models may not adequately capture the physical pro-
cesses responsible for precipitation. Comparisons of regional
means and standard deviations of the CTRL Rmed values
with observed equivalents indicated much less intraregional

variability in modeled than observed precipitation, particu-
larly so for the 1 day totals. Scatterplots of regional Rmed
mean and standard deviation showed that while 1 day Rmed
clustered according to model (i.e., Rmed from the same
model but different regions showed similar values), the
10 day Rmed clustered according to region. This suggests
that 1 day rainfall may reflect toomuch dependence onmodel
specific behavior rather than regional climate characteristics,
an effect that is reduced when averaging RCM data in the
temporal or spatial domain.
[54] For extreme precipitation, all models, to varying

degree, underestimated observed statistics and intraregional
spatial variability, hence giving a conservative measure of
the magnitude of extremes. At 1 day, models provided poor
estimates but simulations of longer-duration extremes (5 or
10 days) were reasonable and show that RCMs are capable
of representing the spatial patterns in extremes that are not
resolved by GCMs. The nature of the deficiencies in model
performance highlighted in this study has yet to be fully
addressed; here, %-change was used to define probabilities
for change in extreme precipitation rather than absolute
values. In particular, there is a lack of rigorous comparative
analyses of model skill in reproducing characteristics of the
large-scale atmospheric circulation and its relationship with
regional climate.
[55] At the European scale, increases in both short- and

long-duration extreme precipitation are projected, although
there is uncertainty in the absolute magnitude. Coherent

Figure 8. Estimates of percentage change in return values for (a) 10 day, 5 year events and (b) 10 day,
25 year events for all European grid cells.
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Figure 9. Estimates of change in 1 day 5 year return value for the SRES A2 2071–2100 scenario for
each of the nine UK homogenous rainfall regions for six RCMs. The x axis shows the percentage change
estimated and the y axis shows the probability density. The uncertainty resulting from natural variability
is shown by the width of the density function.
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Figure 10. Estimates of change in 10 day 25 year return value for the SRES A2 2071–2100 scenario
for each of the nine UK homogenous rainfall regions for six RCMs. The x and y axis labels are as for
Figure 9. The uncertainty resulting from natural variability is shown by the width of the density function.
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Figure 11. Estimates of change in 1 and 10 day return values for the SRES A2 2071–2100 scenario for
each of the nine UK homogenous rainfall regions, pooling results from all RCMs and assuming equal
weighting: (a) 5 year and (b) 25 year. The box plot shows the smallest observation (lower bar), lower
quartile (bottom of box), median (line through box), upper quartile (top of box), and largest observation
(upper bar). Outliers, points which fall more than 1.5 times the interquartile range above the third quartile
or below the first quartile, are indicated individually.
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spatial patterns are rarely found for extreme precipitation
projections as a result of the small-scale, local character of
precipitation [Tebaldi et al., 2006; Frich et al., 2002].
However, importantly for policy makers, reductions are
projected over comparatively small areas, with general
agreement among models for increases in longer-duration
events. This change is physically consistent with warmer air
in the future climate being able to hold more moisture
generated by increased evaporation from warmer oceans.
When this moister air moves over land, more intense
precipitation is produced [Meehl et al., 2005]. Change in

extremes is driven by changes in mean precipitation in some
areas but not in others, confirming the conclusions of Frei et
al. [2006] who indicated that there is a component of
change under global warming that is specific to extremes.
[56] For the UK rainfall regions, results from all models

were pooled per region and a nonparametric bootstrap
resampling method, similar to Huntingford et al. [2003],
was used to represent uncertainty resulting from natural
climate variability. This combination allowed probability
distributions of change in the 5 and 25 year return values to
be estimated for the nine rainfall regions. The median

Figure 12. Estimates of change in 1 day 5 year and 25 year return values for the SRES A2 2071–
2100 scenario for each of the nine UK homogenous rainfall regions, pooling results from (a) all
Hadley-driven models (Hadley), (b) a subset of Hadley-driven models (Hadley_sub), RCAOH and
HIRHAMH, and (c) ECHAM-driven models (ECHAM), RCAOE and HIRHAME. Box plot details are
the same as for Figure 11.
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change indicates an increase of 10 to 20% on 1961–1990
return values by 2071 under the A2 SRES emissions
scenario. More uncertainty exists for change in short-
duration (1 or 2 days) precipitation extremes but consistently
positive changes are predicted for longer-duration events.
If estimates of change for 1 day extreme precipitation
are pooled by driving-GCM, Hadley-driven models estimate
median increases of between 0 and 15% whereas ECHAM-
driven models project larger increases of 25 to 45%. Esti-
mated increases are largest in east and south Scotland and
smallest in southern regions; similar to trends seen in obser-

vations [Fowler and Kilsby, 2003a, 2003b]. For 10 day
extremes, the differences between the projections of change
are smaller. Hadley-driven models suggest increases of
10 to 15%; ECHAM models suggest greater increases from
25 to 35%.
[57] The large intermodel variability evident in the

results suggests that the introduction of further models into
the analysis, particularly RCMs driven by different lateral
boundary conditions, may well modify the estimated
changes in extreme precipitation presented here. Further-
more, in this work all models were assumed to have equal

Figure 13. Estimates of change in 10 day 5 year and 25 year return values for the SRES A2 2071–2100
scenario for each of the nine UK homogenous rainfall regions, pooling results from (a) all Hadley-driven
models (Hadley), (b) a subset of Hadley-driven models (Hadley_sub), RCAOH and HIRHAMH, and
(c) ECHAM-driven models (ECHAM), RCAOE and HIRHAME. Box plot details are the same as for
Figure 11.
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skill. However, it is clear that models perform differently
in the simulation of the magnitude and spatial distribution
of extremes. Under global warming, the characteristics of
precipitation are expected to change over both space and
time. Models which cannot capture interregional differ-
ences in the present climate may not accurately predict
change. Therefore it is appropriate to assess the ability of
models to simulate spatial as well as temporal climate
characteristics. Ultimately, a multiscale approach must be
developed for weighting the results from different climate
models. This should not only assess the simulation of
synoptic-scale regional climate for the specific impact
study, but also the simulation of continental-scale and
global modes of variability such as the location of the
storm track across Europe, and the North Atlantic or the
El Niño Southern Oscillations.
[58] In summary, four lessons can be learnt for the

design of future climate model ensemble experiments.
First, the number of driving GCMs should at least equal
the number of RCMs, as the driving GCM seems to
produce the largest uncertainties in response, particularly
for precipitation. Indeed, the role of GCM uncertainty may
be underestimated by PRUDENCE, as the global mean
temperature response of HadCM3 and ECHAM4 are very
similar for the IPCC SRES A2 emissions scenario [Déqué
et al., 2007]. Secondly, if spatial variability or extremes
are important then integrations from different RCMs must
be incorporated into the analysis. Thirdly, the estimates of
change are sensitive to the number of RCMs used. In the
limited sensitivity analysis performed here, adding more
ensemble members increased the uncertainty in estimates,
particularly when used in combination with different
driving-GCMs. Finally, an appropriate temporal and spatial
resolution for RCM data must be chosen. Results based on
‘‘smoothed’’ data, e.g., using 10 day totals or regions
rather than grid cells, showed much less intermodel
variability. Smoothing seems to reduce the influence of
individual model characteristics, exaggerating precipitation
patterns resulting from larger-scale processes that are better
resolved by RCMs in relation to precipitation resulting
from processes operating at a higher temporal and spatial
resolution.
[59] The RCMs examined here indicate increases in

extreme precipitation across the UK and most of Europe
under global warming but considerable uncertainty as to the
magnitude of change. The use of multimodel ensembles to
assess the impacts of climate change offers considerable
potential but also a significant challenge, for both resource
planners and managers and for the research community, in
communicating the nature of these uncertainties.
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Räisänen, J., U. Hansson, A. Ullerstig, R. Döscher, L. P. Graham, C. Jones,
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